
Statistical Physics for Heterogeneous 
Random Networks

Andrea Gabrielli
Dip. di Ingegneria, Università Roma Tre, Italy

email: andrea.gabrielli@uniroma3.it 

https://agenda.albanova.se/contributionDisplay.py?contribId=272&sessionId=275&confId=6502


Two fundamental applications

Reconstruction or modelling of a real
network from partial topological
information (e.g. degree sequence)

Null models for the statistical validation of
the high order properties of a real network

Central questions

• How to build maximally random graph ensembles satisfying some global or local 
topological/metric constraints (e.g. degree distribution)?

• Can statistical physics tools useful for this task?

Examples: reconstruction of financial or
ecological networks from incomplete
information (e.g. whole topology by
knowing only node degrees)

Examples: statistical validation of high
order motifs of a real network vs a
randomized model sharing only low order
properties (e.g. validation of clustering
properties by imposing only degrees)



Reconstructing statistical properties of the network from partial information is one of 
the outstanding problems in the statistical physics of networks 

Example: nodes = financial institutions 
edges = various types of financial ties, e.g. loans or derivative contracts 

These ties, whose information 
is usually limited, result in 
dependencies among 
institutions and constitute the 
ground for the propagation of 
financial distress across the 
network

S. Vitali, J. B. Glattfelder, S. Battiston, PLOS ONE, 2011
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Many social and biological networks, characterized by epidemic diffusion, have 
interactions/contacts that are only partially known
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Example: validation of motifs in the bipartite 
country-product network in different years with 
respect degree conserving randomized 
bipartite network.

Detecting early signs of 2007-8 financial crisis 
in real economy (fast increase of randomization 
in immediately previous years)

F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Scientific 
Reports 6, 30286 (2016)



Reconstruction or constrained randomization methods

Exponential Random Graphs (ERG)



Information theory: Maximum Entropy approach 

ERG defines the maximally random ensemble W of graphs with N nodes compatible 
with the constraints (in average): Canonical Ensemble in Stat. Phys.

Ca ≡ Ca (G)P(G) =
G
∑ Ca

*   ∀a  (1)

G = generic graph of the ensemble with N nodes
P(G) =measure on the ensemble⇒ it is found by maximizing the entropy

S(G) = - P(G)
G
∑ logP(G)  with the constraints (1)⇒

P(G) = 1
Z

exp[−H (G)]  where H = θaCa (G)
a
∑  with θa =  Lagrange multipliers

{Ca} = set of graph properties that we want to constrain (e.g. we know their values for 
a real network) = sufficient statistics

J. Park and M.E.J. Newman, Phys. Rev. E, 70, 066117 (2004)
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If {Ca} = {ki
in, ki

out} i=1,…,N è H(G)=Si (qi
in ki

in + qi
out ki

out)

{qi
in,qi

out} are fixed by the knowledge of <ki
(in,out)>

<ki
(in,out)> = ki

*(in,out) (Maximum likelihood if single configuration values)

Where xi
(in,out) = exp[-qi

(in,out)] = in - out fitness of node ipi→ j =
xi
out x j

in

1+ xi
out x j

in
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Example: binary directed network

• N. Musmeci, S. Battiston, G. Caldarelli, M. Puliga, A. Gabrielli, J. of Stat. Phys., 151, 220 (2013)
• G. Caldarelli, A. Chessa, A. Gabrielli, F. Pammolli, M. Puliga, Nature Phys., 9, 125 (2013)
• G. Cimini, T. Squartini, D. Garlaschelli, A. Gabrielli, Scientific Reports 5, 15758 (2015)
• G. Cimini, T. Squartini, A. Gabrielli, D. Garlaschelli, Phys. Rev. E 92, 040802(R) (2015)
• F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Scientific Reports 5,10595 (2015)

+

Reviews (see next slide)
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“In presenting our 
results we face the 
challenge that some 
algorithms produce an 
ensemble
of networks while 
others produce a single 
matrix. This makes a 
straightforward 
comparison
difficult. Fortunately the 
Cimi method is the clear 
winner between the 
ensemble methods”

May we do the analogy with statistical physics stricter?



Let us go deeper in the Jayne’s formulation of statistical 
mechanics: heterogeneous weighted undirected networks

A = !symmetric!adjacency!matrix
aij =aji =0,1!with!i , j =1,...,N
ki = aij

j (≠i )
∑ =degree

W = symmetric!weight!matrix
wij =w ji = continuous!or!discrete!weights
si = wij

j (≠i )
∑ = strength

We want to build the maximally random ensemble of weighted graphs 
with 𝑘" = 𝑘"∗ and 𝑠" = 𝑠"∗ for all i=1,…,N



D. Garlaschelli and M. I. Loffredo, Phys. Rev. Lett. 102, 038701 (2009).
R. Mastrandrea, T. Squartini, G. Fagiolo, and D. Garlaschelli, New J. Phys. 16, 043022 (2014).

The knowledge of the matrix 𝑊 implies the knowledge of 𝐴 if we interpret
𝑤") = 0 as a non existing link, i.e. 𝑎") = 0

However, since 𝑘" = 𝑘"∗ is a singular constraint in 𝑆 𝑃 𝑊 when 𝑤") are continuous 
variables, it is possible only in the discrete case 𝑤") = 𝑛")𝑤/with 𝑛") = 0,1,2, …

1. One can think to define a probability measure 𝑃(𝑊) over all possible matrices 𝑊

2. Maximise 𝑆 𝑃 𝑊 = −∑8𝑃 𝑊 log𝑃 𝑊 with the constraints 𝑘" = 𝑘"∗ and 
𝑠" = 𝑠"∗ for all 𝑖 = 1, … , 𝑁 to find 𝑃 𝑊

Enhanced Configuration Model

How to treat the case of  continuous and defined in an arbitrary (left bounded) interval?

Standard approach



Jayne’s formulation of the Grand Canonical Ensemble for Hamiltonian systems 

𝑆 𝑃 = - ∑> 𝑃 𝑁, 𝒙 log 𝑃 𝑁, 𝒙

with constraints 𝑁 = 𝑁∗ and 𝐻A = 𝐸

𝑃 𝑁, 𝒙 = 𝑍DEF 𝛼, 𝛽 exp[−𝛼𝑁 − 𝛽𝐻A 𝒙 ]

𝑍D 𝛼, 𝛽 = ∑ANFO 𝑒EQA𝑍>(𝛽,𝑁)

𝑍>(𝛽,𝑁)= ∫𝑑𝑥UA𝑒EVWX(𝒙)

with identical particles.
The Shannon entropy related to the probability distribution P (N,x) is

as usual:
S = �

X

C

P (N,x) logP (N,x) (1)

In order to define the GCE we have to maximize the above entropy with the
constraints hNi = N

⇤ and hHN(x)i = E where HN(x) is the Hamiltonian
function of the system of an arbitrary number N of particles and N

⇤ and E

are respectively the fixed mean number of particles in the ensemble and the
mean energy. I.e., we have to maximise the constrained entropy

Sc = S �
X

C

P (N,x)[↵N + �HN(x) + �] , (2)

where ↵, �, � are respectively the Lagrange multipliers respectively associated
with the mean number of particles, the mean energy and the probability
normalization condition (i.e.

