# Lattice Calculations for the anomalous magnetic moment of the Muon

#### Vera Gülpers

School of Physics and Astronomy University of Edinburgh

December 12, 2019





European Research Council Established by the European Commission THE UNIVERSITY of EDINBURGH

# Magnetic moment of leptons $(\mathbf{e}, \boldsymbol{\mu}, \boldsymbol{ au})$

▶ magnetic moment  $\vec{\mu}$  of the lepton  $\ell$  due to its spin  $\vec{s}$  and electric charge e

$$\vec{\mu} = \mathrm{g} \, \frac{\mathrm{e}}{\mathrm{2m}_{\ell}} \, \vec{\mathrm{s}}$$

torque  $\vec{\tau} = \vec{\mu} \times \vec{B}$ 

- $\blacktriangleright$  g-factor: without quantum fluctuations for a lepton one finds  $\mathbf{g}=\mathbf{2}$
- deviation from the value "2" due to quantum loops ightarrow anomalous magnetic moment of lepton  $\ell$

$$\mathbf{a}_{\ell} = \frac{\mathbf{g}_{\ell} - 2}{2}$$

$$\langle \ell(\mathbf{p}') | \mathbf{j}_{\mu}^{\gamma} | \ell(\mathbf{p}) \rangle = (-\mathbf{i}\mathbf{e}) \overline{\mathbf{u}}(\mathbf{p}') \left[ \gamma_{\mu} \mathbf{F}_{1}(\mathbf{q}^{2}) + \mathbf{i} \frac{\sigma^{\mu\nu} \mathbf{q}_{\nu}}{2\mathbf{m}_{\ell}} \mathbf{F}_{2}(\mathbf{q}^{2}) \right] \mathbf{u}(\mathbf{p})$$

 $F_1(0) = 1 \text{ (electric charge)} \qquad F_2(0)$ 



- $\blacktriangleright$  measured and calculated very precisely  $\longrightarrow$  test of the Standard Model
- experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

 $a_{\mu} = 11659209.1(5.4)(3.3) imes 10^{-10}$ 



- $\blacktriangleright$  new experiments at Fermilab and JPARC  $\rightarrow$  reduce error by  $\thickapprox4$ 
  - $\rightarrow$  experiment at Fermilab is running
  - $\rightarrow$  first results expected soon

- $\blacktriangleright$  measured and calculated very precisely  $\longrightarrow$  test of the Standard Model
- experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

# $a_{\mu} = 11659209.1(5.4)(3.3) imes 10^{-10}$

[http://muon-g-2.fnal.gov/bigmove/gallery.shtml]







- $\blacktriangleright$  new experiments at Fermilab and JPARC  $\rightarrow$  reduce error by  $\approx 4$ 
  - $\rightarrow$  experiment at Fermilab is running
  - $\rightarrow$  first results expected soon

- $\blacktriangleright$  measured and calculated very precisely  $\longrightarrow$  test of the Standard Model
- experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

 $a_{\mu} = 11659209.1(5.4)(3.3) imes 10^{-10}$ 

Standard Model

em (11658471.895  $\pm$  0.008)  $\times$  10<sup>-10</sup>

[Kinoshita et al., Phys.Rev.Lett. 109, 111808 (2012)]



- $\blacktriangleright$  measured and calculated very precisely  $\longrightarrow$  test of the Standard Model
- experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

 $a_{\mu} = 11659209.1(5.4)(3.3) imes 10^{-10}$ 

Standard Model

 $\begin{array}{ll} \mbox{em} & (11658471.895 \pm 0.008) \times 10^{-10} \\ \mbox{weak} & (15.36 \pm 0.10) \times 10^{-10} \end{array}$ 

[Kinoshita et al., Phys.Rev.Lett. **109**, 111808 (2012)] [Gnendinger et al., Phys.Rev. **D88**, 053005 (2013)]



- measured and calculated very precisely —> test of the Standard Model
- experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

 $a_{\mu} = 11659209.1(5.4)(3.3) imes 10^{-10}$ 

Standard Model

 $\begin{array}{ll} \mbox{em} & (11658471.895 \pm 0.008) \times 10^{-10} \\ \mbox{weak} & (15.36 \pm 0.10) \times 10^{-10} \\ \mbox{HVP} & (693.26 \pm 2.46) \times 10^{-10} \\ \mbox{HVP}(\alpha^3) & (-9.84 \pm 0.06) \times 10^{-10} \end{array}$ 

