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AGENDA

Lattice Quantum Chromodynamics 

GPU refresh 

lower precision 

multigrid 

more nodes 

Summary
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LATTICE QUANTUM CHROMODYNAMICS

Theory is highly non-linear ⇒ cannot solve directly 

Must resort to numerical methods to make predictions 

Lattice QCD 
Discretize spacetime ⇒ 4-d dimensional lattice of size 

Finite spacetime ⇒ periodic boundary conditions 

PDEs ⇒ finite difference equations 

Consumer of 10-20% of public supercomputer cycles 
Traditionally highly optimized on every HPC platform for the past 30 years  

Lx × Ly × Lz × Lt
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STEPS IN AN LQCD CALCULATION

1. Generate an ensemble of gluon field configurations “gauge generation” 
Produced in sequence, with hundreds needed per ensemble 
Strong scaling required with 100-1000 TFLOPS sustained for several months 
50-90% of the runtime is in the linear solver 
O(1) solve per linear system 
Target 164 per GPU 

2. “Analyze” the configurations 
Can be farmed out, assuming ~10 TFLOPS per job 
Task parallelism means that clusters reign supreme here 
80-99% of the runtime is in the linear solver  
Many solves per system, e.g., O(106) 
Target 244-324 per GPU

D↵�
ij (x, y;U) �

j (y) = ⌘↵i (x)

or Ax = b

Simulation Cost ~ a-6 V5/4
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QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license) 
• Effort started at Boston University in 2008, now in wide use as the GPU backend 

for BQCD, Chroma, CPS, MILC, TIFR, tmLQCD, etc. 
• Provides: 

— Various solvers for all major fermionic discretizations, with multi-GPU support 
— Additional performance-critical routines needed for gauge-field generation 

• Maximize performance 
– Exploit physical symmetries to minimize memory traffic 
– Mixed-precision methods 
– Autotuning for high performance on all CUDA-capable architectures 
– Domain-decomposed (Schwarz) preconditioners for strong scaling 
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR) 
– Multi-source solvers 
– Multigrid solvers for optimal convergence 

• A research tool for how to reach the exascale
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MAPPING THE DIRAC OPERATOR TO CUDA

• Finite difference operator in LQCD is known as Dslash 

• Assign a single space-time point to each thread 
V = XYZT threads, e.g., V = 244 => 3.3x106 threads 

• Looping over direction each thread must 
– Load the neighboring spinor (24 numbers x8) 

– Load the color matrix connecting the sites (18 numbers x8) 
– Do the computation 

– Save the result (24 numbers)  

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity 
• QUDA reduces memory traffic 

Exact SU(3) matrix compression (18 => 12 or 8 real numbers) 
Use 16-bit fixed-point representation with mixed-precision solver

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Dx,x0 =
x x

x

x−

x−

U x



U
x

μ

μ

ν
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X[1]
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NVIDIA DGX-1

8 V100 GPUs (16/32 GB) 
Hypercube-Mesh NVLink 

4 EDR IB 

NVIDIA DGX-1 With Tesla V100 System Architecture  WP-08437-002_v01 | 9

V100
GPU7

V100
GPU4

V100
GPU6

V100
GPU5

CPU1NIC NIC

PCIe Switches

V100
GPU0

V100
GPU3

V100
GPU1

V100
GPU2

CPU0NIC NIC

PCIe Switches

NVLink PCIe QPI

Figure 4 DGX-1 uses an 8-GPU hybrid cube-mesh interconnection network topology.  
The corners of the mesh-connected faces of the cube are connected to the PCIe tree network, which 
also connects to the CPUs and NICs.



9

NVIDIA POWERS WORLD'S FASTEST SUPERCOMPUTER

27,648 
Volta Tensor Core GPUs

Summit Becomes First System To Scale The 100 Petaflops Milestone

149 PF 
HPC



TESLA V100 32GB 

5,120 CUDA cores 
640 NEW Tensor cores 
7.8 FP64 TFLOPS | 15.7 FP32 TFLOPS | 125 Tensor TFLOPS 
20MB SM RF  |  16MB Cache   
32GB HBM2 @ 900GB/s | 300GB/s NVLink