P
C P (N,x) = 1). By solving the functional

equation
�Sc = 0

and eliminating the Lagrange multiplier � by using the normalization condi-
tion, we get

P (N,x) = Z
�1
G

(↵, �) exp[�↵N � �HN(x)] , (3)

where ZG(↵, �) is the grand-canonical partition function (GCPF) determined
by the normalization condition:

ZG(↵, �) =
X

C

exp[�↵N � �HN(x)] =
1X

N=0

e
�↵N

ZC(�;N) (4)

with

ZC(�;N) =

Z
d
6N

xe
��HN (x) (5)

being the canonical partition function (CPF) of the system with N particles.
The values of Lagrange multipliers ↵ and � are determined by the con-

straints equation

hNi ⌘
X

C

P (N,x)N ⌘ �@ logZG(↵, �)

@↵
= N

⇤ (6)

hHNi ⌘
X

C

P (N,x)HN(x) ⌘ �@ logZG(↵, �)

@�
= E . (7)
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Since in statistical mechanics logZG(↵, �) is related to the grand potential
�G = U � TS � µN

⇤ (where U = internal energy, T = temperature, S =
thermal entropy and µ = chemical potential) by

�G = �kT logZG(↵, �)

with k being the Boltzmann constant, we have the following thermodynamic
identification of the Lagrange multipliers

↵ = � µ

kT
=

@�G

@N⇤

� =
1

kT
=

@�G

@E
. (8)

2 Analogy between Grand Canonical Ensem-
ble for network and the statistical mechan-
ical one

In this section we want to extend the previous statistical mechanical approach
to the problem of the definition of GCE of weighted networks with given
(global or local) mean link and weight densities.

In general considering an undirected network, given the number N of
nodes, the maximal number of links connecting di↵erent nodes is N(N�1)/2.
This quantity plays the same role played by the system volume V in the
statistical mechanical case and node pairs (i, j) as the volume elements of
the system. In order to have an even stricter analogy we can think to the case
of a lattice gas. As better clarified below the role played by particles in the
GCE in statistical mechanics is now played by links: only when they exist
they can participate to the weight distribution of the system as only existing
particles can participate to the total energy of the lattice gas. Consequently,
the link weights can be seen as a sort of particle energy. The node connecting
two links can be seen as a sort of geometrical interaction between the two
links, or more appropriately, the two lateral nodes of a link define its local
volume within which it can directly interact with other links/particles. By
using this analogy we can formulate the GCE for weighted network as it
follows.

The generic configuration C of the network is given by the set of existing
links (i, j) 2 A1 (i.e. the set of node pairs whose adjacency matrix ele-
ments aij = 1 where i and j are node indexes) and the set of their weights
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𝐶 = (𝑁, 𝒙) with 𝑥 ∈ ℝUA

𝐻A(𝒙)=Hamiltonian of N particles

]
>

=]
A

^𝑑UA𝑥

where

𝑃 𝐶 = 𝑃 𝑁, 𝒙 maximises

𝑆> = S − ∑> 𝑃 𝑁, 𝒙 [𝛼𝑁 + 𝛽𝐻A(𝒙) + 𝛾]



The same approach can be adopted for weighted random graphs G with N nodes

We can build a similar Fock space of configurations with variable number of links

Roughly speaking 𝐴 plays the role of the number of particles N and the weights 𝑊 define 
the energy function HN : existing links 

A. Gabrielli, R. Mastrandrea, G. Caldarelli, G. Cimini, Grand canonical ensemble of 
weighted networks, Phys. Rev. E 99, 030301(R) (2019)

More precisely, 
The graph G is mapped into a configuration of a lattice gas embedded in an appropriate 
space:

• Each link of G corresponds to an occupied edge of KN , the complete graph of N nodes. 

• We can define a lattice using the line graph of KN, also called the triangular graph TN of 
order N: each edge of KN corresponds to a vertex (site) on the lattice TN

• Therefore each link of G is mapped into a particle of a gas on the lattice TN



K3 K4 K5 K6 K7

Mapping between complete graphs Kn and triangular graphs Tn

In TN number of nodes M=N(N-1)/2 and 2(N-2) first n.n. for each node.
Only first and second neighbours: diameter = 2



We map each weighted graph configuration into a configuration of a lattice gas 
with an internal continuous variable (energy/magnetization)

N=4

N=5



• The binary adjacency matrix 𝐴 of the network fixes the number L and the
positions of the gas particles [1 ≤ 𝐿 ≤ A AEF

d
= 𝑉 ] on TN,

• The weights matrix 𝑊 defines the internal coordinates of the existing particles.

Therefore we can exactly map the Maximum Constrained Entropy method for the
definition of the weighted graphs ensemble into the definition of the Grand
Canonical Ensemble for a lattice gas on TN

ANDREA GABRIELLI et al. PHYSICAL REVIEW E 99, 030301(R) (2019)

FIG. 1. Mapping between an undirected graph GN and a lattice
gas on the corresponding triangular graph TN of KN (we report
the illustrative examples N = 4, 5). Only the existing links of GN

(represented as solid black lines) are placed as particles on the lattice
sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.

This mapping allows formulating in a rigorous way the
grand canonical ensemble of complex weighted networks. We
first define the configuration C of the undirected weighted
network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
possible adjacency matrices. The average operator is thus

∑

C

P(C) · ⇐⇒
∑

A

LA∏

i< j

∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
∏U

i< j to mean
∏

(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
−

∑
C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].

Global constraints. The simplest nontrivial ensemble is
obtained by imposing the mean total number of links (parti-
cles) 〈L〉 ≡ 〈

∑V
i< j ai j〉 = L∗ and the mean total weight (e.g.,

energy) 〈W 〉 ≡ 〈
∑LA

i< j wi j〉 = W ∗, where the average is de-

fined by the measure P(A, W). This is the weighted ver-
sion of the Erdős-Rényi model. We get P(A, W,α,β ) =
Z−1

G (α,β )e−H (A,W,α,β ) with the Hamiltonian

H (A, W,α,β ) = α

V∑

i< j

ai j + β

LA∑

i< j

wi j, (2)

where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function

ZG(α,β ) =
∑

C

e−H (A,W,α,β ) =
∑

A

e−α
∑V

i< j ai j ZC (β ), (3)

where ZC (β ) =
∏LA

i< j

∫ ∞
0 dwi je−βwi j = β−

∑V
i< j ai j = β−L is

the canonical partition function. The sum in Eq. (3) is
easily performed by noting that

∑
A e−α

∑V
i< j ai j β−

∑V
i< j ai j =∑V

L=0 nC (L)e−αLβ−L, where nC (L) =
(V

L

)
is the number of

binary configurations with exactly L links. We finally have

ZG(α,β ) =
V∑

L=0

(
V
L

)
e−αL

βL
=

[
1 + e−α

β

]V

. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′








LA∏

i< j

βe−βwi j



. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′








LA∏

i< j

βe−βwi j



. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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FIG. 1. Mapping between an undirected graph GN and a lattice
gas on the corresponding triangular graph TN of KN (we report
the illustrative examples N = 4, 5). Only the existing links of GN

(represented as solid black lines) are placed as particles on the lattice
sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.

