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Outline of the talk 
• Driven tracer particle in a lattice gas 

• Nonlinear response of an inertial                                          
particle in a steady flow  
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Nonlinear response of a driven tracer

Active microrheology: tracer particle (TP) 
driven by an external force F

Rheological properties in soft matter from the microscopic motion of colloidal tracers 
Puertas & Voigtmann (2014), Squires & Mason (2010)

Applications: complex fluids, gels, glasses,  
living cells, granular systems,…

Characteristic curve: Force-Velocity relation, V vs F



Nonlinear response of a driven tracer

Active microrheology: tracer particle (TP) 
driven by an external force F

Rheological properties in soft matter from the microscopic motion of colloidal tracers 
Puertas & Voigtmann (2014), Squires & Mason (2010)

Applications: complex fluids, gels, glasses,  
living cells, granular systems,…

Nonlinear response regime:  increasing the applied  
force can reduce the probe’s drift velocity  
in the force direction

Negative differential mobility

Characteristic curve: Force-Velocity relation, V vs F



Driven tracer in a hard-core lattice gas 

(N-1) hard-core particles, 
symmetric exclusion process, 
average waiting time 

Tracer driven by a force 
asymmetric exclusion process, 
average waiting time ⌧

⌧⇤

F

p⌫ =
e(�/2)F ·e⌫

P
µ e

(�/2)F ·eµ

Force-velocity relation?

Density ⇢ =
N

V

⌫ = ±1, . . . ,±d F = Fe1

Tracer jump probabilities, local detailed balance

F

Infinite lattice
Confined geometries



P (RTP , ⌘; t)

Decoupling approximation and analytic solution

Master Equation for

@tP (RTP , ⌘; t) = LbathP + LTPP

tracer position

obstacle configuration⌘
RTP



P (RTP , ⌘; t)

Decoupling approximation and analytic solution

Master Equation for

@tP (RTP , ⌘; t) = LbathP + LTPP

tracer position

obstacle configuration⌘
RTP

h⌘(RTP + �)⌘(RTP + e⌫)i ⇡ h⌘(RTP + �)ih⌘(RTP + e⌫)i
Decoupling approximation

� 6= e⌫for
V (F ) ⌘ dhRTP · e1i

dt
=

1

2d⌧⇤
(A1 �A�1)



P (RTP , ⌘; t)

Decoupling approximation and analytic solution

Master Equation for

@tP (RTP , ⌘; t) = LbathP + LTPP

tracer position

obstacle configuration⌘
RTP

h⌘(RTP + �)⌘(RTP + e⌫)i ⇡ h⌘(RTP + �)ih⌘(RTP + e⌫)i
Decoupling approximation

� 6= e⌫for

A⌫ = 1 +
2d⌧⇤

⌧
p⌫


1� ⇢� ⇢(A1 �A�1)

detC⌫

detC

�
Nonlinear system of equations

Solution for                for arbitrary values of the parametersV (F )

V (F ) ⌘ dhRTP · e1i
dt

=
1

2d⌧⇤
(A1 �A�1)



Comparison with Monte Carlo numerical simulations

(a)  
(b) 
(c) 
(d)

⇢ = 0.05
⌧⇤ = 10
⇢ = 0.999

⇢ = 0.5

d = 2, ⌧ = 1

Good agreement in a wide range of parameters



Argument for NDM at low density

V (F ) =

mean distance

mean time of free flight + mean trapping time

1/⌧trap = 3/(4⌧⇤) + ✏/⌧
tracer steps in a  
transverse direction

obstacle steps 
away 

✏ = 2e��F/2 ⌧ 1



Argument for NDM at low density

Physical mechanism: a large force 
reduces the flight time between two  
consecutive encounters with bath particles; 
increases the escape time from traps  
created by surrounding obstacles

For        large enough (“slow” obstacles), traps are sufficiently  
long lived to slow down the TP when F is increased NDM

