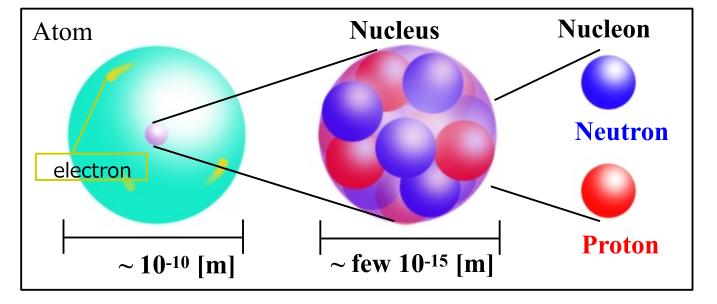
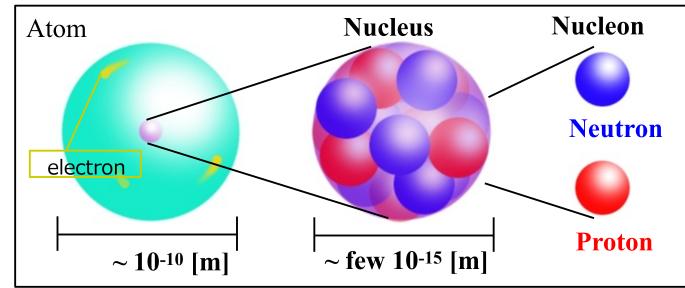
A chiral three-body force for realistic nuclear shell model calculations

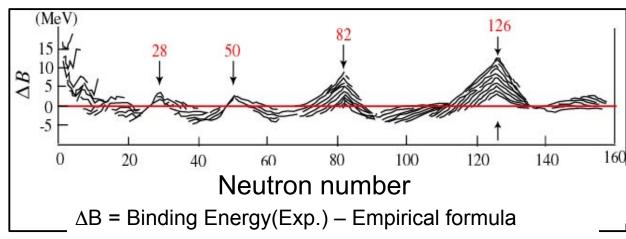
G. De Gregorio

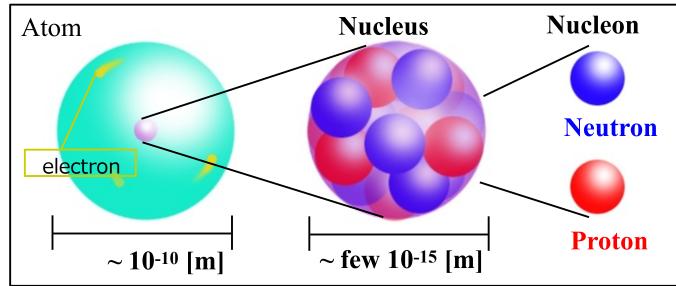
- •Università degli Studi della Campania Luigi Vanvitelli
- •INFN Napoli

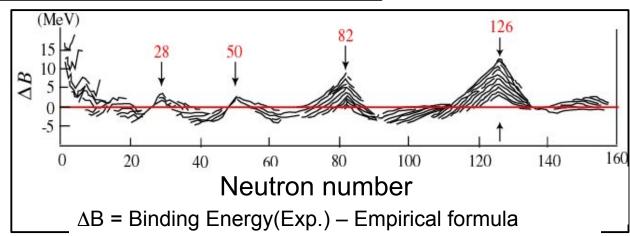

In collaboration with


L. Coraggio INFN Napoli

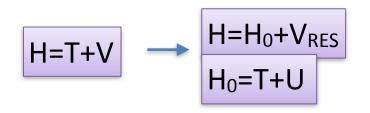
T. Fukui Yukawa Institute for Theoretical Physics, Kyoto