This mapping allows formulating in a rigorous way the
grand canonical ensemble of complex weighted networks. We
first define the configuration C of the undirected weighted
network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
possible adjacency matrices. The average operator is thus

∑

C

P(C) · ⇐⇒
∑

A

LA∏

i< j

∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
∏U

i< j to mean
∏

(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
−

∑
C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].

Global constraints. The simplest nontrivial ensemble is
obtained by imposing the mean total number of links (parti-
cles) 〈L〉 ≡ 〈

∑V
i< j ai j〉 = L∗ and the mean total weight (e.g.,

energy) 〈W 〉 ≡ 〈
∑LA

i< j wi j〉 = W ∗, where the average is de-

fined by the measure P(A, W). This is the weighted ver-
sion of the Erdős-Rényi model. We get P(A, W,α,β ) =
Z−1

G (α,β )e−H (A,W,α,β ) with the Hamiltonian

H (A, W,α,β ) = α

V∑

i< j

ai j + β

LA∑

i< j

wi j, (2)

where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function

ZG(α,β ) =
∑

C

e−H (A,W,α,β ) =
∑

A

e−α
∑V

i< j ai j ZC (β ), (3)

where ZC (β ) =
∏LA

i< j

∫ ∞
0 dwi je−βwi j = β−

∑V
i< j ai j = β−L is

the canonical partition function. The sum in Eq. (3) is
easily performed by noting that

∑
A e−α

∑V
i< j ai j β−

∑V
i< j ai j =∑V

L=0 nC (L)e−αLβ−L, where nC (L) =
(V

L

)
is the number of

binary configurations with exactly L links. We finally have

ZG(α,β ) =
V∑

L=0

(
V
L

)
e−αL

βL
=

[
1 + e−α

β

]V

. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′








LA∏

i< j

βe−βwi j



. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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FIG. 1. Mapping between an undirected graph GN and a lattice
gas on the corresponding triangular graph TN of KN (we report
the illustrative examples N = 4, 5). Only the existing links of GN

(represented as solid black lines) are placed as particles on the lattice
sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.

This mapping allows formulating in a rigorous way the
grand canonical ensemble of complex weighted networks. We
first define the configuration C of the undirected weighted
network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
possible adjacency matrices. The average operator is thus

∑

C

P(C) · ⇐⇒
∑

A

LA∏

i< j

∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
∏U

i< j to mean
∏

(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
−

∑
C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].

Global constraints. The simplest nontrivial ensemble is
obtained by imposing the mean total number of links (parti-
cles) 〈L〉 ≡ 〈

∑V
i< j ai j〉 = L∗ and the mean total weight (e.g.,

energy) 〈W 〉 ≡ 〈
∑LA

i< j wi j〉 = W ∗, where the average is de-

fined by the measure P(A, W). This is the weighted ver-
sion of the Erdős-Rényi model. We get P(A, W,α,β ) =
Z−1

G (α,β )e−H (A,W,α,β ) with the Hamiltonian

H (A, W,α,β ) = α

V∑

i< j

ai j + β

LA∑

i< j

wi j, (2)

where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function

ZG(α,β ) =
∑

C

e−H (A,W,α,β ) =
∑

A

e−α
∑V

i< j ai j ZC (β ), (3)

where ZC (β ) =
∏LA

i< j

∫ ∞
0 dwi je−βwi j = β−

∑V
i< j ai j = β−L is

the canonical partition function. The sum in Eq. (3) is
easily performed by noting that

∑
A e−α

∑V
i< j ai j β−

∑V
i< j ai j =∑V

L=0 nC (L)e−αLβ−L, where nC (L) =
(V

L

)
is the number of

binary configurations with exactly L links. We finally have

ZG(α,β ) =
V∑

L=0

(
V
L

)
e−αL

βL
=

[
1 + e−α

β

]V

. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′








LA∏

i< j

βe−βwi j



. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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FIG. 1. Mapping between an undirected graph GN and a lattice
gas on the corresponding triangular graph TN of KN (we report
the illustrative examples N = 4, 5). Only the existing links of GN

(represented as solid black lines) are placed as particles on the lattice
sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.

This mapping allows formulating in a rigorous way the
grand canonical ensemble of complex weighted networks. We
first define the configuration C of the undirected weighted
network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
possible adjacency matrices. The average operator is thus

∑

C

P(C) · ⇐⇒
∑

A

LA∏

i< j

∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
∏U

i< j to mean
∏

(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
−

∑
C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].

Global constraints. The simplest nontrivial ensemble is
obtained by imposing the mean total number of links (parti-
cles) 〈L〉 ≡ 〈

∑V
i< j ai j〉 = L∗ and the mean total weight (e.g.,

energy) 〈W 〉 ≡ 〈
∑LA

i< j wi j〉 = W ∗, where the average is de-

fined by the measure P(A, W). This is the weighted ver-
sion of the Erdős-Rényi model. We get P(A, W,α,β ) =
Z−1

G (α,β )e−H (A,W,α,β ) with the Hamiltonian

H (A, W,α,β ) = α

V∑

i< j

ai j + β

LA∑

i< j

wi j, (2)

where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function

ZG(α,β ) =
∑

C

e−H (A,W,α,β ) =
∑

A

e−α
∑V

i< j ai j ZC (β ), (3)

where ZC (β ) =
∏LA

i< j

∫ ∞
0 dwi je−βwi j = β−

∑V
i< j ai j = β−L is

the canonical partition function. The sum in Eq. (3) is
easily performed by noting that

∑
A e−α

∑V
i< j ai j β−

∑V
i< j ai j =∑V

L=0 nC (L)e−αLβ−L, where nC (L) =
(V

L

)
is the number of

binary configurations with exactly L links. We finally have

ZG(α,β ) =
V∑

L=0

(
V
L

)
e−αL

βL
=

[
1 + e−α

β

]V

. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′








LA∏

i< j

βe−βwi j



. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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FIG. 1. Mapping between an undirected graph GN and a lattice
gas on the corresponding triangular graph TN of KN (we report
the illustrative examples N = 4, 5). Only the existing links of GN

(represented as solid black lines) are placed as particles on the lattice
sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.

