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Parton Distribution Function
PDF of parton species g in a hadron with momentum P

fq(P, x)= probability of finding g with momentum fraction p (p = xP)

(In longitudinal direction)
With f4(x), hadron high energy scattering processes’ cross section;

1
Oe—p—e=+X :/0 dXqu(P,X) Oe—g—oe +X
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On the Euclidean Lattice

PDF:

G(Pox) = [ 2 e PP ), W, )1 (0) )

oo 2T

Real-time correlators — (potential) Sign problem

Many methods available: Quasi PDFs, Pseudo PDFs...

Parton Distribution Functions from loffe time
pseudo-distributions

Parton Physics on Euclidean Lattice
Balint Jo6" , Joseph Karpie® , Kostas Orginos* , Anatoly Radyushkin“® , David
Xiangdong Jib? Richards® and Sawas Zafeiropoulos?

Quantum Computer is a quantum system evolved in real-time
PDFs are natural in a quantum simulation.
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Reality

Machine available now is:

o 50 qubits
@ circuit depth 20

@ noisy..

We'll have to wait for XX years for PDF...
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A Quantum Computer - Qubits

Qubits are quantum spins:

99999000

So the Hilbert space is 2V-dimensional for N qubits. A state on qubits is
|¢) = a/0000000) + b|1000000) + ¢|0100000) + - - -
but once you do measurement, it collapse into one of those basis state

|¢) — [0101010)



A Quantum Computer - Gates

Gates apply to qubits and change the state

@ 1 -qubit gates in matrix form...

1 (1 1 e™® 0
H_\/§<1 —1>'T_< 0 e”f/8>

@ 2 -qubit gates in matrix form ... example Controlled-not (CNOT)

100 0 00) — |00)
0100 01) — [01)
CNOT =14 0 0 1 110) — [11)
0010 11) ~ |10)
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Quantum Simulation is simple... in theory

Quantum Computer is a quantum system evolved in real-time

[qubit < Hilbert space}

\
\
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Quantum Simulation is simple... in theory

Quantum Computer is a quantum system evolved in real-time

[qubit <> Hilbert space} [gates <> time evolution operator}
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Quantum Simulation is simple... in theory

Quantum Computer is a quantum system evolved in real-time

[qubit <> Hilbert space} [gates <> time evolution operator}
0) N [H] I
0 \\\ [H] I
0) J

Initial state

=] 5]
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Quantum Simulation is simple... in theory

Quantum Computer is a quantum system evolved in real-time

[qubit <> Hilbert space} [gates <> time evolution operator}
0) N [H] I
0) \\\ [H] I
R -
|

[measurement <> physical Observable}

=] 5]

6
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Example - Z,, One ‘Plaquette’

b
H = ox(a) + ox(b) + 0,(a)o(b) /\
N

Trotterization:

Utrot
t/e .
/ ~ e—IEO'X
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What is needed for PDFs of Proton

oo . _
G(PxX) = [ e PP (0 )y Wa(en, 0)u 0)|P)

Map Hilbert space of QCD to qubits (truncate SU(3))

/

/
/
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What is needed for PDFs of Proton

> dt

G(Pox) = [ e PP ), W, )1 (0) )

Map Hilbert space of QCD to qubits (truncate SU(3))

// Time evolution
|0) QCD hamiltonian

+ Perturbation
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What is needed for PDFs of Proton

d
P = [ o

> dt

e—itx(n-P) <P’1/_;q(tn”)’yo Wn(tn’u, 0)¢q(0)”D>

Map Hilbert space of QCD to qubits (truncate SU(3))

10) —
10) —

10)

State preparation
of proton at rest

/

/
/

Time evolution
QCD hamiltonian
+ Perturbation
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Mapping quarks and gluons to qubits

SU(3) has an infinite dimensional Hilbert space
N qubits have 2V dimensional Hilbert space
2N = 00 777
Well, we have only finite number of qubits — need to truncate SU(3)
Largest finite subgroup of SU(3): S$(1080)
5(1080) gauge theory — 11 qubits per gauge link (1080 < 2!1)

12

SU@3) —+—
1 5(1080) —x—
o 08
B
3 06 *
] .
o 04
0.2 *
=
0 , —
0 2 4 6 8 10

Inverse Coupling
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"Modified" S$(1080) action

Modify the action:

s=-> (io ReTr Up + f1 Re Tr U,f)
p

Measure two scales, and compare the ratio to SU(3): Wilson flow, center
symmetry

— Smallest lattice spacing is a = 0.08 fm.