A. Gargano INFN Napoli

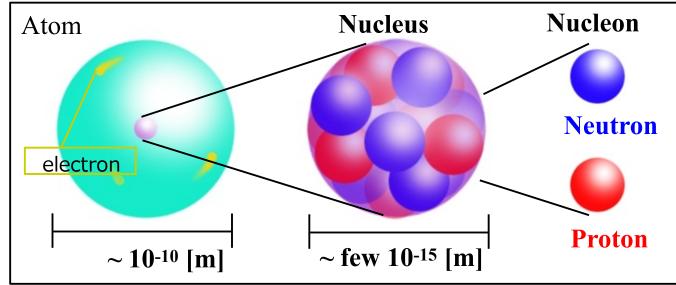

N. Itaco Università degli Studi della Campania Luigi Vanvitelli & INFN Napoli

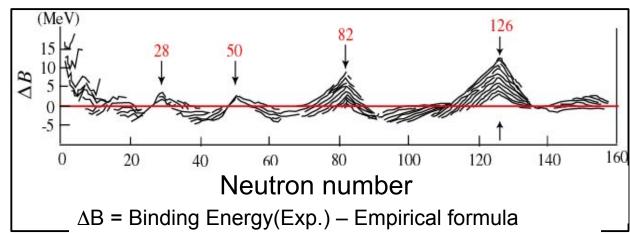


- ✓ Nucleus has magic numbers : 2,8,20,28,50,82,126
- ✓ Nucleus makes an averaged "potential"

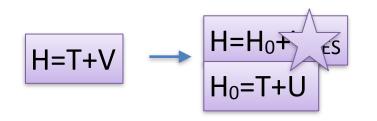


- ✓ Nucleus has magic numbers : 2,8,20,28,50,82,126
- ✓ Nucleus makes an averaged "potential"


The Hamiltonian has 3A degrees of freedom


U is the average potential, usually HO+ SO

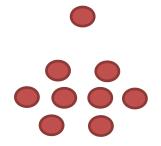
E. Wigner, M.Goeppert Mayer & J.H.D. Jensen,

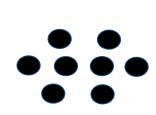

Nobel Prize 1963

- ✓ Nucleus has magic numbers : 2,8,20,28,50,82,126
- ✓ Nucleus makes an averaged "potential"

The Hamiltonian has 3A degrees of freedom

U is the average potential, usually HO+ SO

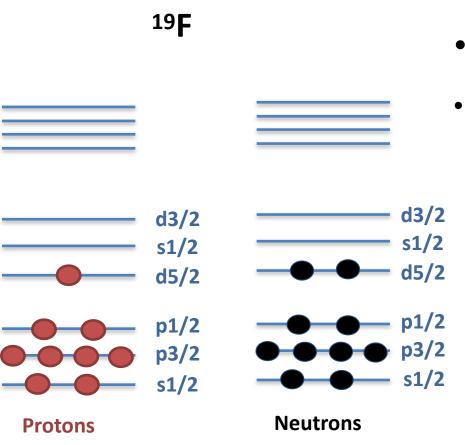

E. Wigner, M.Goeppert Mayer & J.H.D. Jensen,


Nobel Prize 1963

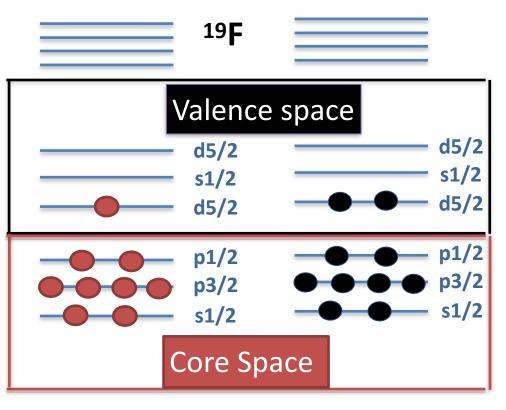
Nuclear shell model: An example ¹⁹F

19**F**

- 9 protons and 10 neutrons
- interacting



Protons

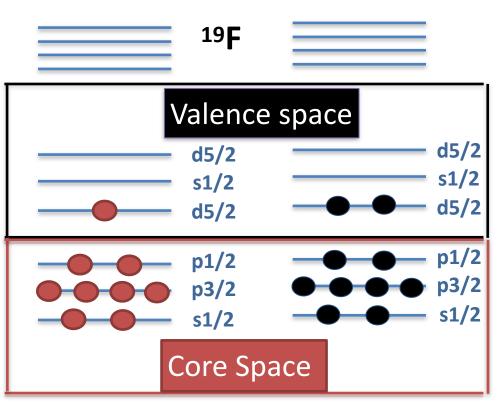

Neutrons

Nuclear shell model: An example ¹⁹F

- 9 protons and 10 neutrons interacting
- Spherically symmetric mean field (HO)