This mapping allows formulating in a rigorous way the
grand canonical ensemble of complex weighted networks. We
first define the configuration C of the undirected weighted
network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
possible adjacency matrices. The average operator is thus

∑

C

P(C) · ⇐⇒
∑

A

LA∏

i< j

∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
∏U

i< j to mean
∏

(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
−

∑
C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].

Global constraints. The simplest nontrivial ensemble is
obtained by imposing the mean total number of links (parti-
cles) 〈L〉 ≡ 〈

∑V
i< j ai j〉 = L∗ and the mean total weight (e.g.,

energy) 〈W 〉 ≡ 〈
∑LA

i< j wi j〉 = W ∗, where the average is de-

fined by the measure P(A, W). This is the weighted ver-
sion of the Erdős-Rényi model. We get P(A, W,α,β ) =
Z−1

G (α,β )e−H (A,W,α,β ) with the Hamiltonian

H (A, W,α,β ) = α

V∑

i< j

ai j + β

LA∑

i< j

wi j, (2)

where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function

ZG(α,β ) =
∑

C

e−H (A,W,α,β ) =
∑

A

e−α
∑V

i< j ai j ZC (β ), (3)

where ZC (β ) =
∏LA

i< j

∫ ∞
0 dwi je−βwi j = β−

∑V
i< j ai j = β−L is

the canonical partition function. The sum in Eq. (3) is
easily performed by noting that

∑
A e−α

∑V
i< j ai j β−

∑V
i< j ai j =∑V

L=0 nC (L)e−αLβ−L, where nC (L) =
(V

L

)
is the number of

binary configurations with exactly L links. We finally have

ZG(α,β ) =
V∑

L=0

(
V
L

)
e−αL

βL
=

[
1 + e−α

β

]V

. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′








LA∏

i< j

βe−βwi j



. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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FIG. 1. Mapping between an undirected graph GN and a lattice
gas on the corresponding triangular graph TN of KN (we report
the illustrative examples N = 4, 5). Only the existing links of GN

(represented as solid black lines) are placed as particles on the lattice
sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.

This mapping allows formulating in a rigorous way the
grand canonical ensemble of complex weighted networks. We
first define the configuration C of the undirected weighted
network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
possible adjacency matrices. The average operator is thus

∑

C

P(C) · ⇐⇒
∑

A

LA∏

i< j

∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
∏U

i< j to mean
∏

(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
−

∑
C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].

Global constraints. The simplest nontrivial ensemble is
obtained by imposing the mean total number of links (parti-
cles) 〈L〉 ≡ 〈

∑V
i< j ai j〉 = L∗ and the mean total weight (e.g.,

energy) 〈W 〉 ≡ 〈
∑LA

i< j wi j〉 = W ∗, where the average is de-

fined by the measure P(A, W). This is the weighted ver-
sion of the Erdős-Rényi model. We get P(A, W,α,β ) =
Z−1

G (α,β )e−H (A,W,α,β ) with the Hamiltonian

H (A, W,α,β ) = α

V∑

i< j

ai j + β

LA∑

i< j

wi j, (2)

where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function

ZG(α,β ) =
∑

C

e−H (A,W,α,β ) =
∑

A

e−α
∑V

i< j ai j ZC (β ), (3)

where ZC (β ) =
∏LA

i< j

∫ ∞
0 dwi je−βwi j = β−

∑V
i< j ai j = β−L is

the canonical partition function. The sum in Eq. (3) is
easily performed by noting that

∑
A e−α

∑V
i< j ai j β−

∑V
i< j ai j =∑V

L=0 nC (L)e−αLβ−L, where nC (L) =
(V

L

)
is the number of

binary configurations with exactly L links. We finally have

ZG(α,β ) =
V∑

L=0

(
V
L

)
e−αL

βL
=

[
1 + e−α

β

]V

. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′








LA∏

i< j

βe−βwi j



. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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FIG. 1. Mapping between an undirected graph GN and a lattice
gas on the corresponding triangular graph TN of KN (we report
the illustrative examples N = 4, 5). Only the existing links of GN

(represented as solid black lines) are placed as particles on the lattice
sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.
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and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
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possible adjacency matrices. The average operator is thus

∑

C

P(C) · ⇐⇒
∑

A

LA∏

i< j

∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
∏U

i< j to mean
∏

(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
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C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
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The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =
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This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note
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(represented as solid black lines) are placed as particles on the lattice
sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.

This mapping allows formulating in a rigorous way the
grand canonical ensemble of complex weighted networks. We
first define the configuration C of the undirected weighted
network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
possible adjacency matrices. The average operator is thus
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P(C) · ⇐⇒
∑
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∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
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i< j to mean
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(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
−

∑
C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].

Global constraints. The simplest nontrivial ensemble is
obtained by imposing the mean total number of links (parti-
cles) 〈L〉 ≡ 〈

∑V
i< j ai j〉 = L∗ and the mean total weight (e.g.,

energy) 〈W 〉 ≡ 〈
∑LA

i< j wi j〉 = W ∗, where the average is de-

fined by the measure P(A, W). This is the weighted ver-
sion of the Erdős-Rényi model. We get P(A, W,α,β ) =
Z−1

G (α,β )e−H (A,W,α,β ) with the Hamiltonian

H (A, W,α,β ) = α

V∑

i< j

ai j + β

LA∑
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wi j, (2)

where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function

ZG(α,β ) =
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C

e−H (A,W,α,β ) =
∑

A

e−α
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i< j ai j ZC (β ), (3)

where ZC (β ) =
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i< j

∫ ∞
0 dwi je−βwi j = β−

∑V
i< j ai j = β−L is

the canonical partition function. The sum in Eq. (3) is
easily performed by noting that

∑
A e−α
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∑V
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L=0 nC (L)e−αLβ−L, where nC (L) =
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)
is the number of

binary configurations with exactly L links. We finally have

ZG(α,β ) =
V∑

L=0

(
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)
e−αL

βL
=

[
1 + e−α

β

]V

. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′
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
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
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

. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.

This mapping allows formulating in a rigorous way the
grand canonical ensemble of complex weighted networks. We
first define the configuration C of the undirected weighted
network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
possible adjacency matrices. The average operator is thus

∑

C

P(C) · ⇐⇒
∑

A

LA∏

i< j

∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
∏U

i< j to mean
∏

(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
−

∑
C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].

