Chemical properties emerging from structural disorder in biology

Giovanni La Penna, National research council (CNR)

Dec 11th 2019

Overview: cell degeneration because of undesired catalysis

- Copper (and iron) & reactive oxygen species (ROS): Neurodegeneration, oxidative stress & aging
- **2** Cu-A β and oxidation
- 3 Methods: altruistic metadynamics
- 4 Emerging chemical properties
- 5 Acknowledgements

sites.google.com/view/wwwgiovannilapennait

Chapt. 10.4 CNS Aging and Alzheimer's Disease Jack C. Waymire (Univ. Texas / Houston)

Neurodegeneration: neurons die

Chapt. 10.4 CNS Aging and Alzheimer's Disease Jack C. Waymire (Univ. Texas / Houston)

Neurodegeneration: cleaning brain with no cell replacement

J. Kipnis Science, (2016)

Neurodegeneration: hallmarks of neuron death

Selkoe D.J., Neuron, (1991)

Neurodegeneration: $A\beta$ aggregates

J.I. Gujiarro et al., *PNAS*, (1998)

J.L. Jiménez et al., EMBO J., (1999)

Negative charge Positive charge Histidine=avid of Cu Target of oxidation ("weak" electrons)

D₁ A E F R₅ H₆ D S G Y₁₀ E V H₁₃ H₁₄ Q K₁₆ L V F F A E D₂₃ V G S N K₂₈ G A I I G L M₃₅ V G G V V₄₀ I A

Neurodegeneration: pores in membrane

Quist A. et al., PNAS, (2005)

In amyloid deposits (hallmarks of Alzheimer's disease):

- Zn 1mM
- Cu 0.4 mM
- $\bullet~80\%$ of Zn in the body is protein-bound
- 20% is in pre-synaptic vescicles (ready for synaptic activity)
- 8% of Cu (9 mg) is in the brain (2% of body weight)

K. Barnham, A.Bush Chem. Soc. Rev. 2014

C. Cheignon et al., Redox Biol. 2018

Giovanni La Penna, National research council (CNR) (Cl

Dec 11th 2019 10 / 30

C. Cheignon et al., Redox Biol. 2018

C. Cheignon et al., Redox Biol. 2018

C. Cheignon et al., Redox Biol. 2018

Cu, A β & ROS: one result from DECI 13th

Dec 11th 2019 12 / 30

э

(日)

S. Furlan et al., JBIC, 2010

nac

▶ ∢ ⊒

N 4 E

S. Furlan et al., JPCB, 2012

Dec 11th 2019 12 / 30

nac

(4) (2) (4) (4) (4)

G. La Penna et al., JPCB, 2013

Dec 11th 2019 12 / 30

nac

-

A. Mirats et al., PCCP, 2015; K. Reybier et al., Angew. Chem. 2016

Giovanni La Penna, National research council (CNR) (Cl

Dec 11th 2019 12 / 30

nac

-

Cu & ROS: the ligand modulates the reduction potential

G. La Penna et al., *JPCB*, 2013; *Mol. Sim*, 2014/ *JCP*, 2014; Springer 2019 *CN*=Cu coordination number

Cu & dioxygen activation: can be a smooth process

How to combine N independent simulations in one unique statistical ensemble 1) choose a collective variable, CV (CV=energy, as in MC and MD, is not useful for macromolecules);

- 2) obtain a uniform density in CV: n(CV) = const
- \rightarrow let one trajectory to explore a domain different from the other trajectories
- ightarrow "le traiettorie non devono pestarsi i piedi l'una con l'altra"
- But trajectories must communicate \rightarrow detailed balance
- \rightarrow unique statistical ensemble
- \rightarrow metadynamics and metastatistics
- 3) if the probability generating the uniform n(CV) is known:
- $\rightarrow \text{reweighting}$
- \rightarrow from metastatistics to thermodynamic ensemble.