[Kinoshita et al., Phys.Rev.Lett. **109**, 111808 (2012)] [Gnendinger et al., Phys.Rev. **D88**, 053005 (2013)]

[Keshavarzi et al., Phys. Rev. D97 114025 (2018)] [Hagiwara et al., J.Phys. G38, 085003 (2011)]



- measured and calculated very precisely —> test of the Standard Model
- experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

 $a_{\mu} = 11659209.1(5.4)(3.3) imes 10^{-10}$ 

Standard Model

 $\begin{array}{ll} \text{em} & (11658471.895 \pm 0.008) \times 10^{-10} \\ \text{weak} & (15.36 \pm 0.10) \times 10^{-10} \end{array}$ 

 $\begin{array}{ll} \text{HVP} & (693.26 \pm 2.46) \times 10^{-10} \\ \text{HVP}(\alpha^3) & (-9.84 \pm 0.06) \times 10^{-10} \\ \text{LbL} & (10.5 \pm 2.6) \times 10^{-10} \end{array}$ 

[Kinoshita et al., Phys.Rev.Lett. **109**, 111808 (2012)] [Gnendinger et al., Phys.Rev. **D88**, 053005 (2013)]

[Keshavarzi et al., Phys. Rev. D97 114025 (2018)] [Hagiwara et al., J.Phys. G38, 085003 (2011)] [Prades et al. Adv Ser.Direct.Hish Energy Phys. 20, 303 (2009)]



- $\blacktriangleright$  measured and calculated very precisely —> test of the Standard Model
- experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

 $a_{\mu} = 11659209.1(5.4)(3.3) imes 10^{-10}$ 

Standard Model

| em   | $(11658471.895 \pm 0.008) 	imes 10^{-10}$ |
|------|-------------------------------------------|
| weak | $(15.36 \pm 0.10) 	imes 10^{-10}$         |
| HVP  | (693.26 $\pm$ 2.46) $	imes$ 10 $^{-10}$   |
| HVP( | $(-9.84 \pm 0.06) \times 10^{-10}$        |
| LbL  | $(10.5 \pm 2.6) 	imes 10^{-10}$           |

[Kinoshita et al., Phys.Rev.Lett. 109, 111808 (2012)]
 [Gnendinger et al., Phys.Rev. D88, 053005 (2013)]
 [Keshavarzi et al., Phys. Rev. D97 114025 (2018)]
 [Hagiwara et al., J.Phys. G38, 085003 (2011)]

[Prades et al., Adv. Ser. Direct. High Energy Phys. 20, 303 (2009)]

 $\blacktriangleright$  Comparison of theory and experiment:  $3.8\sigma$  deviation

$$\Delta {
m a}_{\mu} = {
m a}_{\mu}^{ ext{exp}} - {
m a}_{\mu}^{ ext{SM}} = 27.9(6.3)^{ ext{Exp}}(3.6)^{ ext{SM}} imes 10^{-10}$$

required precision to match upcoming experiments  $\Delta a_{\mu}^{
m hvp} \lesssim 0.2\%$   $\Delta a_{\mu}^{
m |b|} \lesssim 10\%$ 

- measured and calculated very precisely —> test of the Standard Model
- experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

 $a_{\mu} = 11659209.1(5.4)(3.3) imes 10^{-10}$ 



#### Hadronic Vacuum Polarisation

- Introduction
- light quark contribution
- strange and charm quark contribution
- disconnected contribution
- Isospin Breaking corrections to the HVP
- Summary and Prospects

#### Hadronic light-by-light scattering

- Introduction
- Lattice Calculations
- Summary and Prospects

#### Hadronic Vacuum Polarisation

#### • Introduction

- light quark contribution
- strange and charm quark contribution
- disconnected contribution
- Isospin Breaking corrections to the HVP
- Summary and Prospects