11

CPU 
Optimized for  
Serial Tasks

GPU Accelerator 
Optimized for  
Parallel Tasks

ACCELERATED COMPUTING  
10X	PERFORMANCE	&	5X	ENERGY	EFFICIENCY	FOR	HPC

CPU Strengths 

• Very large main memory 
• Very fast clock speeds 
• Latency optimized via large caches 
• Small number of threads can run 

very quickly 

CPU Weaknesses 

• Relatively low memory bandwidth 
• Cache misses very costly 
• Low performance/watt 



12

CPU 
Optimized for  
Serial Tasks

GPU Accelerator 
Optimized for  
Parallel Tasks

ACCELERATED COMPUTING  
10X	PERFORMANCE	&	5X	ENERGY	EFFICIENCY	FOR	HPC

GPU Strengths 

• High bandwidth main memory 
• Significantly more compute 

resources 
• Latency tolerant via parallelism 
• High throughput 
• High performance/watt 

GPU Weaknesses 

• Relatively low memory capacity 
• Low per-thread performance 
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SPEED V. THROUGHPUT
Speed Throughput

*Images from Wikimedia Commons via Creative Commons

Which is better depends on your needs…
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QUDA STENCIL PERFORMANCE
GPUs now drive 10x faster than they used to ..

G
Fl
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2,000
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SCALING

Lattice QCD needs to be scaled - in one of many ways: 

Multiple meanings 
Same problem size, more nodes, more GPUs 
Same problem, next generation GPUs 
Same problem, fewer bits to solve (mixed precision) 
Multigrid - strong scaling within the same run (not discussed here) 

To tame strong scaling we have to understand the limiters

A single GPU is not enough
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MIXED PRECISION 
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LINEAR SOLVERS

QUDA supports a wide range of linear solvers 

CG, BiCGstab, GCR, Multi-shift solvers, etc. 

Condition number inversely proportional to mass 

Light (realistic) masses are highly singular 

Naive Krylov solvers suffer from critical slowing down at decreasing mass 

Entire solver algorithm must run on GPUs 
Time-critical kernel is the stencil application 
Also require BLAS level-1 type operations

while (|rk|> ε) { 
•βk = (rk,rk)/(rk-1,rk-1) 
•pk+1 = rk - βkpk 

     qk+1 = A pk+1 
•α = (rk,rk)/(pk+1, qk+1) 
•rk+1 = rk - αqk+1 
•xk+1 = xk + αpk+1 

•k = k+1 
}

conjugate  
gradient
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MIXED-PRECISION CG
apply Dslash in sloppy precision 
(single, half) 

reliable residual replacement in 
high precision 
ensures double-precision accuracy 
of final result 

half precision storage: 
Links: [-1,1] 16 bit fixed 

Spinor: 

16bit fixed (24 numbers) 

float (exponent, 1) 

use fp32 for actual arithmetics 1x10-12

1x10-10

1x10-8

1x10-6

0.0001

0.01

1

0 2000 4000 6000 8000 10000 12000 14000 16000

double
double-single
double-half

double-half alt
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MIXED-PRECISION CG
apply Dslash in sloppy precision 
(single, half) 

reliable residual replacement in 
high precision 
ensures double-precision accuracy 
of final result 

half precision storage: 
Links: [-1,1] 16 bit fixed 

Spinor: 

16bit fixed (24 numbers) 

float (exponent, 1) 

use fp32 for actual arithmetics

1x10-11

1x10-10

1x10-9

12500 13000 13500 14000 14500 15000 15500

double
double-single
double-half

double-half alt
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MIXED-PRECISION DEFLATION
Sp

ee
du

p

0

0.5

1

1.5

2

2.5

3

CG double CG double-single CG double-half CG double-quarter    

Configuration provided by  
HotQCD collaboration (Mukherjee et al)

Mixed-precision CG

V=483x12, HISQ operator, physical light quarks, tol 10-10, 2xV100
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EIGENSOLVERS

Multiple workflows require repeated solution with different RHS with the same matrix 

Multigrid not amenable to all linear operators 

Eigenvector deflation is a robust alternative applicable to all operators 
Deflate out low modes from linear operator to accelerate the solver 
Cost of eigensolver is amortized if we solve enough RHS 
Aside: also use deflation to accelerate multigrid 