Global constraints. The simplest nontrivial ensemble is
obtained by imposing the mean total number of links (parti-
cles) 〈L〉 ≡ 〈

∑V
i< j ai j〉 = L∗ and the mean total weight (e.g.,

energy) 〈W 〉 ≡ 〈
∑LA

i< j wi j〉 = W ∗, where the average is de-

fined by the measure P(A, W). This is the weighted ver-
sion of the Erdős-Rényi model. We get P(A, W,α,β ) =
Z−1

G (α,β )e−H (A,W,α,β ) with the Hamiltonian

H (A, W,α,β ) = α

V∑

i< j

ai j + β

LA∑

i< j

wi j, (2)

where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function

ZG(α,β ) =
∑

C

e−H (A,W,α,β ) =
∑

A

e−α
∑V

i< j ai j ZC (β ), (3)

where ZC (β ) =
∏LA

i< j

∫ ∞
0 dwi je−βwi j = β−

∑V
i< j ai j = β−L is

the canonical partition function. The sum in Eq. (3) is
easily performed by noting that

∑
A e−α

∑V
i< j ai j β−

∑V
i< j ai j =∑V

L=0 nC (L)e−αLβ−L, where nC (L) =
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)
is the number of

binary configurations with exactly L links. We finally have

ZG(α,β ) =
V∑

L=0

(
V
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)
e−αL

βL
=

[
1 + e−α

β

]V

. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′
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
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

. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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(represented as solid black lines) are placed as particles on the lattice
sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.

This mapping allows formulating in a rigorous way the
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network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
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with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
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C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].
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cles) 〈L〉 ≡ 〈
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H (A, W,α,β ) = α
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where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function
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The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
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network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
possible adjacency matrices. The average operator is thus

∑

C

P(C) · ⇐⇒
∑

A

LA∏

i< j

∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
∏U

i< j to mean
∏

(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
−

∑
C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].

Global constraints. The simplest nontrivial ensemble is
obtained by imposing the mean total number of links (parti-
cles) 〈L〉 ≡ 〈

∑V
i< j ai j〉 = L∗ and the mean total weight (e.g.,

energy) 〈W 〉 ≡ 〈
∑LA

i< j wi j〉 = W ∗, where the average is de-

fined by the measure P(A, W). This is the weighted ver-
sion of the Erdős-Rényi model. We get P(A, W,α,β ) =
Z−1

G (α,β )e−H (A,W,α,β ) with the Hamiltonian

H (A, W,α,β ) = α

V∑

i< j

ai j + β

LA∑

i< j

wi j, (2)

where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function

ZG(α,β ) =
∑

C

e−H (A,W,α,β ) =
∑

A

e−α
∑V

i< j ai j ZC (β ), (3)

where ZC (β ) =
∏LA

i< j

∫ ∞
0 dwi je−βwi j = β−

∑V
i< j ai j = β−L is

the canonical partition function. The sum in Eq. (3) is
easily performed by noting that

∑
A e−α

∑V
i< j ai j β−

∑V
i< j ai j =∑V

L=0 nC (L)e−αLβ−L, where nC (L) =
(V

L

)
is the number of

binary configurations with exactly L links. We finally have

ZG(α,β ) =
V∑

L=0

(
V
L

)
e−αL

βL
=

[
1 + e−α

β

]V

. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′








LA∏

i< j

βe−βwi j



. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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FIG. 1. Mapping between an undirected graph GN and a lattice
gas on the corresponding triangular graph TN of KN (we report
the illustrative examples N = 4, 5). Only the existing links of GN

(represented as solid black lines) are placed as particles on the lattice
sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.

This mapping allows formulating in a rigorous way the
grand canonical ensemble of complex weighted networks. We
first define the configuration C of the undirected weighted
network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
possible adjacency matrices. The average operator is thus

∑

C

P(C) · ⇐⇒
∑

A

LA∏

i< j

∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
∏U

i< j to mean
∏

(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
−

∑
C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].

Global constraints. The simplest nontrivial ensemble is
obtained by imposing the mean total number of links (parti-
cles) 〈L〉 ≡ 〈

∑V
i< j ai j〉 = L∗ and the mean total weight (e.g.,

energy) 〈W 〉 ≡ 〈
∑LA

i< j wi j〉 = W ∗, where the average is de-

fined by the measure P(A, W). This is the weighted ver-
sion of the Erdős-Rényi model. We get P(A, W,α,β ) =
Z−1

G (α,β )e−H (A,W,α,β ) with the Hamiltonian

H (A, W,α,β ) = α

V∑

i< j

ai j + β

LA∑

i< j

wi j, (2)

where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function

ZG(α,β ) =
∑

C

e−H (A,W,α,β ) =
∑

A

e−α
∑V

i< j ai j ZC (β ), (3)

where ZC (β ) =
∏LA

i< j

∫ ∞
0 dwi je−βwi j = β−

∑V
i< j ai j = β−L is

the canonical partition function. The sum in Eq. (3) is
easily performed by noting that

∑
A e−α

∑V
i< j ai j β−

∑V
i< j ai j =∑V

L=0 nC (L)e−αLβ−L, where nC (L) =
(V

L

)
is the number of

binary configurations with exactly L links. We finally have

ZG(α,β ) =
V∑

L=0

(
V
L

)
e−αL

βL
=

[
1 + e−α

β

]V

. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′








LA∏

i< j

βe−βwi j



. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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FIG. 1. Mapping between an undirected graph GN and a lattice
gas on the corresponding triangular graph TN of KN (we report
the illustrative examples N = 4, 5). Only the existing links of GN

(represented as solid black lines) are placed as particles on the lattice
sites (represented as solid dots), and the weight of such links (given
by the lines’ thickness) corresponds to the generalized coordinates
of particles (given by the dots’ size). Note that two particles in the
lattice gas are neighbors if the corresponding links in GN have a node
in common.

This mapping allows formulating in a rigorous way the
grand canonical ensemble of complex weighted networks. We
first define the configuration C of the undirected weighted
network G as the pair (A, W): the set of existing links (i, j) ∈
LA ⊆ V with |LA| = L (i.e., the set of node pairs with ai j = 1)
and the set of weights {wi j}(i, j)∈LA associated with them—
meaning that only existing links (particles) contribute to the
statistics of the system. Therefore, the grand canonical proba-
bility distribution is P(C) = P(A, W) ≡ P(LA, {wi j}(i, j)∈LA ),
and the sum over configuration involves integrating out the
weights over all existing links and then summing over all
possible adjacency matrices. The average operator is thus

∑

C

P(C) · ⇐⇒
∑

A

LA∏

i< j

∫ ∞

0
dwi jP(LA, {wi j}(i, j)∈LA ), (1)

where to have a compact notation we use
∏U

i< j to mean
∏

(i, j)∈U | i< j and analogously
∑U

i< j to mean
∑

(i, j)∈U | i< j ,
with U being either LA or V . The information entropy as-
sociated with the probability measure P(C) is as usual S =
−

∑
C P(C) log P(C), and the shape of P(C) is found by max-

imizing S under given constraints. This connects us with the
framework of exponential random graph models [4,12,19].