⌧⇤

V (F ) =

mean distance

mean time of free flight + mean trapping time

1/⌧trap = 3/(4⌧⇤) + ✏/⌧
tracer steps in a  
transverse direction

obstacle steps 
away 

✏ = 2e��F/2 ⌧ 1



⇢
Criterion for negative differential mobility

⌧⇤/⌧Parameter space: time scales and density

Physical mechanism: coupling between density and time scales ratio



Fluctuations and diffusion coefficient
d

dt
�2
X(t) = �2�

⌧

⇥
p1ege1(t)� p�1ege�1(t)

⇤

+
�2

⌧

�
p1 [1� ke1(t)] + p�1

⇥
1� ke�1(t)

⇤ 
Variance of the tracer

egr ⌘ h(Xt � hXti)(⌘r � h⌘ri)i

D ⌘ 1

2d
lim
t!1

d

dt
�2
X(t)

h⌘r⌘r0i ' h⌘rih⌘r0i
h�Xt⌘r⌘r0i ' h⌘rih�Xt⌘r0i+ h⌘r0ih�Xt⌘ri

Correlation between tracer  
and bath particles

Diffusion coefficient

Decoupling approximation
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PART II: nonlinear response of an inertial tracer
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U0 = 1, L = 1, ⌧⇤ = L/U0 = 1

Model: inertial tracer in a steady cellular flow, with external force 
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Thermal noise

Divergenceless velocity field

Characteristic time of the field

⌧Stokes time

hv
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i = F ⌧ + hU
x

(x, y)iStationary velocity



Force-velocity relation

⌧ = 10

Negative differential mobility



Force-velocity relation
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“Phase diagram”



Conclusions

• Lattice gas model 

• Analytical approach 

• Negative differential mobility  

• Enhanced diffusivity induced by crowding 

• Inertial particles in steady laminar flows    

• Absolute negative mobitliy  

» Mobility and diffusion in thermodynamic uncertainty 

relations  

» Tracer dynamics on fractal lattices 

Nonlinear response of a driven tracer can reveal anomalous behaviors
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Active Ornstein Uhlenbeck Particle

ẇ
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V (F ) =

mean distance

mean time of free flight + mean trapping time

Argument for NDM at low density

Strong external force

Force-velocity  
relation:

p1 = 1� ✏ p�1 = O(✏2) pµ 6=±1 =
✏

2d� 2

✏ = 2e��F/2 ⌧ 1



V (F ) =

mean distance

mean time of free flight + mean trapping time

Argument for NDM at low density

Strong external force

Force-velocity  
relation:

⌧/[⇢(1� ✏)]

1/⇢Mean distance between two obstacles

Mean duration of free flight

p1 = 1� ✏ p�1 = O(✏2) pµ 6=±1 =
✏

2d� 2

✏ = 2e��F/2 ⌧ 1



V (F ) =

mean distance

mean time of free flight + mean trapping time

Argument for NDM at low density

Strong external force

Force-velocity  
relation:

p1 = 1� ✏ p�1 = O(✏2) pµ 6=±1 =
✏

2d� 2

1/⌧trap = 3/(4⌧⇤) + ✏/⌧
tracer steps in a  
transverse direction

obstacle steps 
away 

⌧/[⇢(1� ✏)]

1/⇢Mean distance between two obstacles

Mean duration of free flight

✏ = 2e��F/2 ⌧ 1



V (F ) =
1� ✏

⌧ + 4⇢(1� ✏) ⌧⇤

3+4✏⌧⇤/⌧

Argument for NDM at low density

Criterion for NDM ⌧⇤/⌧ & ⇢�1/2



V (F ) =
1� ✏

⌧ + 4⇢(1� ✏) ⌧⇤

3+4✏⌧⇤/⌧

Argument for NDM at low density

Criterion for NDM

Physical mechanism: a large force 
reduces the flight time between two  
consecutive encounters with bath particles; 
increases the escape time from traps  
created by surrounding obstacles

For        large enough (“slow” obstacles), traps are sufficiently  
long lived to slow down the TP when F is increased NDM