 
Memory overheads can be limiting factor 

May require storage of 1000s of vectors, ideally in fast memory
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DEFLATION STABILIZES LOW PRECISION
So

lv
er

 It
er

at
io

ns

0

4000

8000

12000

16000

Number of eigenvectors

0 16 32 64 128 256 512 1024

double-single-single

V=483x12, HISQ operator, physical light quarks, tol 10-10

Out of memory

Tri-precision solver 
Outer - Inner -Eigenvector
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DEFLATION STABILIZES LOW PRECISION
So

lv
er

 It
er

at
io

ns

0

4000

8000

12000

16000

Number of eigenvectors

0 16 32 64 128 256 512 1024

double-single-single double-half-single

V=483x12, HISQ operator, physical light quarks, tol 10-10

Out of memory

Tri-precision solver 
Outer - Inner -Eigenvector
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DEFLATION STABILIZES LOW PRECISION
So

lv
er

 It
er

at
io

ns

0

4000

8000

12000

16000

Number of eigenvectors

0 16 32 64 128 256 512 1024

double-single-single double-half-single double-half-half

V=483x12, HISQ operator, physical light quarks, tol 10-10

Tri-precision solver 
Outer - Inner -Eigenvector
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DEFLATION STABILIZES LOW PRECISION
So

lv
er

 It
er

at
io

ns

0

4000

8000

12000

16000

Number of eigenvectors

0 16 32 64 128 256 512 1024

double-single-single double-half-single double-half-half
double-quarter-half

V=483x12, HISQ operator, physical light quarks, tol 10-10

Tri-precision solver 
Outer - Inner -Eigenvector
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MIXED-PRECISION DEFLATION
Fi

na
l S

ol
ve

r 
Sp

ee
du

p

0

10

20

30

40

50

60

70

CG double CG double-single CG double-half
CG double-quarter defCG double-half-single defCG double-half-half
defCG double-quarter-half

Configuration provided by  
HotQCD collaboration (Mukherjee et al)

512  
evectors

1024  
evectors

1024  
evectors

Similar setup times

62x speedup

V=483x12, HISQ operator, physical light quarks, tol 10-10, 2xV100
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DEFLATED ADAPTIVE MG AT THE PHYSICAL POINT

Multigrid shifts the lowest eigenvalues to the coarse grids 
some Dirac operators (staggered / twisted mass) end up with pathological 
coarse-grid spectrum 

For Twisted-clover operator, solution has been to add a fictitious heavy twist to the 
coarse operator to improve its condition number at the cost of decreased multigrid 
efficiency [Alexandrou et al] 
Instead we deflate the coarse grid operator recovering optimal MG convergence and a 
3x speedup over ”mu scaling”

in collaboration with Dean Howarth (BU)
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DEFLATED ADAPTIVE MG AT THE PHYSICAL POINT

REFERENCES
https://lattice.github.io/quda
https://developer.nvidia.com/cuda-zone
https://devblogs.nvidia.com/parallelforall/inside-volta/
Copyright © 2019 NVIDIA Corporation. All rights reserved.

TALKS

LATTICE QCD ON 
NVIDIA® TESLA® V100

QUDA 1.0

Tuesday, 15:20, Algorithms & Machines: Leadership-Class Multi-Grid 
Algorithms for HISQ Fermions on GPUs.
Tuesday, 15:40, Algorithms & Machines: Breaking the latency barrier: 
Strong scaling LQCD on GPUs.
Thursday, 11:15, Plenary: GPUs for Lattice Field Theory.

QUDA: A LIBRARY FOR QCD AND BEYOND 
ON GPUs

QUDA is an open source community-developed and 
NVIDIA-supported library for performing LQCD and 
strongly coupled BSM calculations on GPUs, leveraging 
NVIDIA’s CUDA platform. QUDA provides highly optimized 
mixed-precision linear solvers, eigenvector solvers, 
multi-grid algorithms, gauge-link fattening and fermion 
force algorithms 
Supported fermion types are: Wilson, Wilson-clover, 
twisted mass singlet and doublet, twisted mass clover, 
naïve staggered, improved staggered (ASQTAD or HISQ), 
domain-wall (4-d or 5-d) and möbius
Use of multiple GPUs in parallel is supported throughout the 
library, with inter-GPU communication achieved using MPI 
or QMP. Several commonly used LQCD applications integrate 
support for QUDA as a compile-time option, 
including Chroma, MILC, CPS, BQCD, TIFR and tmLQCD
QUDA is an unparalleled research tool for reaching the 
exascale. With its new high-level C++11 framework, QUDA 
enables testing new fermion discretizations and new 
algorithms performantly and at scale with relative ease