Global constraints. The simplest nontrivial ensemble is
obtained by imposing the mean total number of links (parti-
cles) 〈L〉 ≡ 〈

∑V
i< j ai j〉 = L∗ and the mean total weight (e.g.,

energy) 〈W 〉 ≡ 〈
∑LA

i< j wi j〉 = W ∗, where the average is de-

fined by the measure P(A, W). This is the weighted ver-
sion of the Erdős-Rényi model. We get P(A, W,α,β ) =
Z−1

G (α,β )e−H (A,W,α,β ) with the Hamiltonian

H (A, W,α,β ) = α

V∑

i< j

ai j + β

LA∑

i< j

wi j, (2)

where α and β are the Lagrange multipliers related to L
and W , respectively. ZG(α,β ) is, in analogy with statistical
mechanics, the grand canonical partition function

ZG(α,β ) =
∑

C

e−H (A,W,α,β ) =
∑

A

e−α
∑V

i< j ai j ZC (β ), (3)

where ZC (β ) =
∏LA

i< j

∫ ∞
0 dwi je−βwi j = β−

∑V
i< j ai j = β−L is

the canonical partition function. The sum in Eq. (3) is
easily performed by noting that

∑
A e−α

∑V
i< j ai j β−

∑V
i< j ai j =∑V

L=0 nC (L)e−αLβ−L, where nC (L) =
(V

L

)
is the number of

binary configurations with exactly L links. We finally have

ZG(α,β ) =
V∑

L=0

(
V
L

)
e−αL

βL
=

[
1 + e−α

β

]V

. (4)

The equations determining the values of α and β are then

〈L〉 ≡ −∂α log ZG(α,β ) ≡ V
βeα + 1

= L∗, (5)

〈W 〉 ≡ −∂β log ZG(α,β ) ≡ V β−1

βeα + 1
= W ∗, (6)

from which we immediately find β−1 = W ∗/L∗ = w∗, i.e.,
the mean weight, and 1 + eα/w∗ = V/L∗. We thus see that
while β controls the mean weight (energy) of existing links
(particles), α controls the mean density of links (particles).4

Note that since between each pair of nodes there can be only
a single link (particle), the system can be represented with V
copies of a Fermi system having a single energy level ε = 1.
Under this analogy, log β plays the role of the inverse absolute
temperature 1/T , whereas −α is the ratio µ/T between the
chemical potential and temperature. Therefore we can write
ZG(µ, T ) = [1 + e−(ε−µ)/T ]V .

Remarkably, we can perform the parameter transformation
α′ = α + log β, so that α′ alone determines the mean link
density and, given this density, β alone sets the mean weight
of existing links: We have

P(A, W) =




V∏

i< j

e−α′ai j

1 + e−α′








LA∏

i< j

βe−βwi j



. (7)

This shows that individual link occupations are all mutually
independent events and that, given a binary configuration A,
the weight values of individual existing links are also indepen-
dent events. Besides, moments of link occupation and of link
weight probability distributions can be independently set in
order to satisfy the constraints. As explicitly shown below, this
property is due to the global nature of the constraints. Note

4See Ref. [20] for a recent model of social balance with a chemical
potential capturing the cost of link activation.
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N

i=1) = Z−1
G ({αi,βi}N

i=1)e−H (A,W,{αi,βi}N
i=1 ) with

H
(
A, W, {αi,βi}N

i=1

)
=

V∑

i< j

(αi + α j )ai j +
LA∑

i< j

(βi + β j )wi j,

(8)

ZG
(
{αi,βi}N

i=1

)
=

∑

C

e−H(A,W,{αi,βi}N
i=1 )

=
∑

A

e−
∑V

i< j (αi+α j )ai j ZC
(
{βi}N

i=1

)
, (9)

and ZC ({βi}N
i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-

tition function. Performing the sum over all binary configura-
tions leads to

ZG
(
{αi,βi}N

i=1

)
=

∑

A

e−
∑V

i< j (αi+α j )ai j

∏LA
i< j (βi + β j )

=
∑

A

LA∏

i< j

e−(αi+α j )

βi + β j

= 1+
∑

U⊂V

U∏

i< j

e−(αi+α j )

βi + β j
=

V∏

i< j

(
1+ e−(αi+α j )

βi + β j

)
,

(10)

where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)

〈si〉 ≡ −∂βi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

(βi + β j )−1

1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =




V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]





×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N
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G ({αi,βi}N

i=1)e−H (A,W,{αi,βi}N
i=1 ) with

H
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)
=
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)
=
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e−H(A,W,{αi,βi}N
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=
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i< j (αi+α j )ai j ZC
(
{βi}N

i=1

)
, (9)

and ZC ({βi}N
i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-

tition function. Performing the sum over all binary configura-
tions leads to

ZG
(
{αi,βi}N

i=1

)
=

∑
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e−
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i< j (αi+α j )ai j

∏LA
i< j (βi + β j )

=
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= 1+
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e−(αi+α j )

βi + β j
=

V∏

i< j

(
1+ e−(αi+α j )

βi + β j

)
,

(10)

where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)

〈si〉 ≡ −∂βi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

(βi + β j )−1

1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =




V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]





×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N

i=1) = Z−1
G ({αi,βi}N

i=1)e−H (A,W,{αi,βi}N
i=1 ) with

H
(
A, W, {αi,βi}N

i=1

)
=

V∑

i< j

(αi + α j )ai j +
LA∑

i< j

(βi + β j )wi j,

(8)

ZG
(
{αi,βi}N

i=1

)
=

∑

C

e−H(A,W,{αi,βi}N
i=1 )

=
∑

A

e−
∑V

i< j (αi+α j )ai j ZC
(
{βi}N

i=1

)
, (9)

and ZC ({βi}N
i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-

tition function. Performing the sum over all binary configura-
tions leads to

ZG
(
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=
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=

V∏
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(
1+ e−(αi+α j )

βi + β j

)
,

(10)

where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)

〈si〉 ≡ −∂βi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

(βi + β j )−1

1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =




V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]





×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N

i=1) = Z−1
G ({αi,βi}N
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=
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(
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)
, (9)

and ZC ({βi}N
i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-

tition function. Performing the sum over all binary configura-
tions leads to

ZG
(
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)
=

∑
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e−
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=
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= 1+
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e−(αi+α j )

βi + β j
=

V∏

i< j

(
1+ e−(αi+α j )

βi + β j

)
,

(10)

where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)

〈si〉 ≡ −∂βi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

(βi + β j )−1

1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =




V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]





×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N

i=1) = Z−1
G ({αi,βi}N

i=1)e−H (A,W,{αi,βi}N
i=1 ) with

H
(
A, W, {αi,βi}N

i=1

)
=
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(αi + α j )ai j +
LA∑

i< j
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i=1 )

=
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i< j (αi+α j )ai j ZC
(
{βi}N
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)
, (9)

and ZC ({βi}N
i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-

tition function. Performing the sum over all binary configura-
tions leads to
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=
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e−
∑V

i< j (αi+α j )ai j

∏LA
i< j (βi + β j )