#### Hadronic light-by-light scattering

- Introduction
- Lattice Calculations
- Summary and Prospects

# Hadronic Vacuum Polarisation (HVP) from the R-ratio

- current best theoretical estimate uses experimental data
- ▶ optical theorem







recent results:

$$\begin{array}{ll} {a_{\mu}^{\rm hvp}=689.46(3.25)} & \mbox{[Jegerlehner 18]} \\ {a_{\mu}^{\rm hvp}=693.9(4.0)} & \mbox{[DHMZ 19]} \\ {a_{\mu}^{\rm hvp}=693.37(2.46)} & \mbox{[KNT 18]} \end{array}$$

pprox 0.5% precision

# QCD on the lattice

- $\blacktriangleright$  Wick rotation  $(t \rightarrow -i x_0)$  to Euclidean space-time
- Discretize space-time by a hypercubic lattice  $\Lambda$
- Quantize QCD using Euclidean path integrals

$$\langle \mathsf{A} 
angle = rac{1}{\mathsf{Z}} \int \mathcal{D}[\Psi, \overline{\Psi}] \mathcal{D}[\mathsf{U}] \, \mathrm{e}^{-\mathsf{S}_{\mathsf{E}}[\Psi, \overline{\Psi}, \mathsf{U}]} \, \mathsf{A}(\mathsf{U}, \Psi, ar{\Psi})$$

- $\longrightarrow$  can be split into fermionic and gluonic part
- Calculate gluonic expectation values using Monte Carlo techniques:

$$\left<\left< A \right>_{\mathsf{F}} \right>_{\mathsf{G}} = \int \mathcal{D}[\mathsf{U}] \left< A \right>_{\mathsf{F}} \mathsf{P}(\mathsf{U}) \approx \frac{1}{\mathsf{N}_{\mathsf{cfg}}} \, \sum_{\mathsf{n}=1}^{\mathsf{N}_{\mathsf{cfg}}} \, \left< A \right>_{\mathsf{F}}$$

average over gluonic gauge configurations  $\boldsymbol{\mathsf{U}}$  distributed according to

$$\mathsf{P}(\mathsf{U}) = \frac{1}{\mathsf{Z}} \left(\det\mathsf{D}\right)^{\mathsf{N}_{\mathsf{f}}} \mathrm{e}^{-\mathsf{S}_{\mathsf{G}}[\mathsf{U}]}$$

 $\blacktriangleright$  extrapolate to the continuum  $({f a} 
ightarrow {f 0})$  and infinite volume  $({f V} 
ightarrow \infty)$ 



Hadronic Vacuum Polarisation (HVP) from the Lattice

$$\blacktriangleright \ \Pi_{\mu\nu}(\mathsf{Q}) \equiv \int \!\mathsf{d}^4 x \ \mathrm{e}^{\mathrm{i}\,\mathsf{Q}\cdot x} \ \left\langle \mathrm{j}^\gamma_\mu(x) \ \mathrm{j}^\gamma_\nu(0) \right\rangle = \left(\mathsf{Q}_\mu\mathsf{Q}_\nu - \delta_{\mu\nu}\mathsf{Q}^2\right) \Pi(\mathsf{Q}^2)$$

- ► electromagnetic current  $\mathbf{j}_{\mu}^{\gamma} = \frac{2}{3}\overline{\mathbf{u}}\gamma_{\mu}\mathbf{u} \frac{1}{3}\overline{\mathbf{d}}\gamma_{\mu}\mathbf{d} \frac{1}{3}\overline{\mathbf{s}}\gamma_{\mu}\mathbf{s} + \frac{2}{3}\overline{\mathbf{c}}\gamma_{\mu}\mathbf{c}$
- hadronic contribution to the anomalous magnetic moment of the muon [T. Blum, Phys.Rev.Lett.91, 052001 (2003)]

$$\mathbf{a}_{\mu}^{\mathsf{hvp}} = \left(\frac{\alpha}{\pi}\right)^2 \int_{0}^{\infty} \mathrm{d}\mathbf{Q}^2 \,\mathsf{K}(\mathbf{Q}^2) \,\hat{\mathbf{\Pi}}(\mathbf{Q}^2) \qquad \text{with} \quad \hat{\mathbf{\Pi}}(\mathbf{Q}^2) = 4 \,\pi^2 \left[\mathbf{\Pi}(\mathbf{Q}^2) - \mathbf{\Pi}(\mathbf{0})\right]$$

subtracted HVP from vector correlator [Bernecker and Meyer, Eur.Phys.J. A47, 148 (2011)]