⌧⇤

⌧⇤/⌧ & ⇢�1/2



Generalized Einstein relation

µ = µ
E

⌘ 1

T
D

x

Einstein relation

⌧ = 10



Generalized Einstein relation

µ = µ
E

⌘ 1

T
D

x

µ0 =
1

T

[D
x

(F = 0)� C

x�(F = 0)]

C

x�(F ) = lim
t!1

1

2Tt
h[x(t)� x(0)]�(t)i

c,F

�(t) =

Z
t

0
U

x

[x(s), y(s)]ds

Einstein relation

Generalized Einstein relation
Baiesi, Maes, Wynants J.Stat.Phys. (2010)

Nonequilibrium extra-term

⌧ = 10



Generalized Einstein relation

µ = µ
E

⌘ 1

T
D

x

µ0 =
1

T

[D
x
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x�(F = 0)]

C

x�(F ) = lim
t!1
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2Tt
h[x(t)� x(0)]�(t)i

c,F

�(t) =

Z
t

0
U

x

[x(s), y(s)]ds

Einstein relation

Generalized Einstein relation
Baiesi, Maes, Wynants J.Stat.Phys. (2010)

Nonequilibrium extra-term

NDM and ANM interpreted as 
the consequence of C

x� > D
x

Basu & Maes J. Phys. A (2014)

⌧ = 10



Possible physical mechanism
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(a)Typical trajectory for D0 = 0

The motion is realized along 
preferential “channels” 
Both inertia and noise activate 
random transitions between the channels



Possible physical mechanism
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Typical trajectory for D0 = 0

The motion is realized along 
preferential “channels” 
Both inertia and noise activate 
random transitions between the channels

The tracer is pushed from  
region A (downstream channel) to 
region B (upstream channel)

F=0.04

F=0.065

F=0.09
With a smaller or larger force, the particle avoids the adverse  
region B and continues its run along downstream channels



P (RTP , ⌘; t)

Decoupling approximation and analytic solution

Master Equation for

Tracer velocity V (F ) ⌘ dhRTP · e1i
dt

=
1

2d⌧⇤
(A1 �A�1)

@tP (RTP , ⌘; t) = LbathP + LTPP

tracer position

obstacle configuration⌘
RTP



P (RTP , ⌘; t)

k(�; t) =
X

RTP ,⌘

⌘(RTP + �)P (RTP , ⌘; t)

Decoupling approximation and analytic solution

Master Equation for

Density profile  
around the tracer

Tracer velocity V (F ) ⌘ dhRTP · e1i
dt

=
1

2d⌧⇤
(A1 �A�1)

A⌫ ⌘ 1 +
2d⌧⇤

⌧
p⌫(1� k(e⌫))

occupation variable

@tP (RTP , ⌘; t) = LbathP + LTPP

tracer position

obstacle configuration⌘
RTP



P (RTP , ⌘; t)

k(�; t) =
X

RTP ,⌘

⌘(RTP + �)P (RTP , ⌘; t)

Decoupling approximation and analytic solution

Master Equation for tracer position

obstacle configuration

Density profile  
around the tracer

Tracer velocity

⌘
RTP

V (F ) ⌘ dhRTP · e1i
dt

=
1

2d⌧⇤
(A1 �A�1)

A⌫ ⌘ 1 +
2d⌧⇤

⌧
p⌫(1� k(e⌫))

occupation variable

2d⌧⇤@tk(�; t) =
X

µ

�
rµ � ��,eµr�µ

�
k(�; t)

+
2d⌧⇤

⌧

X

⌫

p⌫h[1� ⌘(RTP + e⌫)]r⌫⌘(RTP + �)i

@tP (RTP , ⌘; t) = LbathP + LTPP



Transition rates out of equilibrium

Tracer velocity V (F ) ⌘ dhRTP · e1i
dt

=
1

2d⌧⇤
(A1 �A�1)

A⌫ = 1 +
2d⌧⇤

⌧
p⌫


1� ⇢� ⇢(A1 �A�1)

detC⌫

detC

�

Decoupling approximation General solution

Significant dependence on the choice of transition probabilities?