=
∑

A

LA∏

i< j

e−(αi+α j )

βi + β j

= 1+
∑

U⊂V

U∏

i< j

e−(αi+α j )

βi + β j
=
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(
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,

(10)

where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)

〈si〉 ≡ −∂βi log ZG
(
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)

≡
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j( $=i)

(βi + β j )−1

1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =




V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]





×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N
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where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
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1
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≡
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Note that after some algebra we can rewrite P(A, W) as

P(A, W) =
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V∏
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e−[αi+α j+log(βi+β j )]ai j
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×


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LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N

i=1) = Z−1
G ({αi,βi}N

i=1)e−H (A,W,{αi,βi}N
i=1 ) with

H
(
A, W, {αi,βi}N

i=1

)
=

V∑

i< j

(αi + α j )ai j +
LA∑

i< j

(βi + β j )wi j,

(8)

ZG
(
{αi,βi}N

i=1

)
=

∑

C

e−H(A,W,{αi,βi}N
i=1 )

=
∑

A

e−
∑V

i< j (αi+α j )ai j ZC
(
{βi}N

i=1

)
, (9)

and ZC ({βi}N
i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-

tition function. Performing the sum over all binary configura-
tions leads to
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(
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)
,

(10)

where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)

〈si〉 ≡ −∂βi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

(βi + β j )−1

1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =




V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]





×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N
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and ZC ({βi}N
i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-

tition function. Performing the sum over all binary configura-
tions leads to
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=
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=
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(
1+ e−(αi+α j )
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)
,

(10)

where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)

〈si〉 ≡ −∂βi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

(βi + β j )−1

1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =




V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]





×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N

i=1) = Z−1
G ({αi,βi}N

i=1)e−H (A,W,{αi,βi}N
i=1 ) with

H
(
A, W, {αi,βi}N

i=1

)
=
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(αi + α j )ai j +
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i< j (αi+α j )ai j ZC
(
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)
, (9)

and ZC ({βi}N
i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-

tition function. Performing the sum over all binary configura-
tions leads to
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=
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=
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(
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,

(10)

where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)

〈si〉 ≡ −∂βi log ZG
(
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)

≡
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j( $=i)

(βi + β j )−1

1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =




V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]





×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N

i=1) = Z−1
G ({αi,βi}N
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where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N
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≡
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≡
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Note that after some algebra we can rewrite P(A, W) as

P(A, W) =
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×
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

 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N

i=1) = Z−1
G ({αi,βi}N

i=1)e−H (A,W,{αi,βi}N
i=1 ) with

H
(
A, W, {αi,βi}N
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=
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=
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=
∑
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, (9)
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i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-
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tions leads to
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where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
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≡
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Note that after some algebra we can rewrite P(A, W) as
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


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


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


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with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈
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j( $=i) ai j〉 = k∗
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and the mean strength or total weight of incident links 〈si〉 =
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∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
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(
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)
,

(10)

where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)

〈si〉 ≡ −∂βi log ZG
(
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l=1

)

≡
V∑

j( $=i)

(βi + β j )−1

1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =




V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]





×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N

i=1) = Z−1
G ({αi,βi}N

i=1)e−H (A,W,{αi,βi}N
i=1 ) with

H
(
A, W, {αi,βi}N

i=1

)
=
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(8)

ZG
(
{αi,βi}N

i=1

)
=

∑

C

e−H(A,W,{αi,βi}N
i=1 )

=
∑

A

e−
∑V

i< j (αi+α j )ai j ZC
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)
, (9)

and ZC ({βi}N
i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-

tition function. Performing the sum over all binary configura-
tions leads to
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=
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,
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where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)
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)

≡
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1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =




V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]





×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗
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and the mean strength or total weight of incident links 〈si〉 =
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∑LA

j( $=i) wi j〉 = s∗
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model [13], for which we use the acronym CECM. We have
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where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N
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≡
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Note that after some algebra we can rewrite P(A, W) as
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with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N

i=1) = Z−1
G ({αi,βi}N

i=1)e−H (A,W,{αi,βi}N
i=1 ) with

H
(
A, W, {αi,βi}N

i=1

)
=

V∑

i< j

(αi + α j )ai j +
LA∑

i< j

(βi + β j )wi j,

(8)

ZG
(
{αi,βi}N

i=1

)
=

∑

C

e−H(A,W,{αi,βi}N
i=1 )

=
∑

A

e−
∑V

i< j (αi+α j )ai j ZC
(
{βi}N

i=1

)
, (9)

and ZC ({βi}N
i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-

tition function. Performing the sum over all binary configura-
tions leads to

ZG
(
{αi,βi}N

i=1

)
=

∑

A

e−
∑V

i< j (αi+α j )ai j

∏LA
i< j (βi + β j )

=
∑

A

LA∏

i< j

e−(αi+α j )

βi + β j

= 1+
∑

U⊂V

U∏

i< j

e−(αi+α j )

βi + β j
=

V∏

i< j

(
1+ e−(αi+α j )

βi + β j

)
,

(10)

where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)

〈si〉 ≡ −∂βi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

(βi + β j )−1

1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =




V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]





×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
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where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
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≡
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≡
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 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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that as for equilibrium statistical mechanics with short-range
interactions, if the system is homogeneous, then local and
global measures coincide.

Local constraints. We now impose for each node i the mean
degree or number of incident links 〈ki〉 ≡ 〈

∑V
j( $=i) ai j〉 = k∗

i
and the mean strength or total weight of incident links 〈si〉 =
〈
∑LA

j( $=i) wi j〉 = s∗
i . This grand canonical ensemble can be

seen as the continuous version of the enhanced configuration
model [13], for which we use the acronym CECM. We have
P(A, W, {αi,βi}N

i=1) = Z−1
G ({αi,βi}N

i=1)e−H (A,W,{αi,βi}N
i=1 ) with

H
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A, W, {αi,βi}N
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)
=
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(αi + α j )ai j +
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(βi + β j )wi j,

(8)
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)
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=
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i< j (αi+α j )ai j ZC
(
{βi}N
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)
, (9)

and ZC ({βi}N
i=1) =

∏LA
i< j (βi + β j )−1 being the canonical par-

tition function. Performing the sum over all binary configura-
tions leads to
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=
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e−
∑V

i< j (αi+α j )ai j

∏LA
i< j (βi + β j )

=
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=
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(
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)
,

(10)

where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,

〈ki〉 ≡ −∂αi log ZG
(
{αl ,βl}N

l=1

)

≡
V∑

j( $=i)

1
1 + (βi + β j )eαi+α j

= k∗
i , (11)

〈si〉 ≡ −∂βi log ZG
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)

≡
V∑

j( $=i)

(βi + β j )−1

1 + (βi + β j )eαi+α j
= s∗

i . (12)

Note that after some algebra we can rewrite P(A, W) as

P(A, W) =
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V∏

i< j

e−[αi+α j+log(βi+β j )]ai j

1 + e−[αi+α j+log(βi+β j )]
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×




LA∏

i< j

(βi + β j )e−(βi+β j )wi j



 = π (A)q(WLA ),

(13)

with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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where
∑

U⊂V is the sum over all distinct nonempty subsets
U of V (that is, U is a generic set of possible links of the
network), while the empty subset U = ∅ contributes for 1.
The values of the multipliers are found through the constraints
equations for all 1 ! i ! N ,
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with π (A) being the unconditional probability distribution
of the binary configuration A, and q(WLA ) the probability
density function of the weights of the existing links (i.e., the
set LA) conditional to A. The form of q(WLA ) is exponential,
differently from the geometric and Poissonian forms obtained
in Refs. [13,15], respectively, due to the continuous nature of
the weights.

