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Central questions

* How to build maximally random graph ensembles satisfying some global or local
topological/metric constraints (e.g. degree distribution)?

e Can statistical physics tools useful for this task?

Two fundamental applications

Reconstruction or modelling of a real
network from partial topological
information (e.g. degree sequence)

Examples: reconstruction of financial or
ecological networks from incomplete
information (e.g. whole topology by
knowing only node degrees)

Null models for the statistical validation of
the high order properties of a real network

Examples: statistical validation of high
order motifs of a real network vs a
randomized model sharing only low order
properties (e.g. validation of clustering
properties by imposing only degrees)




Many social and biological networks, characterized by epidemic diffusion, have
interactions/contacts that are only partially known

Reconstructing statistical properties of the network from partial information is one of
the outstanding problems in the statistical physics of networks

Example: nodes = financial institutions
edges = various types of financial ties, e.g. loans or derivative contracts
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Example: validation of motifs in the bipartite .
country-product network in different years with LX'mOtliQ W-motifs M-motifs
respect degree conserving randomized
bipartite network.

Detecting early signs of 2007-8 financial crisis
in real economy (fast increase of randomization
in immediately previous years)

F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Scientific
Reports 6, 30286 (2016)
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Reconstruction or constrained randomization methods

‘ Real network G* |
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Degree constraints

Shannon entropy maximization
and likelihood maximization

§=-3 P(G)InP(G)
£(0)=InP(G*|0)

Exponential Random Graphs (ERG)



Information theory: Maximum Entropy approach

{C,} = set of graph properties that we want to constrain (e.g. we know their values for
a real network) = sufficient statistics

ERG defines the maximally random ensemble (O of graphs with N nodes compatible
with the constraints (in average): Canonical Ensemble in Stat. Phys.

(C,)=Y.C,(G)P(G)=C, Va (1)

G = generic graph of the ensemble with N nodes

P(G) = measure on the ensemble = it is found by maximizing the entropy

S(G) = E P(G)log P(G) with the constraints (1) =
G
P(G)= %exp[—H (G)] where H = EGGCQ (G) with 6, = Lagrange multipliers

J. Park and M.E.J. Newman, Phys. Rev. E, 70, 066117 (2004)



Example: binary directed network

If {C.} = {ki", ke'}i=1,...,N = H(G)=%; (6;"k/"+ 6,04t k,°ut)

{6.n, 6.°u*} are fixed by the knowledge of <k.(inout)>

<k,(inout)> = [.*(inout) (Maximum likelihood if single configuration values)

xoutxin
[ i . .
p... = - Where x,(in°ut) = exp[-0,(n°ut)] = in - out fitness of node i
=] out _.in
1+ X" x;
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May we do the analogy with statistical physics stricter?

“In presenting our
results we face the
challenge that some
algorithms produce an
ensemble

of networks while
others produce a single
matrix. This makes a
straightforward
comparison

difficult. Fortunately the
Cimi method is the clear
winner between the
ensemble methods”




Let us go deeper in the Jayne’s formulation of statistical
mechanics: heterogeneous weighted undirected networks

A= symmetric adjacency matrix
a,=a,= 0,1 withi,j=1,.,N
k. = E a, = degree
j(=D)
W =symmetric weight matrix
w, =w , =continuous or discrete weights

S = (z)wlj =strength
J(#1

We want to build the maximally random ensemble of weighted graphs
with (k;) = k; and (s;) = s; forall i=1,...,N




Standard approach

The knowledge of the matrix W implies the knowledge of A if we interpret
w;; = 0 as a non existing link, i.e. a;; = 0

!

1. One can think to define a probability measure P(W) over all possible matrices W

2. Maximise S[P(W)] = =Xy P(W)log P(W) with the constraints (k;) = k; and
(s;) = s; foralli =1,...,N to find P(W)

However, since (k;) = k; is a singular constraint in S[P(W)] when w;; are continuous
variables, it is possible only in the discrete case w;; = n;;wowith n;; = 0,1,2, ...

Enhanced Configuration Model

D. Garlaschelli and M. I. Loffredo, Phys. Rev. Lett. 102, 038701 (2009).
R. Mastrandrea, T. Squartini, G. Fagiolo, and D. Garlaschelli, New J. Phys. 16, 043022 (2014).

How to treat the case of continuous and defined in an arbitrary (left bounded) interval?




Jayne’s formulation of the Grand Canonical Ensemble for Hamiltonian systems

C = (N, x) with x € RO

Hy (x)=Hamiltonian of N particles ° — —
Gl ‘ = |
LA - °.»9:é o 098; Oi“
Z =z doNx % 1A e
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e y :yoo ey
P(C) = P(N, x) maximises — = —
s 100 (1
S¢ = S=Zc PN, D)[aN + BHy(x) +7] vl vl

where
S[P] =-Y-P(N,x)logP(N,x)

with constraints (N) = N*and (Hy) = E

P(N,x) = Zg'(a, B) exp[—aN — BHy (x)]

Zg(a,B)=Yx-1"NZc(B,N)

Zc(B,N)= [ dx®Ne=BHN(X)

(Ny =" P(N, )N = _OlogZo(a. B) _ -
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The same approach can be adopted for weighted random graphs G with N nodes

We can build a similar Fock space of configurations with variable number of links

Roughly speaking A plays the role of the number of particles N and the weights W define
the energy function Hy, : existing links

More precisely,
The graph G is mapped into a configuration of a lattice gas embedded in an appropriate
space:

* Each link of G corresponds to an occupied edge of K, , the complete graph of N nodes.