Nuclear shell model: An example ¹⁹F

- 9 protons and 10 neutrons interacting
- Spherically symmetric mean field (HO)
- 1 valence proton 2 valence neutron


The valence nucleons interacts via an effective interaction that takes into account the excluded degrees of freedom

Protons

Neutrons

Nuclear shell model: An example 19F

- 9 protons and 10 neutrons interacting
- Spherically symmetric mean field (HO)
- 1 valence proton 2 valence neutron

The valence nucleons interacts via an effective interaction that takes into account the excluded degrees of freedom

16**O**

Protons

Neutrons

Infinite Space, A nucleons

$$\mathbf{H}\mathbf{\psi}_{\alpha} = \mathbf{E}_{\alpha}\mathbf{\psi}_{\alpha}$$

Model Space, v nucleons

$$\begin{aligned} \mathbf{H}_{\text{eff}} \phi_{\alpha} = & (\mathbf{T} + \mathbf{V}_{\text{eff}}) \ \phi_{\alpha} = \mathbf{E}_{\alpha} \phi_{\alpha} \\ v_{\text{eff}} = v + v_{\frac{Q}{E - H_0}} v_{\text{eff}} \end{aligned}$$

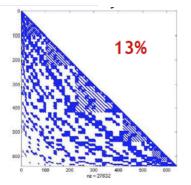
Shell Model calculations

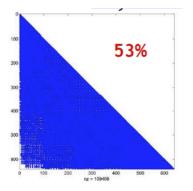
Workflow

- 1) Choose a (realistic) NN potential (NNN)
- 2) Determine the model space better tailored to study the system under investigation
- 3) Derive the effective shell-model hamiltonian and operators by way of a manybody theory
- 4) Calculate the physical observables (energies, e.m. transition probabilities, ...)

Shell Model calculations

Workflow

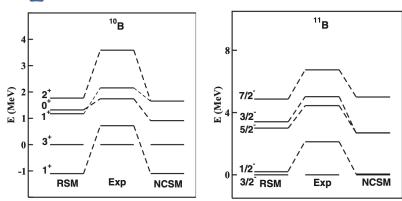

- 1) Choose a (realistic) NN potential (NNN)
- 2) Determine the model space better tailored to study the system under investigation
- 3) Derive the effective shell-model hamiltonian and operators by way of a many-body theory
- 4) Calculate the physical observables (energies, e.m. transition probabilities, ...)


Computational challenges

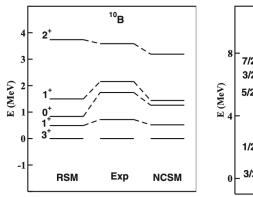
Major Shell 50-82 10^9 basis state Major Shell 50-82 + $g_{9/2}$ + $h_{11/2}$ 10^{25} basis state

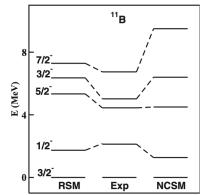
Inclusion of 3N forces, same number of basis states but less sparse H_{eff}

Chiral expansion


	Two-nucleon force	Three-nucleon force	Four-nucleon force
LO (Qº)	X 		
NLO (Q²)	XPMMI	—	
N²LO (Q³)	44	 	
N³LO (Q⁴)	X44X-	₩₩₩	州 州 ···
N⁴LO (Q⁵)	<u> </u>	Д М Ж-	HH +X1

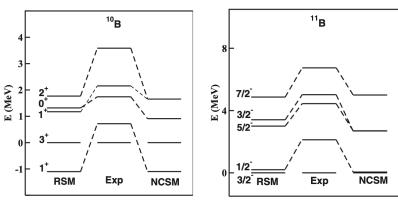
Chiral expansion


	Two-nucleon force	Three-nucleon force	Four-nucleon force
LO (Qº)	X 		
NLO (Q²)	XPMMI	_	—
N²LO (Q³)	44 (_
N³LO (Q⁴)	X 4 4 1 4	州以 ···	M IM
N ⁴ LO (Q ⁵)	4444	Д Ш Ж	HH +X1

