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Solid / Liquid transition

The basic statement: liquids flow and solids do not

> Force ->

L L

I A

the system flows — fluid

Force >0 =

the system does not flow — solid



Maionese 1s an example of “soft glass™:
two liquids with peculiar surface forces between them.

> Force *

A L

Force <F.= the system does not flow — solid

Force >Fc= the system tflows — liquid

F. 1s known as vield stress
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Kolmogorov flow

Forcing
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Plastic events are irreversible topological changes of the interface
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Motivation

We are interested to study the statistical properties of avalanche dynamics.
In principle there are at least three quantities to consider:

- avalanche sizes S

avalanche duration time tg
 Inter event time between two successive avalanche t;

There exist extensive and
detailed studies on the
probability distribution of
P(S) and P(tg) showing
clear scaling behavior:

d
S = Energyrelease ~ /0|d—j\dt
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Motivation

Much less 1s known on ti. Why?

Several reasons:

- the statistical properties of inter event time distribution depend critically on

how you define an avalanche;
- there exists almost no theory for the inter event time distribution;

Physically, P(ti) measures the statistical properties of the system relaxation time.
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Motivation

Here we consider scale invariance in the most general form, namely by the
studying the probability distribution of the inter event time distribution occurring
for avalanche of size given by some threshold S+ :

P(t:|5+)

[{f P(ti|S+) retains the same functional form upon increasing S+, then the system shows
scale invariance.

(Warning: this does not mean that Ti and S+ are necessarily correlated as it occurs for S
and Tk).

Remark: if P(ti|S+) is exponential then this is consistent with the idea that events
occur at random uncorrelated times, i.e. t; is not an interesting quantity.

Mean field theories (deppining transition, SOC, ...) assume an exponential
distribution for P(t;). For this reason, most experiments and/or numerical
simulations do not report information on P(t)). The situation 1s more
complicated for sismic events (earthquakes).
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Motivation

Since the original paper by Bak, Christensen, Danon Scanlon (PRL 2002), P(ti|S+)
has been the subject of many investigations related to the inter event time distribution
for earthquake events.

Here we focus on Corral results (PRL

2004) who showed that P(tr) for

earthquakes 1s not exponential looking at

earthquake 1n two different ways:

~single fault;

~on the whole Earth, independently of
earthquake location.
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Motivation

We may reasonably assume that earthquakes refers to systems where the packing
ratio @ 1s extremely large. There 1s no experiment and/or numerical investigation

which shows how P(ti|S+) depends on @.

The above observations lead to two different questions:

- 1s there any evidence that P(ti|S+) changes upon increasing ¢ ?
- 1f P(ti|S+) 1s not exponential, 1s that true that scale invariance is observed?

We want to answer these questions and for this purpose we consider 3 different

systems: 2 different experiments with granular systems and 1 numerical
simulations of emulsion
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Granular experiment Granular rotary experiment
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A closer look of the avalanche scaling law from the
LBE simulations at “low” and “large” packing ratio
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Interevent time distribution for “low” packing ratio
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Inter event time distribution “large” packing ratio
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What about scale invariance?



Scale invariance for LBE simulation
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More on scale invariance

«  We consider two regions 1n space (BOX 1 and BOX 2).

- We chose two regions where events are uncorrelated.

Warning:

uncorrelated avalanche events do not imply short range correlation in the strain
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More on scale invariance

interevent time distribution large packing ratio
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P(t)

Earthquake inter event time statistics “whole earth”
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A theoretical approach

stress versus time (lab measurements)
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o(t) Energy released = S
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A theoretical approach

tiand S are statistical independent quantities

Let us consider P(¢;|Ss) with S, = SA and A > 1
Then ti depends on A and ti(\) grows with A

Now let us consider

X(\) = Energy released S
~ Energy stored t2

We can write

PIX(\)[S]dS = / dt, P (1) P(S)0 <§ _ X)



Assuming scale invariance

1 1
Let us assume P(t;) ~ o P|S] ~ o
" 14dS 1 3 «a
We obtain ~ P|X|S]dS YT g gr—T 5
The scale transformation S — S\ implies
- 7 ' — 7

If H>0 then for increasing A we release more energy than stored

If H<O0 then for increasing A we store more energy than released
The physics does not change only 1f H=0

=3 — 2T

Prediction 1n agreement with experiments, ecarthquake
observations and numerical sitmulations !



Summary and conclusions:

» 1nter event time distribution 1s an interesting quantity to look at in
avalanche dynamics.

- scale invariance holds for large enough packing ratio

-+ scale 1mvariance holds 1mm a “wider” formulation (different
regions)

- possible non trivial consequences for earthquake events

Open questions:

> 1s there any transition?
1s there any theoretical framework?

> how 1t 1s possible to compute P(ti) from “first principles”?