At this point some considerations are in order. (I) Both
π (A) and q(WLA ) factorize into the product of single link
probability distributions: Occupations of different links are
independent events and, conditional to the binary configu-
ration, the weights of different links are also independent.
(II) However, the parameters defining single link probabili-
ties and weights are entangled, which means that local link
densities cannot be set independently of local weights, be-
cause of the simultaneous conservation of mean node de-
grees and strengths. Such an interplay helps to clarify the
role of nodes (and in particular of node heterogeneity) in
terms of the interaction between links (particles). Indeed,
only if the node properties are homogeneous, such as when
we impose global constraints, these topological interactions
disappear: The system is spatially homogeneous in terms of
the density of particles and of energy, which can be thus
set independently. The statistical mechanical case analogous
to a heterogeneous network situation instead arises when we
constrain the local mean particle and energy densities n(x) and
ε(x) to be heterogeneous, i.e., both dependent on x. This case
is typically not encountered in ordinary equilibrium statistical
mechanics, with the possible exception of glassy disordered
systems and long-range interactions. (III) If we look at the
generic link occupation probability

pi j = e−[αi+α j+log(βi+β j )]

1 + e−[αi+α j+log(βi+β j )]
(14)

from the viewpoint of statistical mechanics, we can again
interpret the single link problem as a single state local
Fermi system with energy level ε = 1, inverse local temper-
ature T −1

i j = log(βi + β j ), and local chemical potential µi j =
−Ti j (αi + α j ). However, at stake with the homogeneous case,
different links are not independent copies of the same prob-
lem, but topologically interacting single-level Fermi systems
with different local temperatures and chemical potentials—
which are mutually related by local heterogeneous constraints.
We thus have ZG({µi j, Ti j}N

i, j=1) =
∏V

i< j [1 + e−(ε−µi j )/Ti j ].
Separability of binary and weighted statistics. We finally

explore the separability of local link densities and weight
distributions also for the case of local constraints [24]. To this
end we introduce a two-step entropy maximization procedure,
the separable enhanced configuration model (SECM):

(1) We first constrain the mean node degrees only, obtain-
ing the probability of the binary configuration A as for the
standard configuration model [4],

π (A) =
V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )
. (15)

(2) Then, for each A, we constrain the mean node
strengths, obtaining the probability density of the link weights
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conditional to A (coinciding with that of the CECM),

q(WLA ) =
LA∏

i< j

(βi + β j )e−(βi+β j )wi j . (16)

The SECM is thus defined by the constraint equations for
all 1 ! i ! N ,

〈ki〉 ≡
V∑

j( %=i)

1

1 + eα′
i+α′

j
= k∗

i , (17)

〈si〉 ≡
V∑

j( %=i)

(βi + β j )−1

1 + eα′
i+α′

j
= s∗

i , (18)

and by the joint probability distribution

P(A, W) =




V∏

i< j

e−(α′
i+α′

j )ai j

1 + e−(α′
i+α′

j )








LA∏

i< j

(βi + β j )e−(βi+β j )wi j



.

(19)

By definition, in the SECM the parameters defining link
probabilities and weights are disentangled, so that the local
statistics for these quantities can be set independently. In the
CECM instead the parameters controlling the link weights
also play a role in determining the connection probabilities—
see Eq. (14). Indeed, in the latter case, a link (i, j) with a
high expected weight (βi + β j → 0) is forced to be realized
(pi j → 1), and vice versa a link with a low expected weight
(βi + β j → ∞) becomes unlikely (pi j → 0). Owing to the
interplay of its parameters, the CECM better captures the
dispersion of higher-order properties of the network with
respect to the SECM, as shown in Fig. 2. However, in the
CECM connection probabilities, the contribution of param-
eters {βi}N

i=1 is logarithmic with respect to that of parame-
ters {αi}N

i=1: Weighted properties in general give only small

perturbations to the Lagrange multipliers of node degrees.
As such, CECM and SECM define similar link probabilities
and expected weights (Fig. 2), and are almost interchangeable
for all practical purposes—the advantage of SECM being
an easier numerical implementation. Finally, it is noteworthy
that CECM and SECM coincide when, for all 1 ! i ! N ,
the constraints on strengths and degrees satisfy s∗

i = γ k∗
i for

constant γ . Indeed, in this case βi = β0, and thus we have
the exact correspondence α′

i ≡ αi + 1
2 log(2β0). This is for

instance the HFBN case of Fig. 2.
Final remarks. Ensembles of random graphs with given

structural properties such as those discussed here typically
find a twofold application [1,25]. On one hand, they can be
taken as null models for networks and thus used to assess
the significance of patterns observed in real networked sys-
tems. On the other hand, when details on the microscopic
structure of a real network are unknown, they can be used to
reconstruct the most likely network configuration. The grand
canonical ensemble introduced here represents, both in its
rigorous version and separable approximation, a very versatile
tool for these tasks in the most general class of networks
with weights assuming continuous values.5 For instance, the
fitness-induced configuration model [23] used to reconstruct
networks without degree information is easily implemented
in our grand canonical ensemble formulation [26]. More
generally, the mathematical framework introduced in this
Rapid Communication opens the possibility to study (possibly
multilayer [27]) network ensembles defined by higher-order
terms and interactions of generalized coordinates, introducing
an appropriate grand canonical Hamiltonian and then using
the toolbox of statistical mechanics for particle systems.
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Comparison between exact CECM and approximated SECM
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Conclusions

• Constrained random models of graphs are fundamental tools for reconstruction 
• of networks with partial information and statistical validation of properties of real 

networks

• They can be formulated in strict analogy with statistical physics of particle systems in 
particular spaces/lattices (triangular graphs), building typical Fock spaces for the 
configurations of a lattice gas

• Heterogeneity of topological and weight constraints implies entanglement between 
these properties

• Disentangled approximation works is much simpler to solve and very often works well

• Finally, this approach open a new perspective on the mathematical approach to this 
kind of networks and graphs: we can map constrained random network ensembles 
into statistical physical particle systems
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