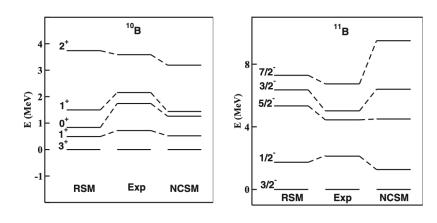

3N interaction: Results

p shell nuclei

T. Fukui Phys. Rev. C 98, 044305 (2018)

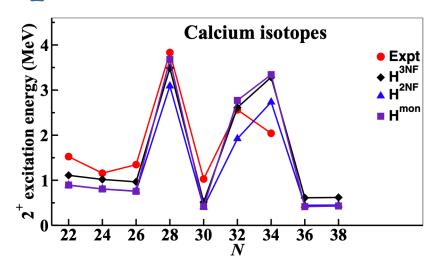


2N

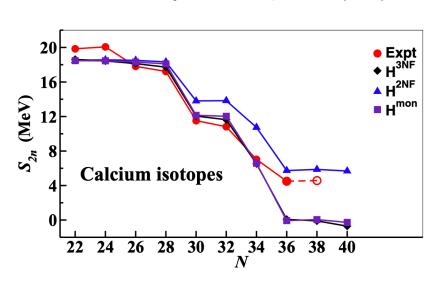

2N+3N

3N interaction: Results

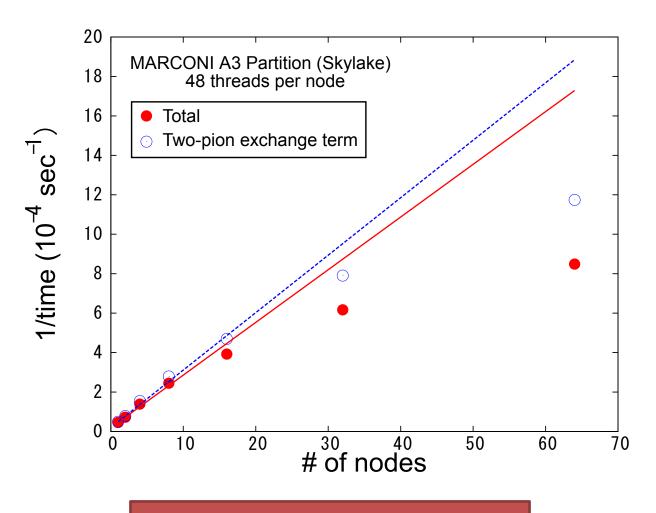
p shell nuclei



T. Fukui Phys. Rev. C 98, 044305 (2018)


2N

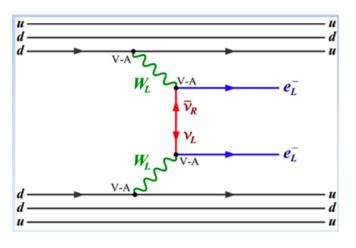
fp shell nuclei



2N+3N

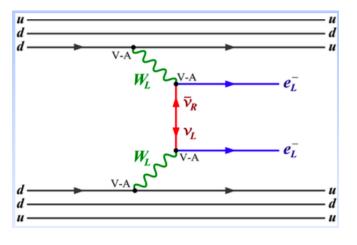
Y. Z. Ma Phys. Rev. C 100, 034324 (2019)

3N interaction code @MARCONI


Improvements are needed!!!!

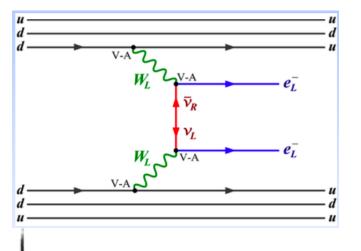
ISCRA Class C Projects Ch3B

Assigned budget :35.000 on MARCON2


The inverse of the $0 \lor \beta \beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the NME

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\nu} \rangle^2$$

The inverse of the $0 \lor \beta \beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the NME


$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\nu} \rangle^2$$

- G^{OV} is the so-called phase-space factor, obtained by integrating over she single electron energies and angles, and summing over the final-state spins
- $\langle m_{\nu} \rangle = |\sum_{k} m_{k} U_{ek}^{2}|$ effective mass of the Majorana neutrino, U_{ek} being the lepton mixing matrix

The inverse of the $0 \vee \beta \beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the **NME**