WHY GPUs?
LQCD simulations are typically memory-bandwidth bound, 
and so run very efficiently on GPUs
LQCD simulations have high degrees of data parallelism 
that can be expressed effectively using the single 
instruction multiple data (SIMD) paradigm. This makes 
LQCD ideal for GPU deployment
Most LQCD calculations require only local communication 
on the 4-d lattice. This makes them suitable for 
deployment on multiple GPUs through partitioning the 
lattice into disjoint equal sub-lattices and distributing 
these between GPUs 
GPUs are prevalent on the fastest computing clusters and 
supercomputers in the world 

QUDA REWRITE
Old Dslash kernel code became increasingly limiting
Rewrite brings a lot of benefits:
- Extensibility, composability and maintainability: 
   “one Wilson kernel to rule them all”
-  Ability to add new discretizations easily: e.g. Twisted clover doublet
-  Changing representation, Nc, etc: Accessor abstraction
-  Larger local volumes
-  Ability to run on CPU: Future framework for all architectures??

Same or better performance

ROAD TO THE FUTURE
Block solvers for all fermion actions
Eigenvector compression
Continuous optimization of multi-grid algorithms
Improved scaling: NVSHMEM
C++ Interface
Alternative compilation targets (e.g., C++17 pSTL)

ANNOUNCING QUDA 1.0

Complete re-write of all operators in a new Dslash framework 
Jitify support: huge reduction in compile time, enabling 
even more rapid algorithm development
Improved Multi-GPU performance taking advantage of 
latest GPU Direct RDMA and NVLink technologies
Adaptive Multigrid for Wilson, Wilson-clover, Twisted-mass, 
Twisted-clover, Staggered, and Improved Staggered fermions
A polynomial-accelerated Lanczos as well as deflated CG, 
communication-avoiding (CA) CG, and SVD-deflated 
(CA-)GCR
Significantly improved build system and automated unit tests
Various other new routines and algorithms, code cleanup 
and bug fixes

TESLA VOLTA V100
21B transistors

815 mm2

16/32 GB HBM2
900 GB/s HBM2
300 GB/s NVLink

80 SM
5120 CUDA Cores
640 Tensor Cores

MULTI-GPU WILSON DSLASH
Global Volume = 324, DGX-2, NVLink + NVSwitch

GPUs

GFLOPS Double MPI
Double NVSHMEM

Single MPI
Single NVSHMEM

Half MPI
Half NVSHMEM

1 42 168
0

2000
4000
6000
8000

10000
12000
14000
16000
18000

Authors: Kate Clark, Mathias Wagner, Evan Weinberg, NVIDIA

Two GPU Boards
8 V100 32GB GPUs per board
6 NVSwitches per board
512GB Total HBM2 Memory
interconnected by
Plane Card

Eight EDR Infiniband/100 GigE
1600 Gb/sec Total 
Bi-directional Bandwidth

PCIe Switch Complex

Two Intel Xeon Platinum CPUs

1.5 TB System Memory
Dual 10/25 Gb/sec
Ethernet

30 TB NVME SSDs 
Internal Storage

Twelve NVSwitches
2.4 TB/sec bi-section
bandwidth

NVIDIA Tesla V100 32GB
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NVIDIA DGX-2

QUDA NODE PERFORMANCE OVER TIME

Time to solution is measured for solving the Wilson operator against a 
random source on a 24x24x24x64 lattice, β=5.5, Mл= 416 MeV.
One node is defined to be 3 GPUs.
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NVSHMEM
Implementation of OpenSHMEM standard for GPUs
GPU-centric communication
Communication controlled in the kernels
 Fine-grained load/store over NVLink
 Bulk transfers over Infiniband using RDMA
Reduce number of required kernels by enabling kernel fusion
Remove API overheads and GPU-CPU synchronizations

>
>
>

-
-

>
>

DEFLATED ADAPTIVE MG AT THE 
PHYSICAL POINT
In collaboration with Dean Howarth (BU)

