Quantum Simulation of Parton Physics

Yukari Yamauchi

for NuQS Collaboration Andrei Alexandru, Paulo Bedaque, Siddhartha Harmalkar, Hersh Kumar, Henry Lamm, Scott Lawrence, and Neill Warrington 1903.08807, 1906.11213, 1908.10439

12 December 2019

Parton Distribution Function

PDF of parton species q in a hadron with momentum P

 $f_q(P, x)$ = probability of finding q with momentum fraction p (p = xP)

(In longitudinal direction)

With $f_q(x)$, hadron high energy scattering processes' cross section;

$$\sigma_{e^- p \to e^- + X} = \int_0^1 dx \sum_q f_q(P, x) \ \sigma_{e^- q \to e^- + X}$$

On the Euclidean Lattice

PDF:

$$f_q(P,x) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{-itx(n\cdot P)} \langle P|\bar{\psi}_q(tn^{\mu})\gamma^0 W_n(tn^{\mu},0)\psi_q(0)|P\rangle$$

Real-time correlators \rightarrow (potential) Sign problem

Many methods available: Quasi PDFs, Pseudo PDFs...

Parton Distribution Functions from loffe time pseudo-distributions

Parton Physics on Euclidean Lattice

Xiangdong Ji^{1, 2}

Bálint Joó^a , Joseph Karpie^{b,a} , Kostas Orginos^{b,a} , Anatoly Radyushkin^{c,a} , David Richards^a and Savvas Zafeiropoulos^d

Quantum Computer is a quantum system evolved in real-time PDFs are *natural* in a quantum simulation.

Machine available now is:

- 50 qubits
- circuit depth 20
- noisy..

We'll have to wait for XX years for PDF...

A Quantum Computer - Qubits

Qubits are quantum spins:

So the Hilbert space is 2^{N} -dimensional for N qubits. A state on qubits is

 $|\phi
angle = a|000000
angle + b|100000
angle + c|010000
angle + \cdots$

but once you do measurement, it collapse into one of those basis state

 $|\phi\rangle \rightarrow |0101010\rangle$

A Quantum Computer - Gates

Gates apply to qubits and change the state

• 1 -qubit gates in matrix form...

$$H=rac{1}{\sqrt{2}}egin{pmatrix} 1&1\ 1&-1 \end{pmatrix}$$
 , $\ T=egin{pmatrix} e^{i\pi/8}&0\ 0&e^{-i\pi/8} \end{pmatrix}$

• 2 -qubit gates in matrix form ... example Controlled-not (CNOT)

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{array}{c} |00\rangle \mapsto |00\rangle \\ |01\rangle \mapsto |01\rangle \\ |10\rangle \mapsto |11\rangle \\ |11\rangle \mapsto |10\rangle \end{array}$$

Example - \mathbb{Z}_2 , One 'Plaquette'

$$H = \sigma_x(a) + \sigma_x(b) + \sigma_z(a)\sigma_z(b)$$

Trotterization:

а

$$f_q(P,x) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{-itx(n \cdot P)} \langle P | \bar{\psi}_q(tn^{\mu}) \gamma^0 W_n(tn^{\mu},0) \psi_q(0) | P \rangle$$

$$f_q(P,x) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{-itx(n \cdot P)} \langle P | \bar{\psi}_q(tn^{\mu}) \gamma^0 W_n(tn^{\mu},0) \psi_q(0) | P \rangle$$

$$f_q(P,x) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{-itx(n \cdot P)} \langle P | \bar{\psi}_q(tn^{\mu}) \gamma^0 W_n(tn^{\mu},0) \psi_q(0) | P \rangle$$

8 / 26

イロン イヨン イヨン イヨン 三日

$$f_q(P,x) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{-itx(n\cdot P)} \langle P|\bar{\psi}_q(tn^{\mu})\gamma^0 W_n(tn^{\mu},0)\psi_q(0)|P\rangle$$

8 / 26

イロン イヨン イヨン イヨン 三日

$$f_q(P,x) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{-itx(n\cdot P)} \langle P|\bar{\psi}_q(tn^{\mu})\gamma^0 W_n(tn^{\mu},0)\psi_q(0)|P\rangle$$

イロン イヨン イヨン イヨン 三日

Mapping quarks and gluons to qubits

SU(3) has an infinite dimensional Hilbert space N qubits have 2^N dimensional Hilbert space

 $2^{N} = \infty$???

