The PTOLEMY experiment: an opportunity for nuclear physics

Laura E. Marcucci

University of Pisa

INFN-Pisa

International Conference on Cosmic Neutrino Background Detection and Dark Matter Searches with PTOLEMY

The "basic model" of nuclear theory

- Goal of nuclear theory: comprehensive description of nuclear systems
 - NN scattering data: thousands of exp. data $(d\sigma/d\Omega$...)
 - Spectra and static properties: binding energies, radii, mag. mom. ...
 - Nucleonic matter EoS: neutron stars ...
- Inputs
 - Degrees of freedom (nucleons, pions, ...)
 - Many-body interactions between the constituents

$$H = \sum_{i=1}^{A} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + \sum_{i < j=1}^{A} v_{ij} + \sum_{i < j < k=1}^{A} V_{ijk} + \dots$$

One-body Two-body Three-body
NN NNN

• Electroweak current operators

$$J^{EW} = \sum_{i=1}^{A} j_i + \sum_{i< j=1}^{A} j_{ij} + \sum_{i< j< k=1}^{A} j_{ijk} + \dots$$

One-body Two-body Three-body

Few-nucleon systems: the *ab-initio* approach

- Ab-initio method → obtain X by solving the relevant quantum many-body equations, without any uncontrolled approximation
- <u>controlled</u> approximations are allowed (expansion on a certain basis)
 → converged results = <u>ab-initio</u> results
- comparison of *ab-initio* results obtained with different *ab-initio* methods

 \rightarrow benchmark calculations

• comparison of ab-initio results with data

 \rightarrow test of *H* & *J*^{EW}

 \rightarrow predictions for "un-measurable" observables

How few is "few" $? \Rightarrow$ Few-body \leftrightarrow *ab-initio* methods

A = 3 is few!

An ab-initio approach: the Hyperspherical Harmonics (HH) Method

Bound states

$$\Psi^{JJ_z} = \sum_{\mu} c_{\mu} \Psi_{\mu}$$

- $\Psi_{\mu} \rightarrow$ known functions (spin-isospin HH functions)
- Rayleigh-Ritz var. principle: $\delta_c \langle \Psi^{JJ_z} | H E | \Psi^{JJ_z} \rangle = 0$ \Rightarrow Solve for E and c_{μ}

Convergence of the method: $B(^{3}H)$ with first 3 spin-isospin channel – N3LO

 \rightarrow bound/scattering states A \leq 4, low-energy scattering states (astrophysical interest)

The nuclear Hamiltonian: a little bit of hystory

Nuclear interaction: $V_{NN} + V_{NNN}$

- Until ~ 20 years ago: phenomenological potentials
 - $V_{NN} + V_{NNN}$ semi-phenomenological
 - V_{NN} with \simeq 40 parameters fitted to A=2 data $\rightarrow \chi^2/{
 m datum} \simeq 1$
 - V_{NNN} with 2-3 parameters fitted to B(A = 3, 4)
 - ⇒ no simple connection to QCD ⇒ no clear relation for *H* & J^{EW}

• Then ... chiral effective field theory (χEFT)

Chiral Effective Field Theory (χ EFT): a <u>short</u> summary

- QCD \rightarrow quarks and gluons ("high-energy" d.o.f.)
- Nuclear physics \rightarrow nucleons and pions ("low-energy" d.o.f.)
- EFT ightarrow processes with $E\simeq p\simeq m_\pi\ll \Lambda_\chi\sim 1~{
 m GeV}$
 - * "h-e" d.o.f. integrated out \rightarrow contact interactions with "l-e" d.o.f. and low-energy constants (LECs) obtained from experiment
 - \star perturbative theory: matrix elements $\propto {\cal O}(p/\Lambda_\chi)^
 u$
- $\chi \text{EFT} \rightarrow \text{EFT}$ with spontaneous breaking of QCD's χ -symmetry
- Regularization with cutoff function \rightarrow Λ \simeq 414, 450, 500, 600 MeV

Disadvantage: limited to processes with $E \sim 1-2~m_\pi$

Advantages

- nuclear force "hierarchy" ightarrow accurate $V_{NN}+V_{NNN}$
- consistent framework for *H* & *J*^{EW} (add external EW field among the d.o.f.)

Machleidt and Sammarruca, Physics Scripta **91**, 083007 (2016) \Rightarrow each • = LECs (20-30) \rightarrow fit to NN data

Laura E. Marcucci (Univ. Pisa & INFN-Pisa) PTOLEMY: an opportunity for nucl. phys.