Multigrid shifts the lowest eigenvalues to the coarse grids
Some Dirac operators (staggered and twisted mass) end up with 
pathological coarse-grid spectrum
For Twisted-clover operator, solution has been to add a fictitious heavy 
twist to the coarse operator to improve its condition number at the cost 
of decreased multigrid efficiency [Alexandrou et al]
Instead we deflate the coarse grid operator recovering optimal MG 
convergence and a 3x speedup over ”mu scaling”

>
>

>

>

CHROMA HMC-MG ON SUMMIT
In collaboration with Bálint Joó – Chroma, Boram Yoon – Force gradient 
integrator, Frank Winter – QDP-JIT

From Titan running 2016 code to Summit running 2019 code we 
see >82x speedup in HMC throughput
Multiplicative speedup coming from machine and algorithm innovation
Highly optimized multigrid for gauge field evolution
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4.1x faster on 
2x fewer GPUs ~8x gain

10.2x faster on 
8x fewer GPUs ~82x gain

MULTI-GPU HISQ DSLASH
Global Volume = 324, DGX-2, NVLink + NVSwitch

GFLOPS

GPUs
1 42 168
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We are pleased to announce QUDA 1.0

>
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SUMMIT AND SIERRA ARE NOW LIVE
IBM POWER9 + NVIDIA Volta V100 + NVLink
Summit: 4608 nodes (6 GPUs/node): 
200 PFLOPS peak
 -  The most powerful computer in the world

Sierra: 4320 nodes (4 GPUs/node): 
125 PFLOPS peak
 -  2nd most powerful computer in the world

MULTI-NODE WILSON DSLASH
Global Volume = 643x128, DGX1 with 8 V100, NVLink, 4 EDR IB 

GFLOPS
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Time to solution is measured running QUDA on 4 DGX-1 (32 V100) for solving
the Twisted-mass + clover operator against a random source on a 
643x128 lattice, β = 1.778, κ = 0.139427, µ = 0.000720, solver tolerance 10-7
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HISQ MULTIGRID
483x96, β = 6.4 (quenched), HISQ fermions

Time to solution is measured time for solving the HISQ operator against a random 
source. Runs were performed on 3 DGX-1 (24 V100 total).

in	collaboration	with		
Dean	Howarth
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SCALING 
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MULTI-GPU SCALING

Much effort to improve strong scaling in QUDA 

Key technologies employed 
Peer-to-peer communication - skip MPI and directly utilize DMA copies 
GPU Direct RDMA (GDR) - GPU <-> NIC <-> GPU without traversing CPU memory 
Node topology awareness 
Autotuning for Dslash communication policy 

Framework for Exascale communication models - NVSHMEM (OpenSHMEM for GPUs)

HPC nodes continue to get denser
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MULTI-GPU BUILDING BLOCKS

Halo packing Kernel 

Interior Kernel 

Halo communication 

Halo update Kernel

Multi GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011

Halo packing Kernel 

Interior Kernel 

Halo communication 

Halo update Kernel
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BENCHMARKING TESTBED

DGX-1 nodes 
8x V100 GPUs connected through NVLink 
4x EDR for inter-node communication 
Optimal placement of GPUs and NIC 

Balanced GPU / IB configuration 

NVIDIA Prometheus Cluster

NVIDIA DGX-1 With Tesla V100 System Architecture  WP-08437-002_v01 | 9
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GPU7
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GPU4

V100
GPU6

V100
GPU5

CPU1NIC NIC

PCIe Switches

V100
GPU0

V100
GPU3

V100
GPU1

V100
GPU2

CPU0NIC NIC

PCIe Switches

NVLink PCIe QPI

Figure 4 DGX-1 uses an 8-GPU hybrid cube-mesh interconnection network topology.  
The corners of the mesh-connected faces of the cube are connected to the PCIe tree network, which 
also connects to the CPUs and NICs.
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WHAT IS LIMITING STRONG SCALING

Staging MPI transfers through host memory

current state of the art using CUDA IPC (P2P) over NVLink

DGX-1,164  local volume, half precision, 1x2x2x2 partitioning

P2P copies

Interior kernelPacking kernel Halo kernel

129 µs
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WHAT IS LIMITING STRONG SCALING