Well, we have only finite number of qubits \rightarrow need to truncate SU(3)Largest finite subgroup of SU(3): S(1080)

S(1080) gauge theory ightarrow 11 qubits per gauge link (1080 < 2¹¹)

"Modified" S(1080) action

Modify the action:

$$\mathcal{S} = -\sum_{p} \left(rac{eta_0}{3} \operatorname{\mathsf{Re}} \operatorname{\mathsf{Tr}} U_p + eta_1 \operatorname{\mathsf{Re}} \operatorname{\mathsf{Tr}} U_p^2
ight)$$

Measure two scales, and compare the ratio to SU(3): Wilson flow, center symmetry

\rightarrow Smallest lattice spacing is a = 0.08 fm.

- At this spacing, S(1080) and SU(3) agree on the low-energy observable $T_c\sqrt{t_0}$
- Beyond this spacing, they disagree.

Do other low-energy quantities agree?

In progress: spectroscopy, further modified actions

$$f_q(P,x) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{-itx(n\cdot P)} \langle P|\bar{\psi}_q(tn^{\mu})\gamma^0 W_n(tn^{\mu},0)\psi_q(0)|P\rangle$$

Hilbert Space of S(1080)

G = S(1080) lattice gauge theory ightarrow each link U_{ij} has Hilbert space $\mathbb{C}G$

Projection operator to \mathcal{H}_P (Physical subspace):

$$P \left| U_{12} \cdots \right\rangle = \int \left(\mathrm{d} V_1 \mathrm{d} V_2 \cdots \right) \left| V_2^{\dagger} U_{12} V_1 \cdots \right\rangle$$

We keep the entire Hilbert space on qubits,

Gauge invariance - \mathbb{Z}_2 , One 'Plaquette' again

$$H = \sigma_x(a) + \sigma_x(b) + \sigma_z(a)\sigma_z(b)$$

The gauge transformation operator: $\sigma_x(a)\sigma_x(b)$.

 $|00
angle \leftrightarrow |11
angle$ and $|01
angle \leftrightarrow |10
angle$

 $\begin{array}{l} \mbox{Physical states: } |00\rangle + |11\rangle, \ |01\rangle + |10\rangle \\ \mbox{Unphysical states: } |00\rangle - |11\rangle, \ |01\rangle - |10\rangle \end{array}$

Hamiltonian lattice gauge theory

$$H = \beta_K \sum_L \nabla_L^2 + \beta_P \sum_P \operatorname{Re} \operatorname{Tr} P + \cdots$$

Hamiltonian is gauge-invariant

gauge invariant initial state \rightarrow gauge invariant final state

Real-Time evolution

How do we implement e^{-iHt} with local gates?

$$H = \overbrace{\beta_K \sum_L \nabla_L^2}^{H_K} + \overbrace{\beta_P \sum_P}^{H_V} \operatorname{Re} \operatorname{Tr} P$$

Kinetic

Potential

One link only Diagonal in Fourier space Four links Diagonal (in our basis)

Trotterization:

$$e^{-iHt} = \left[e^{-iH\epsilon}\right]^{t/\epsilon} \\ \approx \left[\left(e^{-i\epsilon\beta_{K}\nabla_{1}^{2}}e^{-i\epsilon\beta_{K}\nabla_{2}^{2}}\cdots\right)\left(e^{-i\epsilon\beta_{P}\operatorname{Re}\operatorname{Tr}P_{1}}e^{-i\epsilon\beta_{P}\operatorname{Re}\operatorname{Tr}P_{2}}\cdots\right)\right]^{t/\epsilon}$$

with taking ϵ to be small

S(1080) Circuits under construction

Inversion gate

$$\mathfrak{U}_{-1}\ket{g}=\left|g^{-1}
ight
angle$$

Multiplication gate

$$\mathfrak{U}_{ imes}\ket{g}\ket{h}=\ket{g}\ket{gh}$$

Trace gate

$$\mathfrak{U}_{\mathsf{Tr}}(heta)\ket{g}=e^{i heta\,\mathsf{Re}\,\mathsf{Tr}\,g}\ket{g}$$

• Fourier Transform gate

$$\mathfrak{U}_{\mathsf{F}}\sum_{oldsymbol{g}\in \mathsf{G}}f(oldsymbol{g})\ket{oldsymbol{g}} = \sum_{
ho\in\hat{\mathcal{G}}}\hat{f}(
ho)_{ij}\ket{
ho,i,j}$$