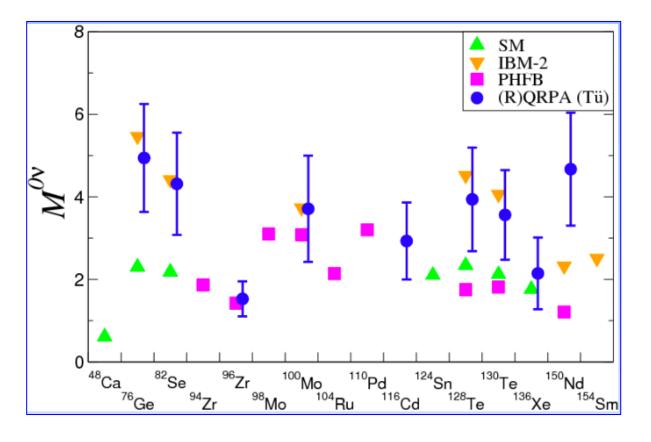
$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\nu} \rangle^2$$

- G^{OV} is the so-called phase-space factor, obtained by integrating over she single electron energies and angles, and summing over the final-state spins
- $\langle m_{\nu} \rangle = |\sum m_k U_{ek}^2|$ effective mass of the Majorana neutrino, U_{ek} being the lepton mixing matrix

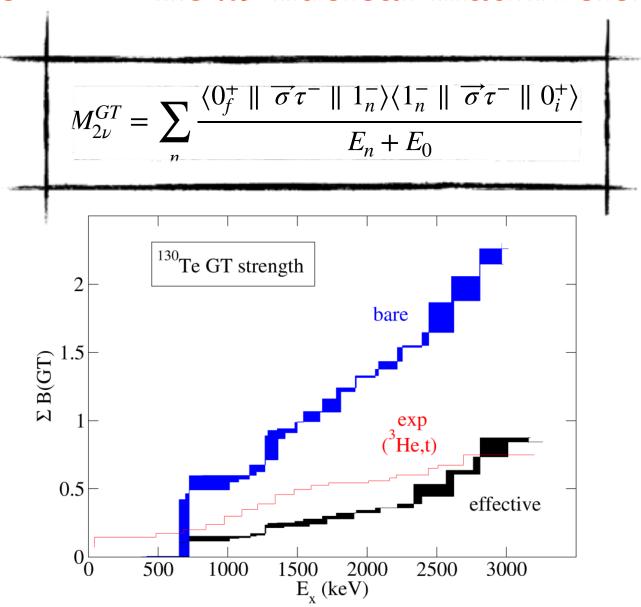
$$M^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_{\nu}}{g_{A}}\right)^{2} M_{F}^{0\nu} - M_{T}^{0\nu}$$

$$M^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_{\nu}}{g_{\tau}}\right)^{2} M_{F}^{0\nu} - M_{T}^{0\nu} \qquad M_{\alpha}^{0\nu} = \sum_{k} \langle p_{1}p_{2} | O_{\alpha}(k) | n_{1}n_{2} \rangle \langle f | a_{p_{1}}^{\dagger} a_{n_{1}} | k \rangle \langle k | a_{p_{2}}^{\dagger} a_{n_{2}} | i \rangle$$

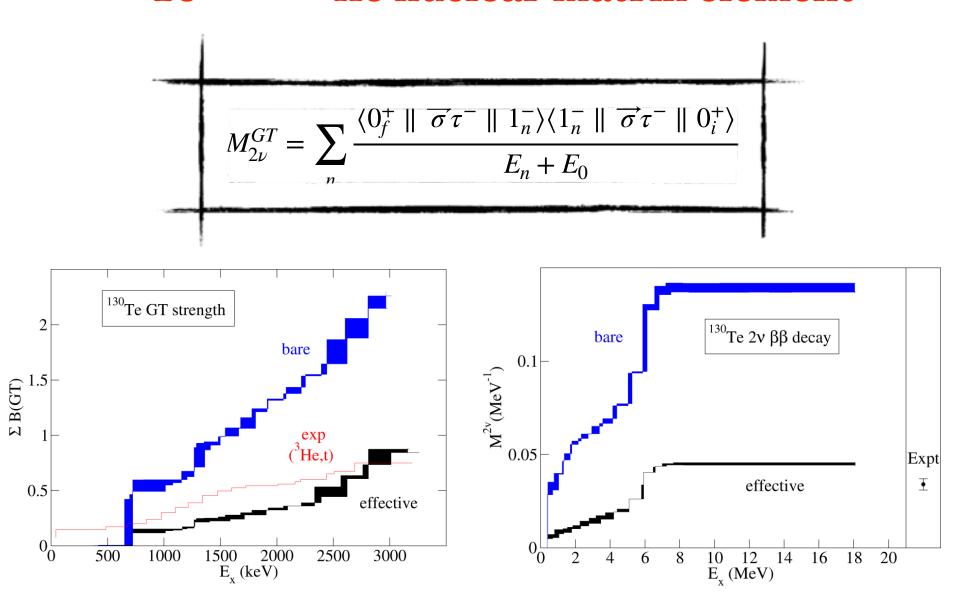
It is necessary to locate the nuclei that are the best candidates to detect the $OV\beta\beta$ -decay