$$\Gamma(\mathbf{t}) = \frac{1}{3} \sum_{k=0}^{2} \sum_{\vec{x}} \langle \mathbf{j}_{k}^{\gamma}(\vec{x}, \mathbf{t}) \mathbf{j}_{k}^{\gamma}(0) \rangle \qquad \hat{\Pi}(\mathbf{Q}^{2}) = 4\pi \int_{0}^{\infty} d\mathbf{t} \, \mathsf{C}(\mathbf{t}) \Big[ \frac{\cos(\mathbf{Q}\mathbf{t}) - 1}{\mathbf{Q}^{2}} + \frac{1}{2} \mathbf{t}^{2} \Big] \qquad a_{\mu}^{\text{hvp}} = \int_{0}^{\infty} d\mathbf{t} \, \mathbf{f}(\mathbf{t}) \mathsf{C}(\mathbf{t}) \Big[ \frac{\cos(\mathbf{Q}\mathbf{t}) - 1}{\mathbf{Q}^{2}} + \frac{1}{2} \mathbf{t}^{2} \Big]$$

flavour decomposition (isospin symmetric QCD)

$$C(t) = \frac{5}{9}C^{\ell}(t) + \frac{1}{9}C^{s}(t) + \frac{4}{9}C^{c}(t) + C^{disc}(t)$$







#### Hadronic Vacuum Polarisation

Introduction

#### • light quark contribution

- strange and charm quark contribution
- disconnected contribution
- Isospin Breaking corrections to the HVP
- Summary and Prospects

#### Hadronic light-by-light scattering

- Introduction
- Lattice Calculations
- Summary and Prospects

Hadronic Vacuum Polarisation

# Vector correlator and long distance Signal-to-Noise problem

examples for light-quark vector correlator at physical point



- signal deteriorates for large t
- > need noise reduction techniques to control statistical error on raw data
  - all-mode-averaging (AMA) [T. Blum et al., Phys. Rev. D88, 094503 (2013)], [G. Bali et al., Comput.Phys.Commun. 181 (2010) 1570-1583]
  - huge reduction in error when using low-mode-averaging (LMA) [T. Blum, VG, et al., Phys. Rev. Lett. 121, 022003 (2018)], [C. Aubin et al., arXiv:1905.09307]
- $\blacktriangleright$  possible strategy: replace correlator by (multi-) exponential fit for  $t>t_c$

# Bounding method

spectral representation of the vector correlator

$$C(t) = \sum_{n} \frac{A_n^2}{2E_n} e^{-E_n t} \qquad A_n^2 > 0$$

▶ bound for the correlator for t ≥ t<sub>c</sub> [S. Borsanyi et al., Phys. Rev. D 96, 074507 (2017)], [T. Blum, VG, et al., Phys. Rev. Lett. 121, 022003 (2018)]



- $\blacktriangleright~\textbf{E}_{t_c}:$  effective mass of the correlator at  $t_c$
- ► **E**<sub>0</sub>: finite volume ground state energy, two pions with one unit of momentum
- $\blacktriangleright$  use correlator data for  $t < t_c$
- use bounds for  $t \ge t_c$  vary  $t_c$

[A. Gérardin et al, Phys.Rev. D100 (2019) no.1, 014510]

# Bounding method

spectral representation of the vector correlator

$$C(t) = \sum_n \frac{A_n^2}{2E_n} e^{-E_n t} \qquad A_n^2 > 0$$

▶ bound for the correlator for t ≥ t<sub>c</sub> [S. Borsanyi et al., Phys. Rev. D 96, 074507 (2017)], [T. Blum, VG, et al., Phys. Rev. Lett. 121, 022003 (2018)]



<sup>[</sup>A. Gérardin et al, Phys.Rev. D100 (2019) no.1, 014510]

- $\blacktriangleright~\textbf{E}_{t_c}:$  effective mass of the correlator at  $t_c$
- ► **E**<sub>0</sub>: finite volume ground state energy, two pions with one unit of momentum
- ${\scriptstyle \blacktriangleright}$  use correlator data for  $t < t_c$
- ${\scriptstyle\blacktriangleright}\,$  use bounds for  $t\geq t_c$  vary  $t_c$
- improve with a spectroscopy study



# Bounding method

spectral representation of the vector correlator

$$C(t) = \sum_{n} \frac{A_n^2}{2E_n} e^{-E_n t} \qquad A_n^2 > 0$$

bound for the correlator for  $t > t_c$ [S. Borsanvi et al., Phys. Rev. D 96, 074507 (2017)]. [T. Blum, VG. et al., Phys. Rev. Lett. 121, 022003 (2018)]