 We can define a lattice using the line graph of Ky, also called the triangular graph T, of
order N: each edge of K, corresponds to a vertex (site) on the lattice Ty

* Therefore each link of G is mapped into a particle of a gas on the lattice Ty

A. Gabrielli, R. Mastrandrea, G. Caldarelli, G. Cimini, Grand canonical ensemble of
weighted networks, Phys. Rev. E 99, 030301(R) (2019)




Mapping between complete graphs K, and triangular graphs T,

K3 K4 K6

In Ty number of nodes M=N(N-1)/2 and 2(N-2) first n.n. for each node.
Only first and second neighbours: diameter = 2



We map each weighted graph configuration into a configuration of a lattice gas
with an internal continuous variable (energy/magnetization)

T
G4 2 ¢

N=4




 The binary adjacency matrix A of the network fixes the number L and the
N(N-1)
= |V|] on TN,

* The weights matrix W defines the internal coordinates of the existing particles.

positions of the gas particles [1 < L <

Therefore we can exactly map the Maximum Constrained Entropy method for the
definition of the weighted graphs ensemble into the definition of the Grand

Canonical Ensemble for a lattice gas on T

P(C) =P(A,W) = P(La, {wij}i jrecs)

La € Vwith |La| = L (i.e., the set of node pairs with a;; = 1)

La 00
Y PC) Z]_[/O dw;iP(La, {wij}i, jyecs)
- .

A i<j

The GC ensemble is defined by the maximization of

Sc = = Xc P(CO)log P(C) = X; 4{0;(C))



Simplest case: weighted Erdos-Renyi graphs

Global (homogeneous) constrained averages

(L) = (X aj) =LF (W)= (T2 wy) =W

i<j

PAW,a,B)= Zz'(a, Ble HAW.¢.H)

% La
HA,W, «a, B) =Olzaij+:32wij

i<j i<j

4 —alL —aV
Zg(a, B) = Ze‘H(AW“ P = Ze @Y1 7 (B) = Z Cj) e,BL = [1 + %]

L=0

Ze(B) = T112 Jo~ dwize™Ps = p=Xiei = g

Conditional weights distr.

Homogeneity implies decoupling

Vv

(L) = =0, log Zg(a, B) = =L*, By assuming o’ = o + log

Be* + 1
Va1

*

(W) = —8,3 10gZG(Ol, ,3) =

i<j

=W V —aa]
Be® + 1 PA,W) = ]_[ 1_[,36 Buwij
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Continuous Enhanced Configuration Model (CECM)

Local (heterogeneous) constrained averages (i=1,...,N)

) = (e aip) = K& {si) = (i wii) = o7

PAALW, {ai, BN = Zg ' (fai, iYLy e AW e i)

H(A W, {o;, Bi})) Z(a, +a)ay; +Z(ﬁ,+ﬁ,)w,,

i<j i<j

Z N 4 e~ (@ita))
G({Olia pi i:I) — 1_[ (1+m)

i<j

[ [Bi + BeFriPimn | = m(A)g(We,)

i<j

% —[a;+a j+log(Bi+B)]a;;
e i j i J tj
P(Aa W) — |:1_[ 1 + e—[ai+aj+10g(,3i+ﬁj)]

i<j

e laita;+log(Bi+p))]

Entanglement of topology and internal variables

Pij = 1 + e—loita;+log(Bi+B))]



Constraints and the effect of heterogeneity

y
(k;) = —0a, logZG({Otl, ,31}1 1) (2#: [+ 5, +,3 e =k
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The existence of different links (particles) are independent events, and the weights of
existing ones are also mutually independent,

BUT
heterogeneity (disorder) makes in principle impossible to set topological features of
the network independently of the weights distribution.

E.g. a large constrained strength of a node forces the existence of links pointing to it




What happens if we impose independently topological and weight constraints?

Separated Enhanced Configuration Model (SECM)

Two steps entropy maximization

1) First we impose topological constraints on a topological entropy S[m(A4)]

V —(Oll{‘l-Ol; )Clij

_ (Y ‘
ki) = (Xjoen @ij) =K wp - mA) =] ] 1 et
i<j

2) For each adjacency matrix we maximise the conditional entropy

L
(8i) = <X:JE'(A;@') wij) =s; wm= qW,) = H(,Bi + Bj)e” Prtbiwi
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4 1
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Comparison between exact CECM and approximated SECM
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Conclusions

Constrained random models of graphs are fundamental tools for reconstruction
of networks with partial information and statistical validation of properties of real
networks

They can be formulated in strict analogy with statistical physics of particle systems in

particular spaces/lattices (triangular graphs), building typical Fock spaces for the
configurations of a lattice gas

Heterogeneity of topological and weight constraints implies entanglement between
these properties

Disentangled approximation works is much simpler to solve and very often works well
Finally, this approach open a new perspective on the mathematical approach to this

kind of networks and graphs: we can map constrained random network ensembles
into statistical physical particle systems
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