• • = • • = •

Giovanni La Penna, National research council (CNR) (Cl

M-IDPs

Dec 11th 2019 16 / 30

naa

Giovanni La Penna, National research council (CNR) (Cl

Dec 11th 2019 17 / 30

Methods: dimers & tetramers

э

990

(日)

Methods: dimers & tetramers

Giovanni La Penna, National research council (CNR) (Cl

M-IDPs

Dec 11th 2019 20 / 30

э

Methods: sampling quantum-mechanical properties (emerging chemistry)

Giovanni La Penna, National research council (CNR) (Cl

Dec 11th 2019 21 / 30

Giovanni La Penna, National research council (CNR) (Cl

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ Dec 11th 2019 22/30

Giovanni La Penna, National research council (CNR) (Cl

Dec 11th 2019 22 / 30

э

990

Giovanni La Penna, National research council (CNR) (Cl

Dec 11th 2019 22 / 30

э

590

$$\Delta E_2 = -5 \text{ kJ/mc}$$

$$\Delta E_3 = -4 \text{ kJ/mc}$$

$$\Delta E_4 = -9 \text{ kJ/mc}$$

distance	reactant	intermediate	product
N(Asp 1)-Cu	2.14	2.12	2.09
O(Asp 1)-Cu	2.36	2.37	2.08
N δ 1(His 6)-Cu	2.03	2.05	2.04
Ne2(His 13)-Cu	2.09	2.11	2.06
O _{ax} -Cu	2.82	2.03	2.55

Giovanni La Penna, National research council (CNR) (Cl

Dec 11th 2019 23 / 30

э

990

・ロト ・ 一下・ ・ 日 ・ ・ 日

$$\Delta E_2 = -5 \text{ kJ/mo}$$
$$\Delta E_3 = -4 \text{ kJ/mo}$$
$$\Delta E_4 = -9 \text{ kJ/mo}$$

distance	reactant	intermediate	product
N(Asp 1)-Cu	2.14	2.12	2.09
O(Asp 1)-Cu	2.36	2.37	2.08
N δ 1(His 6)-Cu	2.03	2.05	2.04
Ne2(His 13)-Cu	2.09	2.11	2.06
O _{ax} -Cu	2.82	2.03	2.55

Giovanni La Penna, National research council (CNR) (Cl

Dec 11th 2019 23 / 30

э

990

(日)

$$\Delta E_2 = -5 \text{ kJ/mo}$$
$$\Delta E_3 = -4 \text{ kJ/mo}$$
$$\Delta E_4 = -9 \text{ kJ/mo}$$

distance	reactant	intermediate	product
N(Asp 1)-Cu	2.14	2.12	2.09
O(Asp 1)-Cu	2.36	2.37	2.08
N δ 1(His 6)-Cu	2.03	2.05	2.04
Ne2(His 13)-Cu	2.09	2.11	2.06
O _{ax} -Cu	2.82	2.03	2.55

Giovanni La Penna, National research coun<u>cil (CNR) (C</u>I

Э

990

メロト メタト メヨト メヨト

$$\Delta E_2 = -5 \text{ kJ/mol}$$

$$\Delta E_3 = -4 \text{ kJ/mol}$$

$$\Delta E_4 = -9 \text{ kJ/mol}$$

distance	reactant	intermediate	product
N(Asp 1)-Cu	2.14	2.12	2.09
O(Asp 1)-Cu	2.36	2.37	2.08
N δ 1(His 6)-Cu	2.03	2.05	2.04
Ne2(His 13)-Cu	2.09	2.11	2.06
O_{ax} -Cu	2.82	2.03	2.55

Э

990

イロト イヨト イヨト イヨト

A β and Cu-A β oligomers

 $R = \frac{SASA(AB)}{[SASA(A)+SASA(B)]}$ SASA=solvent accessible surface area

э

590

Cu-A β & oxidation: Tyr-Tyr crosslinks

Cu-A β & oxidation: Tyr-Tyr crosslinks

Giovanni La Penna, National research coun<u>cil (CNR)</u> (Cl

э

Cu-A β & oxidation: Tyr-Tyr crosslinks

э

990

▶ < ∃ ▶</p>

Cu-A β , oxidation & aggregation: a transient enzyme (oxidase)

Neutralization

Giovanni La Penna, National research council (CNR) (Cl

э

(日)

э

▶ < ⊒ ▶

Image: A image: A

Dec 11th 2019 29 / 30

э

< □ > < 同 > < 回 > < 回 > < 回

э

(日)

People involved: statistics, QM & HPC

Mai Suan Li, IF PAN (PL)

Poznań supercomputing & networking center (PL)

Paolo Giannozzi, University of Udine (I)

> Carlo Cavazzoni, CINECA (I)

