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Describing a fluid: from micro to macro scale

Scale Equations Unknowns
Microscopic (Å) Newton x(t), v(t)

Mesoscopic (nm − µm) Boltzmann (BE) f (x, v, t)
Macroscopic (> mm) Navier-Stokes ρ, u, T

Lattice Boltzmann Methods exploit the dynamic at the
mesoscopic scale to provide a correct description of the fluid at the

macroscopic level

Boltzmann Equation

Lattice Boltzmann
Methods

Navier Stokes Eq.
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Boltzmann equation

I Boltzmann equation with BGK collisional model:

∂t f + v · ∇f = Ω(f , f eq) = −
1
τ

(f − f eq)

I Relaxation to Maxwell-Boltzmann distribution:

f eq ∝ exp
(
−

m
2kBT

(v − u)2
)

I Macroscopic quantities as the first moments of f

ρ(x, t) =
∫

f (x, v, t)dv

u(x, t) =
1

ρ(x, t)

∫
vf (x, v, t)dv

v particle velocity u macroscopic fluid velocity τ relaxation time ρ fluid density
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Lattice Boltzmann Methods
Velocity Discretization
Employ a Gauss Quadrature rule to replace v with a (small) set of velocities ci
such that:

I ci connects two sites in a Cartesian grid (perfect streaming)
I Equality holds for the following:

ρ(x, t) =
∫

f (x, v , t)dv =
∑

i

fi (x, t)

ρ(x, t)u(x, t) =
∫

f (x, v , t)vdv=
∑

i

fi (x, t)c i

Continuum Discrete
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RLBM: Relativistic Lattice Boltzmann Method
Relativistic extension of Lattice Boltzmann Methods to simulate relativistic
hydrodynamics

I Preserves all advantages of classic LB methods
I Perfect streaming: measures not affected by interpolation schemes
I Equipped to simulate fluids in 1, 2, 3 spatial dimensions

x -3-2-10123 y

-3-2-1012
3

z

-3

-2

-1

0

1

2

3

x -2-1012 y

-2
-1

0
1

2

z

-2

-1

0

1

2

Daniele Simeoni SMFT 2019 Bari - December 11, 2019 8 / 24



Relativistic Boltzmann Equation
I Relativistic Boltzmann Equation with Anderson-Witting collisional model:

pα
∂f
∂xα

= Ω(f , f eq) = −
pµUµ
c2τ

(f − f eq)

I Maxwell Juettner distribution:

f eq ∝ exp
(
−

pµUµ
kBT

)
I Macroscopic quantities as the first moments of f

Nα = c
∫

fpα
dp
p0

Tαβ = c
∫

fpαpβ
dp
p0

I Relativistic Parameter ζ = mc2

kBT :

ultra-relativistic mildly relativistic non-relativistic
ζ � 1 ζ ∼ 1 ζ � 1

pα particle four-momentum Uα macroscopic four-velocity τ relaxation time
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RLBM: Relativistic Lattice Boltzmann Method

1. Expand f eq in a basis of orthonormal polynomials J(k) up to an order N capable of recovering the
hydrodynamic quantities of interest:

f eq(pµ,Uµ, t) = ω

N∑
k=0

a(k)(Uµ, t) · J(k)(pµ)

2. Using the following Gauss Quadrature rule∫
ω(p)J(k)(pµ)J(`)(pµ)

dp
p0

= δ`k =
∑

i

wi J
(k)(pµi )J(`)(pµi )

determine a discrete set of momenta pµi that preserves the hydrodynamic quantities of interest:

Nα = c

∫
fpα

dp
p0

=
∑

i

wi fi p
α
i Tαβ = c

∫
fpαpβ

dp
p0

=
∑

i

wi fi p
α
i pβi

3. Derive the discrete relativistic Boltzmann equation via an Euler scheme:

fi (x + vi ∆t, t + ∆t)− fi (x, t) = −∆t
pµi Uµ
p0τ

(fi − f eq
i )
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Numerical Validation: The Riemann Problem

I Commonly used
benchmark in
hydrodynamics

I It has a
semi-analytical
solution in the
ultra-relativistic &
non-dissipative case

I Possible to compare
against other
numerical methods
in the
mildly-relativistic /
dissipative case
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A few comparisons
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Connection between scales

I Chapman-Enskog’s (CE) and Grad’s expansions connect mesoscopic to
macroscopic scale

I They link macroscopic transport coefficients λ, µ, η to the kinetic ones, in
our case the relaxation time τ

λ = c2kBnf1(ζ)τ η = Pf2(ζ)τ µ = Pf3(ζ)τ

I They lead to divergent results in relativistic theories

CE analysis
Multi-scale expansion based on weak departure from local equilibrium:

f = f eq + φ(x, t)f eq with φ(x, t) ∼ O(Kn)1 Kn = λ

L

Grad’s method
Expansion of the particle distribution f in Hilbert space of the momentum vector
pα around the equilibrium f eq

f = f eq(1 + aαpα + aαβpαβ + ...)
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Analytical comparison between the two methods: η
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Numerical comparison between the two methods: η
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Comparison between the two methods: η, µ, λ
The analysis has been extended to all transport coefficients in all spatial dimensions
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Applications: Graphene

I Free electrons in graphene behave like a plasma of charged particles with a
photon-like relativistic dispersion relation: Ek = ~vf k

I Electron-electron collisions dominant over electron-phonon scattering even at
room temperature

I Experimental observation of anomalous voltage drop near current injectors which
originate the formation of whirlpools in the electron flow

I Theoretical study of pre-turbulent regimes at low Reynolds
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Outlook: Quark Gluon Plasma
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Sum up and Conclusions

Sum up:

I Developed a fast numerical scheme for the simulation of
Relativistic Hydrodynamics

I Validated the code with the Riemann problem Benchmark
I Created a firm connection between the kinetic and the

hydrodynamic layer via the Chapmann-Enskog expansion
I Correctly reproduced experiments of electron flows in graphene

Future steps:

I Introduce external magnetic field in graphene simulations to
check for early occurrence of turbulent regimes

I Start using RLBM for Quark Gluon Plasma simulations
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