@ At this spacing, S(1080) and SU(3) agree on the low-energy observable T.\/ty
@ Beyond this spacing, they disagree.

Do other low-energy quantities agree?
In progress: spectroscopy, further modified actions
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What is needed for PDFs of Proton

£,(P, x) :/

> dt

oo 2T

ie—itx(n-P)<p’1Zq(tn“)70Wn(tn’u,0)¢q(0)"D>

Map Hilbert space of QCD to qubits (truncate SU(3))

10) —
10) —

10)

State preparation
of proton at rest

/

/
/

Time evolution
QCD hamiltonian
+ Perturbation

Measurement

Find a good
observable
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Hilbert Space of 5(1080)
G = 5(1080) lattice gauge theory — each link Uj has Hilbert space CG

Usp V-

- HZ(CG@CG@”‘
Uy — ViUV

Only Gauge Invariant States Allowed!

M fdvldv2jv2TU12v1>

Projection operator to Hp (Physical subspace):
P\Ulg--->:/(dV1dV2---) ‘V§U12V1--->

We keep the entire Hilbert space on qubits

13 /26



Gauge invariance - Z,, One ‘Plaquette’ again

H = ox(a) + ox(b) + 0,(a)o(b)
TN
v

The gauge transformation operator: oy (a)ox(b).

100) <+ [11) and [01) < |10)

Physical states: |00) + |11), |01) + |10)
Unphysical states: |00) — |11), [01) — |10)

14 /26



Hamiltonian lattice gauge theory

lUg IEA

— -
Uy Us

H=pBkY Vi+BpY ReTrP+.--
L P
Hamiltonian is gauge-invariant

gauge invariant initial state — gauge invariant final state

15/26



Real-Time evolution

How do we implement e~ with local gates?

Hyc Hy

H=pBk> Vi+BpY ReTrP
L P

Kinetic Potential
One link only Four links
Diagonal in Fourier space Diagonal (in our basis)
Trotterization:
ot _ {e—iHe} t/e

~ Ke—iGBKV%e—feﬁKVE . ) (e—idﬁp ReTr Py g—icfpReTrPy ﬂ te

with taking € to be small
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5(1080) Circuits under construction

@ Inversion gate
Uoalg) =gt

Multiplication gate
U |g) |h) = |g) |gh)

Trace gate .
Ur(0) lg) = 718 |g)

@ Fourier Transform gate

Ue Y f(g)lg) = 3 F(o)ilpnin))

geG peé‘

@ Phase gate for kinetic term Uppace

Some in progress!
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What is needed for PDFs of Proton

£,(P, x) :/

> dt

oo 2T

ie—itx(n-P)<p’1Zq(tn“)70Wn(tn’u,0)¢q(0)"D>

Map Hilbert space of QCD to qubits (truncate SU(3))

10) —
10)

10)

State preparation
of proton at rest

/

/
/

Time evolution
QCD hamiltonian
+ Perturbation

Measurement
Finda good
pbservable
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Adiabatic State Preparation

Suppose you want the ground state of Hamiltonian Hy

@ Have a time-varying Hamiltonian H(t) with:
the ground state of H(0) known and Hf = H(tf)

@ Prepare the ground state of H(0) on quantum computer
© Time-evolve the state with H(t) until t = tf
Adiabatic theorem guarantees:
When H/A2 < 1, time-evolution will keep us in the ground state.

where A is the gap between ground state and 1st excited state

How much does the method cost?

Time slices in H(0) — H(t) needed to prepare the ground state = A~?2
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Adiabatic Preparation of Proton

To have a proton as the ground state, restrict to a certin sector of Hilbert
space:

@ Gauge-invariant states
@ Zero total momentum

@ Baryon number 1

9=0
l |
| I
@ Free 3 fermions and gluons e Hadrons
e Small gap (O <%)) e Large gap (m;)

Total circuit size for state preparation; L2 x V, (V = L3)
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What is needed for PDFs of Proton

£,(P, x) :/

> dt

oo 2T

ie—itx(n-P)<p’1Zq(tn“)70Wn(tn’u,0)¢q(0)"D>

Map Hilbert space of QCD to qubits (truncate SU(3))