- **E**<sub>t<sub>a</sub></sub>: effective mass of the correlator at  $\mathbf{t}_{c}$
- $E_0$ : finite volume ground state energy, two pions with one unit of momentum

-----

- use correlator data for  $t < t_c$
- use bounds for  $\mathbf{t} > \mathbf{t}_{c}$  vary  $\mathbf{t}_{c}$
- improve with a spectroscopy study

[A. Gérardin et al. Phys.Rev. D100 (2019) no.1. 014510]

# Light quark contribution systematics

- Finite volume effects
  - dominated by two pion state important at large t
  - Finite volume effects of ~ O(20 − 30 × 10<sup>-10</sup>) for typical lattice sizes ~ O(5 − 6 fm) at physical point, see e.g. [E. Shintani, Y. Kuramashi, arXiv:1902.00885]. [C. Lehner @ Lattice 2019]. [C. Aubin et al. arXiv:1905.09307]
- scale setting
  - ▶  $\mathbf{a}_{\mu}^{\mathsf{hvp}}$  depends on the scale through  $\mathbf{am}_{\mu}$  in the kernel
  - relative error on quantity used for scale setting amplified by  $\approx 1.8$  in relative error for  $a_{\mu}$  [M. Della Morte, VG, et al, JHEP 1710 (2017) 020]
    - ightarrow for 0.2% error on  $a_{\mu}^{ ext{hvp}}$  need  $\lesssim 0.1\%$  on lattice spacing
- extrapolation to the physical point
  - chiral extrapolation (if necessary)
  - continuum extrapolation
    - $\rightarrow$  work in fully  $\mathcal{O}(a)$  improved setup
    - $\rightarrow$  ideally at least three lattice spacings

### comparison - light quark results



- errors from 1.3% 3.3%
- $hopprox 2\sigma$  discrepancy between smallest and largest results

#### Hadronic Vacuum Polarisation

- Introduction
- light quark contribution

#### strange and charm quark contribution

- disconnected contribution
- Isospin Breaking corrections to the HVP
- Summary and Prospects

#### Hadronic light-by-light scattering

- Introduction
- Lattice Calculations
- Summary and Prospects

# Strange and Charm HVP

- suffers less from long-distance noise-to-signal problem and finite volume effects than light contribution
- charm usually large discretization effects



errors on total HVP 

 $\lesssim$  0.4%

 $\leq$  0.3%

#### Hadronic Vacuum Polarisation

- Introduction
- light quark contribution
- strange and charm quark contribution
- disconnected contribution
- Isospin Breaking corrections to the HVP
- Summary and Prospects

#### Hadronic light-by-light scattering

- Introduction
- Lattice Calculations
- Summary and Prospects

# disconnected HVP

- quark-disconnected Wick contraction
- SU(3) suppressed
- quark loop

$$\mathbf{\Delta}^{\mathrm{f}}_{\mu}(\mathbf{t}) = \sum_{ec{\mathbf{x}}} \mathsf{Tr}\left[\gamma_{\mu} \mathsf{S}^{\mathsf{f}}(\mathsf{x},\mathsf{x})
ight]$$

- all-to-all propagators, calculate stochastically
- ► light-strange cancellation [V.G. et al, PoS LATTICE2014 (2014) 128]

$$\mathsf{C}^{\mathsf{disc}}(\mathsf{t}) = rac{1}{9} \left\langle (\Delta^\ell(\mathsf{t}) - \Delta^{\mathsf{s}}(\mathsf{t})) \cdot (\Delta^\ell(0) - \Delta^{\mathsf{s}}(0)) 
ight
angle$$

- further noise reduction
  - ▶ [T. Blum et al, Phys. Rev. Lett. 116, 232002 (2016)] low-mode averaging and sparsened noise sources for high modes
  - ► [A. Gérardin et al, Phys.Rev. D100 (2019) no.1, 014510] hierarchical probing [A. Stathopoulos et al, arXiv:1302.4018]
  - frequency-splitting estimators [L. Giusti et al, arXiv:1903.10447]