Transition rates out of equilibrium
General form of transition rates k(x,y) =  (x,y)eS(x,y)/2�(K.C.)

 (x,y) =  (y,x) � 0 Symmetric (kinetic) part

Antisymmetric partS(x,y) = �S(y,x)



Transition rates out of equilibrium
General form of transition rates k(x,y) =  (x,y)eS(x,y)/2�(K.C.)

 (x,y) =  (y,x) � 0 Symmetric (kinetic) part

Antisymmetric part

Local detailed balance imposes a constraint on the antisymmetric part

S(x,y) / entropy flux

S(x,y) = �S(y,x)

S(x,x+ e⌫) = �F · e⌫



Transition rates out of equilibrium
General form of transition rates k(x,y) =  (x,y)eS(x,y)/2�(K.C.)

 (x,y) =  (y,x) � 0 Symmetric (kinetic) part

Antisymmetric part

Local detailed balance imposes a constraint on the antisymmetric part

Arbitrary choice for the symmetric part

S(x,y) / entropy flux

S(x,y) = �S(y,x)

S(x,x+ e⌫) = �F · e⌫

 (x,x+ e⌫) = 1/⌧ [e�F/2 + e��F/2 + 2]Leitmann & Franosch,  
Bénichou et al.

Basu & Maes

independent of F in the transverse direction

{  (x,x+ e⌫) = 1/4⌧ for ⌫ = ±2

 (x,x+ e⌫) = 1/2⌧ [e�F/2
+ e��F/2

] for ⌫ = ±1



Role of the transition probabilities

p⌫ =
e(�/2)F ·e⌫

P
µ e

(�/2)F ·eµ

p" = p# =
1

4
independent of F

One obstacle can create a long lived trap No trapping effect at linear order  
in the density

(Leitmann & Franosch, Bénichou et al.)
(Basu & Maes)



Role of the transition probabilities

p⌫ =
e(�/2)F ·e⌫

P
µ e

(�/2)F ·eµ

p" = p# =
1

4
independent of F

One obstacle can create a long lived trap No trapping effect at linear order  
in the density

(Leitmann & Franosch, Bénichou et al.)
(Basu & Maes)

Different choices                significant macroscopic differences

Warning: how to define microscopic transition rates out of equilibrium? 

(Baiesi et al. PRE (2015))



⇢
Criterion for negative differential mobility

⌧⇤/⌧Parameter space: time scales and density

NDM is robust, but the phase chart is different

p⌫ =
e(�/2)F ·e⌫

P
µ e

(�/2)F ·eµ
p" = p# =

1

4
independent of F



Absolute negative mobility

⌧ = 1
Force-velocity relation for

the GER is verified, showing strong negative and positive  
differential mobilities just before and just after the minimum 



P (RTP , ⌘; t)

k(�; t) =
X

RTP ,⌘

⌘(RTP + �)P (RTP , ⌘; t)

Decoupling approximation and analytic solution

Master Equation for tracer position

obstacles configuration

@tP (RTP , ⌘; t) =
1

2d⌧⇤

dX

µ=1

X

r 6=RTP�eµ,RTP

[P (RTP , ⌘
r,µ; t)� P (RTP , ⌘; t)]

+
1

⌧

dX

µ=1

pµ{[1� ⌘(RTP )]P (RTP � eµ, ⌘; t)

� [1� ⌘(RTP + eµ)]P (RTP , ⌘; t)}

Density profile

Tracer velocity

⌘
RTP

V (F ) ⌘ dhRTP · e1i
dt

=
1

2d⌧⇤
(A1 �A�1)

A⌫ ⌘ 1 +
2d⌧⇤

⌧
p⌫(1� k(e⌫))



PART II: nonlinear response of an inertial tracer

Sedimentation, dispersion of pollutants, rain formation in clouds… 

Steady cellular flow

Preferential concentration

Inertia implies non-trivial deviations  
from the trajectory of fluid particles

Strongly inhomogeneous distributions

Transport properties of particles of non-negligible mass in fluids

Bec (2005); De Lillo, Cecconi, Lacorata, Vulpiani (2008)