 $\bullet\,$ Phase gate for kinetic term \mathfrak{U}_{phase}

Some in progress!

$$f_q(P,x) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{-itx(n\cdot P)} \langle P|\bar{\psi}_q(tn^{\mu})\gamma^0 W_n(tn^{\mu},0)\psi_q(0)|P\rangle$$

Adiabatic State Preparation

Suppose you want the ground state of Hamiltonian H_f

- Have a time-varying Hamiltonian H(t) with: the ground state of H(0) known and H_f = H(t_f)
- **2** Prepare the ground state of H(0) on quantum computer
- **③** Time-evolve the state with H(t) until $t = t_f$

Adiabatic theorem guarantees:

When $\dot{H}/\Delta^2 \ll 1$, time-evolution will keep us in the ground state. where Δ is the gap between ground state and 1st excited state

How much does the method cost?

Time slices in $H(0) \rightarrow H(t)$ needed to prepare the ground state $= \Delta^{-2}$

Adiabatic Preparation of Proton

To have a proton as the ground state, restrict to a certin sector of Hilbert space:

- Gauge-invariant states
- Zero total momentum
- Baryon number 1

g=0

• Free 3 fermions and gluons • Small gap $\left(O\left(\frac{1}{L}\right)\right)$ Total circuit size for state preparation; $L^2 \times V$, $(V = L^3)$

$$f_q(P,x) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{-itx(n\cdot P)} \langle P|\bar{\psi}_q(tn^{\mu})\gamma^0 W_n(tn^{\mu},0)\psi_q(0)|P\rangle$$

Measurement of Correlators

Real-time correlator

$$\left< J(t) J(0) \right> = \left< \Psi
ight| e^{iHt} J e^{-iHt} J \left| \Psi
ight>$$

This is not a Hermitian operator! May need to evaluate $\langle \Psi | U(\epsilon_x, \epsilon_0) | \Psi \rangle$, where

$$U(\epsilon_x,\epsilon_0) = e^{iHt} e^{iJ^{\mu}(\vec{x})\epsilon_x} e^{-iHt} e^{-iJ^{\nu}(\vec{0})\epsilon_0}$$

and then estimate the derivative

$$rac{d}{d\epsilon_x}rac{d}{\epsilon_0}\left\langle |\Psi U(\epsilon_x,\epsilon_0)|\Psi
ight
angle = \langle \Psi|J^\mu(x)J^
u(0)|\Psi
angle$$

Well, $U(\epsilon_x, \epsilon_0)$ in still not Hermitian... Though unitary \rightarrow Use ancillary qubit!

Thirring model PDF

$$H = \int \mathrm{d}x \; \bar{\psi} \left(\partial \!\!\!/ + m \right) \psi + g^2 \left(\bar{\psi} \psi \right)^2$$

Discretization with staggered fermion:

$$H = \sum_{r} \frac{1}{2} (-1)^{r} \left(\chi_{r}^{\dagger} \chi_{r+1} + \chi_{r+1}^{\dagger} \chi_{r} \right) + m (-1)^{r} \chi_{r}^{\dagger} \chi_{r} - g^{2} \chi_{r}^{\dagger} \chi_{r} \chi_{r+1}^{\dagger} \chi_{r+1}$$

Parton distribution function (No Wilson line!):

With gauge fields, Light cone is hard

Wilson line has to be on "light cone"

$$W(y; 0) \approx e^{-iHa}W(y; y-a)e^{-iHa}\cdots e^{-iHa}W(a; 0)$$

Lots of finite differencing...

Hadronic tensor

Hadronic tensor is more 'physical', and PDF can be extracted from it in principle And, Cross sections may be determined from hadronic tensor.

$$\frac{d^2\sigma}{dx\,dy} = \frac{\alpha^2 y}{Q^4} L_{\mu\nu} W^{\mu\nu}$$

Hadronic tensor:

$$W^{\mu\nu}(q) = \int \mathrm{d}x \ e^{iqx} \left\langle P | e^{iHx^0} J^{\mu}(\vec{x}) e^{-iHx^0} J^{\nu}(\vec{0}) | P \right\rangle$$

No Wilson line needed!