# disconnected HVP

- quark-disconnected Wick contraction
- SU(3) suppressed
- quark loop

$$\mathbf{\Delta}^{\mathrm{f}}_{\mu}(\mathbf{t}) = \sum_{ec{\mathbf{x}}} \mathsf{Tr}\left[\gamma_{\mu} \mathsf{S}^{\mathsf{f}}(\mathsf{x},\mathsf{x})
ight]$$

- all-to-all propagators, calculate stochastically
- ► light-strange cancellation [V.G. et al, PoS LATTICE2014 (2014) 128]

$$\mathsf{C}^{\mathsf{disc}}(\mathsf{t}) = rac{1}{9} \left\langle (\Delta^\ell(\mathsf{t}) - \Delta^{\mathsf{s}}(\mathsf{t})) \cdot (\Delta^\ell(0) - \Delta^{\mathsf{s}}(0)) 
ight
angle$$

- further noise reduction
  - ▶ [T. Blum et al, Phys. Rev. Lett. 116, 232002 (2016)] low-mode averaging and sparsened noise sources for high modes
  - ► [A. Gérardin et al, Phys.Rev. D100 (2019) no.1, 014510] hierarchical probing [A. Stathopoulos et al, arXiv:1302.4018]
  - frequency-splitting estimators [L. Giusti et al, arXiv:1903.10447]



 $\blacktriangleright$  errors on total HVP 0.3-0.7%

#### Hadronic Vacuum Polarisation

- Introduction
- light quark contribution
- strange and charm quark contribution
- disconnected contribution
- Isospin Breaking corrections to the HVP
- Summary and Prospects

#### Hadronic light-by-light scattering

- Introduction
- Lattice Calculations
- Summary and Prospects

# Isospin Breaking Corrections

- lattice calculations usually done in the isospin symmetric limit
- two sources of isospin breaking effects
  - $\blacktriangleright$  different masses for up- and down quark (of  $\mathcal{O}((m_d-m_u)/\Lambda_{\text{QCD}}))$
  - Quarks have electrical charge (of O(α))
- $\blacktriangleright$  lattice calculation aiming at  $\lesssim 1\%$  precision requires to include isospin breaking
- separation of strong IB and QED effects requires renormalization scheme
- ► definition of "physical point" in a "QCD only world" also scheme dependent
  - ightarrow results shown above without QED and isospin breaking for  $m_\pi pprox 135$  MeV

### Isospin Breaking Corrections from the Lattice

- strong Isospin Breaking on the Lattice
  - use different up, down quark masses
  - perturbative expansion in  $\Delta m = (m_u m_d)$  [G.M. de Divitiis et al, JHEP 1204 (2012) 124]

$$\left\langle \mathbf{0} \right\rangle_{\mathbf{m}_{u} \neq \mathbf{m}_{d}} = \left\langle \mathbf{0} \right\rangle_{\mathbf{m}_{u} = \mathbf{m}_{d}} + \Delta \mathbf{m} \left. \frac{\partial}{\partial \mathbf{m}} \left\langle \mathbf{0} \right\rangle \right|_{\mathbf{m}_{u} = \mathbf{m}_{d}} + \mathcal{O} \left( \Delta \mathbf{m}^{2} \right)$$



sea quark effects: quark-disconnected diagrams



▶ QED: perturbative expansion of the path integral in lpha [RM123 Collaboration, Phys.Rev. D87, 114505 (2013)]



### Isospin Breaking Corrections from the Lattice

- strong Isospin Breaking on the Lattice
  - use different up, down quark masses
  - perturbative expansion in  $\Delta m = (m_u m_d)$  [G.M. de Divitiis et al, JHEP 1204 (2012) 124]

$$\left\langle \mathbf{0} \right\rangle_{\mathbf{m}_{u} \neq \mathbf{m}_{d}} = \left\langle \mathbf{0} \right\rangle_{\mathbf{m}_{u} = \mathbf{m}_{d}} + \Delta \mathbf{m} \left. \frac{\partial}{\partial \mathbf{m}} \left\langle \mathbf{0} \right\rangle \right|_{\mathbf{m}_{u} = \mathbf{m}_{d}} + \mathcal{O} \left( \Delta \mathbf{m}^{2} \right)$$



sea quark effects: quark-disconnected diagrams



▶ QED: perturbative expansion of the path integral in  $\alpha$  [RM123 Collaboration, Phys.Rev. D87, 114505 (2013)]



