

1

Calculation of ⁶Li ground state within the Hyperpsherical Harmonics basis

Alex Gnech

SM&FT, Bari December 11th, 2019

- First nucleus beyod A = 5 mass gap
- Weakly bound \Rightarrow prominent $\alpha + d$ structure
- Good laboratory to study nuclear forces

- Low Energy Theory ($\Lambda_\chi \sim$ 1 GeV)
 - *N*, *π* as d.o.f.
 - high energy d.o.f. integrated out → Low Energy Constants
- Perturbative expansion ($\propto (Q/\Lambda_\chi)^{
 u})$)
- Regularization with a cutoff ($\Lambda = 400 600 \text{ MeV}$)
- Theoretical uncertainties
 - order-by-order expansion
 - Λ-dependence
- It is possible to derive in a self-consistent way the interaction with various probes: electro-weak, dark matter, ...

$$H = \sum_{i} \frac{p_i^2}{2M} + \sum_{i < j} V(i, j) + \sum_{i < j < k} W(i, j, k) + \dots$$

Search for accurate solution of $H\Psi = E\Psi$

The Hyperspherical Harmonics method

- Variational approach
- Expansion on a base ⇒ Hyperspherical Harmonics (HH)

$$\Big(\sum_{i=1}^{A-1} \nabla_i\Big)\mathcal{Y}_{[K]}(\Omega_{A-1}) = K(K+3(A-1)-2)\mathcal{Y}_{[K]}(\Omega_{A-1})$$

• The variational wave function

$$\psi_{A} = \sum_{l,[K]} \mathbf{a}_{l,[K]} f_{l}(\rho) \mathcal{Y}_{[K]}(\Omega_{A-1}) \Big[\chi_{S} \otimes \chi_{T} \Big],$$

- Fermions ⇒Complete anti-symmetrization
- Increase K up to convergence
- Applied for A=3,4 ⇒ now A=6 using a new computational approach

[A. Kievsky, et al., J. Phys. G: Nucl. Part. Phys. 35, 063101(2008).]

The HH basis

• Ground state of ⁶Li is $J^{\pi} = 1^+$ (isospin T = 0)

- Up to K = 14 we use an equivalent of 1.5×10^8 quantum states
- Number of independent states 10⁵

Warning!

- We will use SRG evolved N³LO500 NN interaction [1-2]
 - The Coulomb interaction is included as "bare" (not SRG evolved)
 - SRG evolution parameter $\Lambda = 1.2, 1.5, 1.8 \text{ fm}^{-1}$
- Explorative study with NNLO^{*}_{sat} [3]
- No 3-body forces (for now)
- We compute the mean values of "bare" operators

S.K. Bogner, R.J. Furnstahl, and R.J. Perry, PRC **75**, 061001(R) (2007)
 D.R. Entem and R. Machleidt, PRC **68**, 041001(R) (2003)
 A. Ekström, *et al.*, PRC **91**,051301 (2015)

• Exponential behavior [1]

$$E(K) = E(\infty) + Ae^{-bK}$$

[1] S.K. Bogner et al., NPA 801, 21 (2008)

	B _{full} [MeV]	$B(\infty)$ [MeV]	Exp.
SRG1.2	31.735	31.767(7)	31.99
SRG1.5	32.699	32.789(15)	31.99
SRG1.8	32.093	32.305(25)	31.99
NNLO [*] _{sat}	29.77	30.71(15)	31.99

- The errors come form the fit
- Error on the extrapolated energy less < 3%
- Difference with the experimental values:
 - No pure 3-body forces
 - No induced 3- and 4-body forces

Electric quadrupole moment

Large cancellations between different K

[1] CDB2k-SRG1.5 C. Forssén, E. Caurier, P. Navrátil, PRC 71, 021303 (2009)

Matrix elements between different waves

	S-D	D - D	P - P	P - D
SRG1.2	-0.173	-0.022	0.009	0.009
SRG1.5	-0.080	-0.021	0.012	0.010
SRG1.8	-0.028	-0.020	0.012	0.010
NNLO [*] _{sat}	0.058	-0.016	0.015	0.011

- Direct connection with the strength of the tensor term in the potential
- Two-body currents contribution could be necessary!!

Cluster form factor $\alpha + d$

Visualize the wave function

$$\frac{f_{L}(r)}{r} = \langle \left[\left(\Psi_{\alpha} \otimes \Psi_{d} \right)_{S} Y_{L}(\hat{r}) \right]_{J} | \Psi_{6_{\text{Li}}} \rangle$$

Conclusions and future prospective

- extension of HH basis for A > 4 (up to now only for "soft" potentials)
- Technically possible to increase the basis
 - Use of not SRG potentials
 - Enlarge the number of particles
- Ground state of ⁶Li within the HH approach
 - · Good convergence for SRG potentials
 - Electromagnetic structure
- The $\alpha + d$ clusterization \Rightarrow first step towards scattering

Pisa group

- A.G. GSSI, L'Aquila (Italy)
- <u>M. Viviani</u>, <u>L.E. Marcucci</u>, and A. Kievsky *INFN & Pisa University*, *Pisa* (*Italy*)
- L. Girlanda Lecce University, Lecce (Italy)
- J. Dohet-Eraly ULB, Bruxelles (Belgium)

Calculations supported by

CINECA

Sparse

Validation

Κ	This work (HH)	NSHH [1]
2	-61.142	-61.142
4	-62.015	-62.015
6	-63.377	-63.377
8	-64.437	-64.437
10	-65.354	-65.354
12	-65.884	-65.886

Volkov potential

[1] Nonsymmetrizied HH. M. Gattobigio et.al. PRC 71, 024001 (2005)

Charge radius

• Extrapolation $r_c(K) = r_c(\infty) + Ae^{-bK}$

[1] CDB2k-SRG1.5 C. Forssén, E. Caurier, P. Navrátil, PRC 71, 021303 (2009)

$${}^{6}\text{Li} \simeq \alpha + d \Rightarrow \mu_{z}({}^{6}\text{Li}) \simeq \mu_{z}(d)$$

Experiment tells us $\mu_z(^6\text{Li}) < \mu_z(d)$

	$\mu_z(d)$	μ_z (⁶ Li)
SRG1.2	0.872	0.865
SRG1.5	0.868	0.860
SRG1.8	0.865	0.856
NNLO [*] _{sat}	0.860	0.850
Exp.	0.857	0.822

- Negative contribution only from the *L* = 2 *S* = 1 component ⇒ NOT SUFFICIENT
- We need two body currents contribution!! [1]

[1] R. Schiavilla, et al., PRC 99, 034005 (2019)

Cluster form factor $\alpha + d$

$$\frac{f_{L}(r)}{r} = \langle \left[(\Psi_{\alpha} \otimes \Psi_{d})_{S} Y_{L}(\hat{r}) \right]_{J} | \Psi_{^{6}\text{Li}} \rangle$$

Cluster form factor $\alpha + d$

$$\frac{f_{L}(r)}{r} = \langle \left[(\Psi_{\alpha} \otimes \Psi_{d})_{S} Y_{L}(\hat{r}) \right]_{J} | \Psi_{6_{Li}} \rangle$$

• For the NNLO^{*}_{sat} a node appears \Rightarrow strength of the tensor forces[1]

[1] V.I. Kukulin, et al. NPA 586,151 (1995)