Yellow=NLO; Red=N2LO; Blue=N3LO

The J^{EW} operator

EW operators:
$$\rho^{\gamma}$$
, \mathbf{j}^{γ} ; $\rho^{V/A}$, $\mathbf{j}^{V/A}$

$$\mathsf{CVC} \Rightarrow \rho^V/\mathbf{j}^V \to \rho^\gamma/\mathbf{j}^\gamma$$

Power counting for \mathbf{j}^{γ}

$$\begin{array}{c|c} \mathcal{O}(Q^{-2}) & \downarrow_{2} & \mathbf{j}^{(-2)} \propto [e_{N}(1)(\mathbf{p}_{1}' + \mathbf{p}_{1}) + i\mu_{N}(1)\sigma_{1} \times \mathbf{q}] \times \delta(\mathbf{p}_{2}' - \mathbf{p}_{2}) + 1 \leftrightarrow 2 \\ \end{array}$$

$$\begin{array}{c|c} \mathcal{O}(Q^{-1}) & \downarrow_{2} & - & \downarrow_{2} & - & \\ \mathcal{O}(Q^{0}) & \bullet_{2} & \bullet_{2} & \bullet_{2} & \\ \end{array}$$

$$\begin{array}{c|c} \mathbf{v} & \mathbf{v}$$

Static EM properties for A = 2, 3 nuclei

	PhenApp	χ EFT	Exp.
$r_c(d)$ [fm]	2.119	2.126(4)	2.130(10)
Q(d) [fm ²]	0.280	0.2836(16)	0.2859(3)
$r_c(^{3}\text{He})$ [fm]	1.928	1.962(4)	1.973(14)
<i>r_m</i> (³ He) [fm]	1.909	1.920(7)	1.976(47)
$r_c(^{4}\text{He})$ [fm]	1.639	1.663(11)	1.681(4)

Marcucci et al., JPG 43, 023002 (2016)

$\chi \text{EFT} \longrightarrow$ theoretical error!

Power counting for \mathbf{j}^{A}

- O(Q¹) not shown: loop and 2π-exchange contributions (hughly diagrams!)
- Only one LEC d_R

$$d_R = -rac{M_N}{4\Lambda_\chi g_A} c_D + rac{1}{3} M_N(c_3 + 2c_4) + rac{1}{6}$$

Gårdestig and Phillips, PRL **96**, 232301 (2006) Gazit *et al.*, PRL **103**, 102502 (2009) Marcucci *et al.*, PRL **121**, 049901(E) (2018)

 fit c_D and c_E (in V_{NNN}) to B(A = 3) and Gamow-Teller m.e. of tritium β-decay (GT_{Exp})

⇒ PREDICTIONS for other observables

Predictions in the weak sector

³H β -decay

$$(1+\delta_R)t_{1/2}f_V = rac{K/G_V^2}{\langle \mathbf{F}
angle^2 + f_A/f_V g_A^2 \langle \mathbf{GT}
angle^2}$$

- $g_A = 1.2723$; $\delta_R = 1.9\%$ outer radiative corrections; $t_{1/2}$ =half-life; $f_{V/A}$ = Fermi functions
- Exp. values: $K/G_V^2 = (6144.5 \pm 1.9)$ s & $(1 + \delta_R)t_{1/2}f_V = (1134.6 \pm 3.1)$ s
- $\langle \mathbf{F} \rangle = \langle {}^{3}\mathrm{He} || \sum_{j} \tau_{j,+} || {}^{3}\mathrm{H} \rangle \simeq 0.999$ very stable from theory $\Rightarrow \langle \mathbf{GT} \rangle_{EXP}$

Polarized ³H β -decay: $\overrightarrow{^{3}H} \rightarrow {}^{3}He + e^{-} + \overline{\nu}_{e}$

$$\frac{d\omega}{dE_e \, d\Omega_e \, d\Omega_\nu} \propto \xi \, \left[1 + a \, \vec{\beta} \cdot \hat{\nu} + \hat{P} \cdot (A\vec{\beta} + B\hat{\nu})\right]$$
• \hat{P} =pol. versor; $\hat{\nu} = \mathbf{p}_\nu / E_\nu$; $\vec{\beta} = \mathbf{p}_e / E_e$; Calculation:
• $\xi \sim \langle \mathbf{F} \rangle^2 + f_A / f_V g_A^2 \langle \mathbf{GT} \rangle^2$; $a\xi \sim \langle \mathbf{F} \rangle^2 - f_A / f_V g_A^2 \langle \mathbf{GT} \rangle^2 / 3$ but NO DATA!
• $A\xi$ and $B\xi$: other combinations of $\langle \mathbf{F} \rangle$ and $\langle \mathbf{GT} \rangle$