quark-connected quark-disconnected sea-quark effects

# Results QED corrections

Summary results lattice calculations for isospin breaking corrections

| ETMC 19                | $7.1(2.9) 	imes 10^{-10}$  | connected QED and connected strong IB no sea quark effects                                |
|------------------------|----------------------------|-------------------------------------------------------------------------------------------|
| RBC/UKQCD 18           | $9.5(10.2) 	imes 10^{-10}$ | connected and leading disconnected QED<br>and connected strong IB<br>no sea quark effects |
| HPQCD/FermiLab/MILC 18 | $9.5(4.5) 	imes 10^{-10}$  | dynamical strong IB (including sea-quarks<br>no QED effects                               |

# Results QED corrections

Summary results lattice calculations for isospin breaking corrections

| ETMC 19                | $7.1(2.9) 	imes 10^{-10}$  | connected QED and connected strong IB no sea quark effects                                |
|------------------------|----------------------------|-------------------------------------------------------------------------------------------|
| RBC/UKQCD 18           | $9.5(10.2) 	imes 10^{-10}$ | connected and leading disconnected QED<br>and connected strong IB<br>no sea quark effects |
| HPQCD/FermiLab/MILC 18 | $9.5(4.5)	imes10^{-10}$    | dynamical strong IB (including sea-quarks<br>no QED effects                               |

- QED corrections from sea-quark effects
- $\blacktriangleright$  diagrams at least  $1/N_c$  suppressed
  - $\rightarrow$  could be 33% of connected
  - $\rightarrow$  need to be studied for sub-percent precision on total HVP



#### Hadronic Vacuum Polarisation

- Introduction
- light quark contribution
- strange and charm quark contribution
- disconnected contribution
- Isospin Breaking corrections to the HVP
- Summary and Prospects

#### Hadronic light-by-light scattering

- Introduction
- Lattice Calculations
- Summary and Prospects



















#### Conclusions and Prospects

- most important issues:
  - noise reduction and control of long-distance tail of the light quark correlator
  - careful estimate of finite volume effects
  - first lattice calculations of isospin breaking and QED corrections
     → study also sea guark effects
  - achieve consensus between lattice results

#### Hadronic Vacuum Polarisation

- Introduction
- light quark contribution
- strange and charm quark contribution
- disconnected contribution
- Isospin Breaking corrections to the HVP
- Summary and Prospects

#### Hadronic light-by-light scattering

- Introduction
- Lattice Calculations
- Summary and Prospects

### Introduction

hadronic light-by-light scattering enters at  $\alpha^3$ 



Glasgow consensus [J. Prades, E. de Rafael, A. Vainshtein, Adv.Ser.Direct.High Energy Phys. 20 (2009) 303-317]

 $\pi^0$ , n, n'axialvector scalar charm loops

(11.4  $\pm$  1.3) imes 10 $^{-10}$ charged  $\pi$  loop (-1.9  $\pm$  1.9) imes 10<sup>-10</sup>  $(1.5\pm1.0) imes10^{-10}$  $(-0.7\pm0.7) imes10^{-10}$  $0.2 \times 10^{-10}$ 

 $(10.5 \pm 2.6) imes 10^{-10}$ total



Work in progress using dispersion relations, e.g. [G. Colangelo et al, JHEP 1902 (2019) 006], [G. Colangelo et al, Phys.Rev.Lett. 118 (2017) no.23. 232001]. [G. Colangelo et al. JHEP 1704 (2017) 161]. [M. Hoferichter et al, Phys.Rev.Lett. 121 (2018) no.11, 112002], [V. Pauk et al, Phys.Rev. D90 (2014) no.11, 113012], ...

lattice calculations: two collaborations working on this: RBC/UKQCD and Mainz ►

#### Hadronic Vacuum Polarisation

- Introduction
- light quark contribution
- strange and charm quark contribution
- disconnected contribution
- Isospin Breaking corrections to the HVP
- Summary and Prospects

#### Hadronic light-by-light scattering

- Introduction
- Lattice Calculations
- Summary and Prospects

Hadronic light-by-light scattering

# Results RBC/UKQCD connected + leading disconnected light-by-light

recent results [T. Blum et al, arXiv:1911.08123]







continuum and infinite volume extrapolation QED<sub>L</sub>





 $a_{\mu}^{
m lbl} = 7.20(3.98)(1.65) imes 10^{-10}$ 

#### Hadronic Vacuum Polarisation

- Introduction
- light quark contribution
- strange and charm quark contribution
- disconnected contribution
- Isospin Breaking corrections to the HVP
- Summary and Prospects