The main factors to be taken into account are:

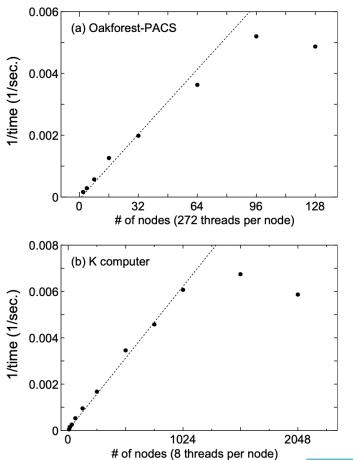
- the Q-value of the reaction;
- the phase-space factor G^{OV} ;
- The isotopic abundance.

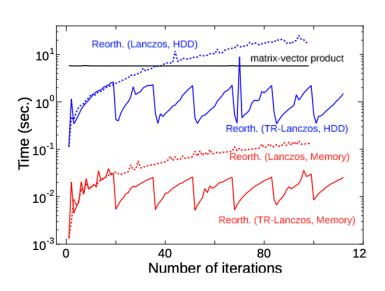

- First group: ⁷⁶Ge
- Second group: 82Se, 100Mo and 116Cd
- Third group: ⁴⁸Ca,
 ⁹⁶Zr and ¹⁵⁰Nd

To describe the nuclear properties detected in the experiments, one needs to resort to nuclear structure models.


The spread of nuclear structure calculations evidences inconsistencies among results obtained with different models

¹³⁰Te \longrightarrow ¹³⁰Xe 2ν nuclear matrix element


Coraggio L. et al. Phys Rev. C 95, 064324 (2017)


¹³⁰Te --- ¹³⁰Xe nuclear matrix element

KSHELL code

Utilizing 8192 cores at FX10 supercomputer at the University of Tokyo, it takes 145 seconds to compute the ground-state energy of 56Ni in pfshell, corresponding the eigenvalue problem of 1,087,455,228-dimension matrix.

N. Shimizu arXiv:1902.02064 [nucl-th]

Assigned budget: 125.000 standard hours on MARCONI

Assigned budget: 250.000 standard hours on GALILEO

ISCRA Class B Project NLDBD

On going: the ¹⁰⁰Mo decay

$$M_{2\nu}^{GT} = \sum_{n} \frac{\langle 0_f^+ \parallel \overrightarrow{\sigma} \tau^- \parallel 1_n^- \rangle \langle 1_n^- \parallel \overrightarrow{\sigma} \tau^- \parallel 0_i^+ \rangle}{E_n + E_0}$$

$$|i\rangle = ^{100} Mo$$
 \longrightarrow $|1_n^+\rangle = ^{100} Tc$ \longrightarrow $|f\rangle = ^{100} Ru$

¹⁰⁰Tc: 1+ states up to 2MeV

Dimension of the Ham=407900809

Memory for one global Lanczos vector: 3.039 GB

Number of Lanczos vector allocated in Memory: 667

Memory required for the calculation: 2TB

With 1 node, 144 threads, time=10h:43m:13s

@MetaCentrum (CZ)

Summary and Conclusions

- The Role of three-body forces is fundamental for describing the spectra of p and fp shell nuclei within RSM.
- RSM calculations provide a satisfactory description of observed GT-strength distributions and $2\nu2\beta$ NME $2\nu\beta\beta$

Perspectives

3N force:

Calculation of 3N matrix elements for heavier systems

2νββ

- Role of real three-body forces and two-body currents (present collaboration with Pisa group)
- Evaluation of the contribution of three-body correlations (blocking effect)

0νββ

Beyond closure approximation

Thank you for the attention!