Staging MPI transfers through host memory

Significant API overhead

DGX-1,164  local volume, half precision, 1x2x2x2 partitioning

P2P copies

Interior kernelPacking kernel Halo kernel

129 µsPack Interior HaloP2P copies

Sync CPU + GPU
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REDUCING API OVERHEADS

Staging MPI transfers through host memory

Packing kernel writes to remote GPU using CUDA IPC

DGX-1,164  local volume, half precision, 1x2x2x2 partitioning

Interior kernelPacking kernel Fused Halo

Interior kernelPacking kernel Fused Halo

SyncSync

89 µs
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NVSHMEM

Implementation of OpenSHMEM1, a Partitioned Global Address Space (PGAS) library 
NVSHMEM features 

Symmetric memory allocations in device memory 
Communication API calls on CPU (standard and stream-ordered) 
Kernel-side communication (API and LD/ST) between GPUs 

NVLink and PCIe support (intranode) 
InfiniBand support (internode) 
Interoperability with MPI and OpenSHMEM libraries 

currently in early access

GPU centric communication

1 SHMEM from Cray’s “shared memory” library, https://en.wikipedia.org/wiki/SHMEM
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NVSHMEM DSLASH

Staging MPI transfers through host memory

DGX-1,164  local volume, half precision, 1x2x2x2 partioning

Packing kernel Fused Halo

Interior kernel

Barrier kernel

53 µs
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NVSHMEM + FUSING KERNELS

Staging MPI transfers through host memory

no extra packing and barrier kernels needed

DGX-1,164  local volume, half precision, 1x2x2x2 partioning

Barrier + Fused HaloInterior + Pack + Flag kernel

36 µs
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LATENCY OPTIMIZATIONS
Different strategies implemented
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DGX-2: FULL NON-BLOCKING BANDWIDTH
2.4 TB/s bisection bandwidth
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DGX-2  STRONG SCALING
Global Volume 324, Wilson-Dslash, half precision
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DGX-2  STRONG SCALING
Global Volume 324, Wilson-Dslash, half precision
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DGX-2  STRONG SCALING
Global Volume 324, Wilson-Dslash, half precision
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MULTI-NODE SCALING
DGX SuperPOD (DGX2-H: 16 V100 (32GB), 8 EDR IB)
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MULTI-NODE SCALING
DGX SuperPOD (DGX2-H: 16 V100 (32GB), 8 EDR IB)
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sweet spot for simulations
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NVSHMEM OUTLOOK

`
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NVSHMEM OUTLOOK

`

One kernel to rule them all !  
Communication is handled in the kernel and latencies are hidden.
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IN THE WILD  
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CHROMA HMC MULTIGRID

HMC typically dominated by solving the Dirac equation, but 
Few solves per linear system 
Can be bound by heavy solves (c.f. Hasenbusch mass preconditioning) 

Multigrid setup must run at speed of light 
Reuse and evolve multigrid setup where possible 
Use the same null space for all masses (setup run on lightest mass) 
Evolve null space vectors as the gauge field evolves (Lüscher 2007) 
Update null space when the preconditioner degrades too much on lightest mass



45

CHROMA HMC-MG ON SUMMIT

Titan (1024x K20)

Summit (128x V100)

Titan (512x K20X)

Summit (128x V100, Nov 2019)

Summit (128x V100, March 2019)
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From Titan running 2016 code to Summit running 2019 code we see >82x 
speedup in HMC throughput 
Multiplicative speedup coming from machine and algorithm innovation 
Highly optimized multigrid for gauge field evolution

4.1x faster on 2x fewer GPUs 
~8x gain

10.2x faster on 8x fewer GPUs 
~82x gain
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NODE PERFORMANCE OVER TIME
Multiplicative speedup through software and hardware
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QUDA - LATTICE QCD ON GPUS

State of the art solvers using mixed precision 

Multigrid 
Deflation  
Block-Krylov solver 

All components for gauge field evolution  

Portable high-performance kernels through auto-tuning and careful optimization 
Tuned Multi-GPU scaling 

GPU centric communication with NVSHMEM takes CPU limitations out 

Multiplicative speedup from hardware and software: more science

Widely used for Lattice QCD applications on GPUs