#### Hadronic light-by-light scattering

- Introduction
- Lattice Calculations
- Summary and Prospects

### Conclusions - light-by-light

- two collaborations working on lattice calculations
  - RBC/UKQCD: result extrapolated to physical point [T. Blum et al, arXiv:1911.08123]
  - Mainz: work in progress, see e.g. [N. Asmussen et al, PoS Lattice 2019, arXiv:1911.05573]
- important check: consistency with Glasgow Consensus
  - $\rightarrow$  would need  $\approx 3 \times$  larger  $a_{\mu}^{lbl}$  than Glasgow Consensus to explain  $a_{\mu}$  discrepancy
    - $\rightarrow$  lattice results suggest this is unlikely
- Iattice calculations of the pion transition form factor π<sup>0</sup> → γγ [A. Gérardin et al, Phys.Rev. D94 (2016) no.7, 074507].[A. Gérardin et al, Phys.Rev. D100 (2019) no.3, 0345201]
  - $\rightarrow$  pion pole contribution to  $a_{\mu}^{lbl}$
  - $\rightarrow$  constrain long-distance tail to  $\mathbf{a}_{\mu}^{\mathrm{lbl}}$  lattice calculation

### Conclusions - light-by-light

- two collaborations working on lattice calculations
  - RBC/UKQCD: result extrapolated to physical point [T. Blum et al, arXiv:1911.08123]
  - Mainz: work in progress, see e.g. [N. Asmussen et al, PoS Lattice 2019, arXiv:1911.05573]
- important check: consistency with Glasgow Consensus
  - ightarrow would need pprox 3imes larger  $a_{\mu}^{lbl}$  than Glasgow Consensus to explain  $a_{\mu}$  discrepancy
    - $\rightarrow$  lattice results suggest this is unlikely
- ► lattice calculations of the pion transition form factor  $\pi^0 \rightarrow \gamma \gamma$ [A. Gérardin *et al*, Phys.Rev. D94 (2016) no.7, 074507],[A. Gérardin *et al*, Phys.Rev. D100 (2019) no.3, 0345201]
  - $\rightarrow$  pion pole contribution to  $a_{\mu}^{lbl}$
  - $\rightarrow$  constrain long-distance tail to  $\mathbf{a}_{\mu}^{\mathrm{lbl}}$  lattice calculation



size of light-by-light vs HVP

#### Hadronic Vacuum Polarisation

- Introduction
- light quark contribution
- strange and charm quark contribution
- disconnected contribution
- Isospin Breaking corrections to the HVP
- Summary and Prospects

#### Hadronic light-by-light scattering

- Introduction
- Lattice Calculations
- Summary and Prospects

- ▶ **a**<sub>µ</sub> measured and calculated very precisely
  - $\rightarrow$  test of the Standard Model
  - $\rightarrow$  new experiment running at Fermilab
  - $\rightarrow$  largest uncertainty in Standard Model prediction from hadronic contributions
- huge effort in the lattice community to calculate hadronic contributions from first principles
- work in progress on g-2 Theory Whitepaper from the Muon g-2 Theory Initiative, several workshops since 2017, last workshop: September 9 - 13, 2019 at INT



- ▶ **a**<sub>µ</sub> measured and calculated very precisely
  - $\rightarrow$  test of the Standard Model
  - $\rightarrow$  new experiment running at Fermilab
  - ightarrow largest uncertainty in Standard Model prediction from hadronic contributions
- ▶ huge effort in the lattice community to calculate hadronic contributions from first principles
- work in progress on g-2 Theory Whitepaper from the Muon g-2 Theory Initiative, several workshops since 2017, last workshop: September 9 - 13, 2019 at INT
- ▶ hadronic vacuum polarisation contribution to  $\mathbf{a}_{\mu}$ 
  - first lattice calculations of  ${f a}_\mu^{
    m hvp}$  with  $\lesssim 1\%$  precision available within  ${\cal O}({
    m year})$
  - $~~\lesssim 0.2\%$  within a few years

# Thank you



VG has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 757646.