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TES-based microcalorimeters
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• Superconductor biased in its transition ⇒ strongly temperature-dependent resistance;

• ”Self-biased region” ⇒ the power dissipated in the device is constant with the applied bias;

• Electrothermal feedback: if RTES ↑ ⇒ ITES ↓ ⇒ PJ ↓ ⇒ cooling the device back to its equilibrium
state in the self-biased region;

• Low resistance: read out with SQUIDs (Superconducting Quantum Inte erence Devices);

• TES operates in series with the input coil L which is inductively coupled to the SQUID:

• Change in TES current ⇒ change in the input ux to the SQUID;

• SQUIDs enable multiplexing ⇒ read out of many sensors using a
smaller number of ampli er channels
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Multiplexing of TES Arrays
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Time Domain Multiplexing Frequency Domain Multiplexing Code Domain Multiplexing

• Time Domain Multiplexing (TDM)
• TES outputs are switched by applying the bias current to one SQUID ampli er at a time;
• The outputs of many SQUIDs are added into one output channel;

• Frequency Domain Multiplexing (FDM)
• TESs are voltage biased with a sinusoidal bias voltage;
• The output signal is modulated in amplitude following the TES resistance transient;
• The output of the TESs is connected to a single SQUID;
• The signal from each detector can be retrieved by using standard demodulation technique;

• Code Domain Multiplexing (CDM)
• The signals from all the SQUID ampli ers are summed with di erent Walsh-matrix polarity pa erns;
• The original signals can be reconstructed from the reverse process;
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The need for speed

• Many current and future applications for TESs require:
• signi cantly faster pulse response
• large arrays (Npixels > 1000)

• Detectors at free-electron laser facilities
⇒ pulse response fast enough

to match repetition rates of the source;

• Neutrino endpoint (HOLMES) need enormous statistics:
⇒ large number of pixel (>1000);
⇒ high activity per pixel (∼ 300 event/sec/pixel);
⇒ faster response to avoid pile-up e ects

(that can disto spectra)

• These applications need pulse times below 200µs;

• A rapid pulse rise can facilitate the pile-up rejection but an adequate read out bandwidth is a
fundamental requirement;

• The classical multiplexing schemas (TDM, CDM and FDM) provides a limited multiplexing factor
(< 40) and limited bandwidth (few megahe z) on single detector.
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Impo ant constraints on bandwidth

• A multiplexing technology needs to o er all of:
• Low noise;
• High sample rate;
• High slew rate;
• Low crosstalk;

• Together, these requirements
dictate the bandwidth per channel;

• For the global system: f (total)
BW >> ∆f (ch)

BW · Nch

• The most mature multiplexing technology at present
is Time-Division Multiplexing (TDM);

• Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of
approximately 32-40 sensors on one readout line;

• Increasing the size of microcalorimeter arrays (Nch > 1000) with high fast pulse response
requires the development of a new read out technology;
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Microwave -SQUID multiplexing
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• dc-biased TES inductively coupled to a dissipationless -SQUID;

• -SQUID inductively coupled to a high-Q superconducting λ/4 resonator;

• Change in TES current ⇒ change in the input ux to the SQUID;

• Change in the input ux to the SQUID ⇒ change of resonance frequency and phase;

• Each micro-resonator can be continuously monitored by a probe tone;
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Microwave -SQUID multiplexing (cont.)
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• By coupling many resonators to a single microwave feedline it is possible to pe orm the
readout of multiple detectors

• Sensors are monitored by a set of sinusoidal probe tones (frequency comb);

• At equilibrium, the resonator frequencies are matched to the probe tone frequencies, and so
each resonator acts as a sho to ground;

• Large multiplexing factor (> 100) and bandwidth, currently limited by the digitizer bandwidth.
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Microwave -SQUID multiplexing: ux-ramp modulation
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• A ux-ramp modulation is applied by a common line inductively coupled to all SQUIDs

• The signal is reconstructed by comparing the phase shi caused by the interaction of the
radiation in the TES, with the free oscillation of the SQUID, when the TES is not biased;

• Each ramp acquisition represents a sample in the reconscruted phase signal: fsample = framp