Muon capture on light nuclei: deuteron

Muon capture on light nuclei: ³He (I)

•
$$\mu^{-} + {}^{3}\text{He} \rightarrow n + d + \nu_{\mu}$$
 (20%) [poor data]
• $\mu^{-} + {}^{3}\text{He} \rightarrow n + n + p + \nu_{\mu}$ (10%) [poor data]
• $\mu^{-} + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu}$ (70%)
 $\mu^{-} + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu}$: two hyperfine states, $P(f, f_{z}) = (1; \pm 1, 0)$ and (0; 0)

$$\begin{aligned} \cos\theta &= \hat{\mathbf{z}} \cdot \hat{\mathbf{q}} \leftarrow \text{momentum transfer of the lepton pair} \\ \frac{d\Gamma}{d(\cos\theta)} &d = \frac{1}{2} \Gamma_0 \left[1 + A_v P_v \cos\theta + A_t P_t \left(\frac{3}{2} \cos^2\theta - \frac{1}{2} \right) + A_\Delta P_\Delta \right] \\ P_v &= P(1,1) - P(1,-1) \\ P_t &= P(1,1) + P(1,-1) - 2P(1,0) \\ P_\Delta &= P(1,1) + P(1,-1) + P(1,0) - 3P(0,0) \equiv 1 - 4P(0,0) \end{aligned}$$

Muon capture on light nuclei: ³He (II)

• Experimental data

•
$$\Gamma_0^{EXP} = 1496(4) \text{ s}^{-1}$$

• $A_v^{EXP} = 0.63 \pm 0.09 \text{ (stat.)}_{-0.14}^{+0.11} \text{ (syst.)}$

Ackerbauer *et al.*, PLB **417**, 224 (1998) Souder *et al.*, NIMA **402**, 311 (1998)

- Theoretical predictions
 - Γ₀=1492(19) s⁻¹
 - $A_v = 0.5435(6)$
 - $A_t = -0.355(1); A_\Delta = -0.101(2)$

Marcucci et al., PRL 108, 052502 (2012); Erratum PRL 121, 049901(E) (2018)

Bottom line

- Theory seems to be ok, but ...
- Need more and more accurate data in the weak sector to be sure!
- PTOLEMY can play a role in this game

Laura E. Marcucci (Univ. Pisa & INFN-Pisa) PTOLEMY: an opportunity for nucl. phys. LNGS, November 27, 2018 15 / 1

An example in the EM sector: the $p + d \rightarrow {}^{3}\text{He} + \gamma$

- interesting for BBN: larger rate \Rightarrow smaller D/H primordial abundance
- on-going measurement by the LUNA Collab. at LNGS
- *ab-initio* study \leftarrow initial p + d scattering state (only HH method available)

PArthENoPE \rightarrow D/H abundance: D/H|_{TH} = (2.46 ± 0.06) × 10⁻⁵ $\Omega_b h^2 \rightarrow$ Planck 2015 & standard N_{eff} vs. D/H|_{Exp}=(2.53 ± 0.04) × 10⁻⁵

Marcucci et al., PRL 116, 102501 (2016)

Collaboration with LUNA: theory used for simulation/rate estimate but needs to be tested!

- Goal of nuclear theory: comprehensive description of nuclear systems
- Few-body nuclei (A = 3) ightarrow ab-initio methods
- \rightarrow test the theoretical framework (H & J^{EW})
- ightarrow give solid predictions + theoretical uncertainty (χ EFT)
- But few (poor) data in the weak sector

The PTOLEMY experiment: a GREAT opportunity for nuclear physics

THANK YOU!

P on-T ecorvo O bservatory for L ight, E arly-universe, M assive-neutrino Y ield

SPARES

The PTOLEMY reaction: $\nu_e + {}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \mathrm{e}^{-}$

1.8

Preliminary "related" studies

• $\nu_e + d \rightarrow e^- + p + p$

Baroni and Schiavilla, PRC **96**, 014002 (2017) in χ EFT

$$\overline{\nu_e} + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \mathrm{e}^{+}$$

Golak *et al.*, PRC **98**, 015501 (2018) in PhenApp

Laura E. Marcucci (Univ. Pisa & INFN-Pisa) PTOLEMY: an opportunity for nucl. phys.

21 / 1