10) —
10) —

10)

State preparation
of proton at rest

/

/
/

Time evolution
QCD hamiltonian
+ Perturbation

Measurement

Find a good
observable
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Measurement of Correlators
Real-time correlator
(J(t)J(0)) = (W] et Je=Ht )

This is not a Hermitian operator!
May need to evaluate (W|U(ex, €9)|V), where

. M — i v =
U(fxaﬁo) — elHteIJ (X)Gxe /Hte iJ”(0)eg

and then estimate the derivative
d d u y
WU e, o) W) = (W] (x) S (0)V)

x €0

Well, U(ex, €g) in still not Hermitian...
Though unitary — Use ancillary qubit!
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Thirring model PDF

H:/dx&(a+m)w+g2 (1Z¢)2

Discretization with staggered fermion:

H= Z

Parton distribution function (No Wilson line!):

(XrXr—i—l + Xi+1Xr) +m(—1)"x

Dxr — g2xdxex i

() = [ dz &' (Pl ei(z)e e+ (0) P)

02 m=1.5¢=0.0
m=1479=04 A
A
0.15 .
= 01
0.05 /
: "
L= — L
0 0.2 0.4 08 1
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With gauge fields, Light cone is hard

Wilson line has to be on "light cone"

W(y;0) ~ e HW(y;y — a)e ... emHayy(a; 0)

Lots of finite differencing...
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Hadronic tensor
Hadronic tensor is more 'physical’,
and PDF can be extracted from it in principle
And, Cross sections may be determined from hadronic tensor.
2
doc a? yL W
dxdy Q4

Hadronic tensor:

Wp,y /dX equ <P|ele JM( ) —iHxO JI/(G)‘P>
No Wilson line needed!

JH is a physical current. (Hermitian so can be added as perturbation)

H = Ho + ex(t)J"(X) + o(t) ) (0)

d d

T o (WU(ex )W) = (W[JH(x)J7(0)| W)
€x €0

25 /26



Future

For QCD PDFs:

@ ~ 10° qubits needed (203
lattice)

@ 5(1080) exact circuits

@ State preparation details O
O
(@)

00

Other real-time observables?
TMD, viscocity...
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Future

For QCD PDFs:
@ ~ 10° qubits needed (203
lattice)
@ 5(1080) exact circuits
© State preparation details

Other real-time observables?
TMD, viscocity...

(=

00

00

Thank youl!

O
o
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"Modified" S$(1080) action

Measure two scales, and compare the ratio to SU(3): Wilson flow, center
symmetry

And test if they agee....

0.26
T o T.: center symmetry
@ 0.25 iz o = breaking
= % o e to: solution to 0.3 = 3 (E)
T @ Dimensionless ratio T.+/t.
I ‘ ] 1906.11213
0 0.5 1 15

a?/ty
— Smallest lattice spacing is a = 0.08 fm.

@ At this spacing, S(1080) and SU(3) agree on the low-energy observable T.\/ty
@ Beyond this spacing, they disagree.

Do other low-energy quantities agree?
In progress: spectroscopy, further modified .actions
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Building blocks of Time evolution - Kinetic part

Hyk
—

H=p8k> Vi+BpY ReTrP
L P

Diagonal in momentum basis
— need Fourier transform gate 4 and phase gate {,pase (diagonal)

5.11,; i'Lphase /uF

LU,-: LLphase uF

LLL i/[phase L(F

26
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Building blocks of Time evolution Potential part

Hy

H=pBk> Vi+Bp) ReTrP
L P

We need an operator:
U9)A) |B)|C) |D) = e~ PrReTABED) | 4) |B) | C) | D)

and thus need inversion 4_;, multiplication L[, and trace i, gates

[A)1B)C) D)
—[A)[B)|C)|CD)
— -+ —|A)|B) |C) |ABCD)

_, o—iBpRe TH(ABCD) ‘AT> ‘BT> ’CT> |ABCD)
s ... e iBPRETHABCD) | Ay |BY |C) |D)
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Measurement of Correlators - Imaginary Part

For a Hermitian operator J,
(J(£)J(0)) = (W] et Je=Ht J W)
This is not a Hermitian operator!
Perturb the Hamiltonian:
H/(t) = H + €i(t)O
And now estimate the derivative:

Im (W] J(£)J(0) |W) = ;’6 (W] e oMt e =i )

N
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