 J^{μ} is a *physical* current. (Hermitian so can be added as perturbation)

$$H = H_0 + \epsilon_x(t)J^{\mu}(\vec{x}) + \epsilon_0(t)J^{\nu}(\vec{0})$$

$$rac{d}{d\epsilon_x}rac{d}{\epsilon_0}\left\langle |\Psi U(\epsilon_x,\epsilon_0)|\Psi
ight
angle = \langle \Psi|J^\mu(x)J^
u(0)|\Psi
angle$$

Future

For **QCD** PDFs:

- $\label{eq:constraint} \begin{tabular}{ll} \bullet & 10^6 \mbox{ qubits needed (} 20^3 \mbox{ lattice)} \end{tabular}$
- 2 S(1080) exact circuits
- State preparation details

Other real-time observables? TMD, viscocity...

Future

For **QCD** PDFs:

- $\label{eq:constraint} {\rm \textcircled{0}} ~ \sim 10^6 ~ {\rm qubits} ~ {\rm needed} ~ (20^3 ~ {\rm lattice})$
- S(1080) exact circuits
- State preparation details

Other real-time observables? TMD, viscocity...

Thank you!

"Modified" S(1080) action

Measure two scales, and compare the ratio to SU(3): Wilson flow, center symmetry

And test if they agee

• *T_c*: center symmetry breaking

•
$$t_0$$
: solution to $0.3 = t_0^2 \langle E \rangle_{t_0}$

• Dimensionless ratio $T_c \sqrt{t_0}$. 1906.11213

 \rightarrow Smallest lattice spacing is a = 0.08 fm.

- At this spacing, S(1080) and SU(3) agree on the low-energy observable $T_c\sqrt{t_0}$
- Beyond this spacing, they disagree.

Do other low-energy quantities agree?

In progress: spectroscopy, further modified actions

^{26 / 26}

Building blocks of Time evolution - Kinetic part

$$H = \overbrace{\beta_K \sum_L \nabla_L^2}^{H_K} + \beta_P \sum_P \operatorname{Re} \operatorname{Tr} P$$

Diagonal in momentum basis

ightarrow need Fourier transform gate \mathfrak{U}_F and phase gate $\mathfrak{U}_{\mathrm{phase}}$ (diagonal)

Building blocks of Time evolution Potential part

$$H = \beta_K \sum_L \nabla_L^2 + \overbrace{\beta_P \sum_P \text{Re Tr } P}^{H_V}$$

We need an operator:

$$\mathcal{U}(heta)\ket{A}\ket{B}\ket{C}\ket{D}=e^{-ieta_{P}\operatorname{\mathsf{Re}}\operatorname{\mathsf{Tr}}(ABCD)}\ket{A}\ket{B}\ket{C}\ket{D}$$

and thus need inversion $\mathfrak{U}_{-1},$ multiplication $\mathfrak{U}_{\times},$ and trace \mathfrak{U}_{Tr} gates

$$\begin{aligned} |A\rangle |B\rangle |C\rangle |D\rangle \\ \rightarrow |A\rangle |B\rangle |C\rangle |CD\rangle \\ \rightarrow \cdots \rightarrow |A\rangle |B\rangle |C\rangle |ABCD\rangle \\ \rightarrow |A\rangle |B\rangle |C\rangle e^{-i\beta_{P} \operatorname{Re} \operatorname{Tr}(ABCD)} |ABCD\rangle \\ \rightarrow e^{-i\beta_{P} \operatorname{Re} \operatorname{Tr}(ABCD)} |A^{\dagger}\rangle |B^{\dagger}\rangle |C^{\dagger}\rangle |ABCD\rangle \\ \rightarrow \cdots \rightarrow e^{-i\beta_{P} \operatorname{Re} \operatorname{Tr}(ABCD)} |A\rangle |B\rangle |C\rangle |D\rangle \end{aligned}$$

26 / 26

Measurement of Correlators - Imaginary Part

For a Hermitian operator J,

$$egin{aligned} \left\langle J(t)J(0)
ight
angle = \left\langle \Psi
ight|e^{iHt}Je^{-iHt}J\left|\Psi
ight
angle \end{aligned}$$

This is not a Hermitian operator!

Perturb the Hamiltonian:

$$H_{\epsilon}'(t) = H + \epsilon \delta(t) \mathcal{O}$$

And now estimate the derivative:

$$\operatorname{Im} \langle \Psi | J(t) J(0) | \Psi \rangle = \frac{1}{2} \frac{\partial}{\partial \epsilon} \langle \Psi | e^{iJ\epsilon} e^{iHt} \mathcal{O} e^{-iHt} e^{-iJ\epsilon} | \Psi \rangle$$