• Necessary resonator bandwidth per ux ramp: ∆fBW ≥ 2 nΦ0 framp

• To avoid cross talk ⇒ spacing between resonances S > ∆fBW

• To avoid disto ions ⇒ framp > 10/τrise (potentially reduced by a factor 2);

• Minimum number of ux cycles per ramp: nΦ0 = 2 (possibly 1.1 with di erent ramp shape).
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The Multiplexing chip

The core of the microwave multiplexing is the multiplexer chip
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• Superconducting 33 qua er-wave coplanar waveguide (CPW) microwave resonators;

• 200 nm thick Nb lm deposited on high-resistivity silicon (ρ > 10 kΩ·cm);

• Each resonator has a trombone-like shape with slightly di erent length;

• The SQUID loop is a second order gradiometer consisting of four parallel lobes;

• Wiring in series di erent 33-channel chips with di erent frequency band allows to increase the
multiplexing factor (daisy chain)
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Microwave readout hardware implementation
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• A key enabling technology for large-scale microwave multiplexing is the digital approach;

• This allows to exploit standard so ware-de ned radio (SDR) used in microwave-frequency
communication.
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Bandwidth Budget and multiplexing factor

The number of multiplexable TES per ADC board is

nTES =
fADC · τr

2 · nΦ0 · gf · Rd
with ∆fBW ≥ 2 fr nΦ0 , S ≥ gf ∆fBW , fs = framp ≥

Rd
τr

fs = sampling rate

framp = ux ramp frequency

∆fBW = resonator bandwidth

nΦ0
= number of ux quantum per ramp

S = frequency spacing between tones

gf = guard factor between tones

τr = rise time

Rd = disto ion suppression factor (2 is Nyquist limit)

fADC = ADC bandwidth

nTES = number of TES per board

The target rise time for HOLMES is τr = 10µs

τr [µs] fr [kHz] fADC [MHz] nΦ0
∆fBW [MHz]

10 500 500 2 2

gf S [MHz] Rd nTES

7 14 5 ∼36

• The HOLMES multiplexing factor is around 32 pixels per ADC board;

• In order to cover the total 1024 pixels, 1024/32=32 ADC boards are needed;

• The typical RF bandwidth for a HEMT ampli er is from 4 to 8 GHz;

⇒ a single HEMT can amplify 4000 MHz/500 MHz=8 ADC boards;

• 4 HEMT ampli ers are needed for a total of 32 ADC boards;
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HOLMES multiplexing readout: current status
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• ROACH2 board for tones generation/acquisition and for digital processing;

• Custom intermediate frequency (IF) circuitry for up/down conversion;

• Working with: nΦ0 = 2, framp = 500 kHz, fADC = 512, MHz

• 16-channel rmware from NIST (uses only half of available ADC bandwidth);

• 4 pixels measurements ⇒ limited by available tone power;
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HOLMES detectors: 1stgeneration
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• Sensor: TES Mo/Au bilayers, critical temperature Tc = 100 mK;

• Absorber: Gold, 2µm thick for full e−/γ absorption (sidecar design);

• First 4 × 6 array prototype produced at NIST at test in Milano with µwave-readout;

• Di erent Perimeter/Absorber con gurations in order to study the detector response;
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HOLMES detectors: characterization results

Fluorescence source used to test the detectors response
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4 detector satis ed the HOLMES requirements

TES # ∆EAl ∆ECl ∆ECa ∆EMn τrise [µs] τsho [µs] τlong [µs]

2 8.6 ± 0.3 8.8 ± 0.7 7.8 ± 0.2 8.3 ± 0.3 11 56 220
6 6 ± 1 6.0 ± 0.4 6.4 ± 0.4 6.2 ± 0.4 12 34 170
8 4.5 ± 0.3 5.0 ± 0.5 5.0 ± 0.2 4.5 ± 0.1 13 54 220
11 4.3 ± 0.3 4.5 ± 0.3 4.6 ± 0.3 14 32 180
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HOLMES multiplexing readout: 64 channel readout
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Multiplexing readout and PTOLEMY

(from the PTOLEMY proposal)

• The PTOLEMY collaboration proposed the microwave-readout from the beginning;

• Is the current status of development compatible with the PTOLEMY requirements?
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The read out noise in microwave multiplexing

• There are four main sources of noise:
• Johnson noise in the ux input circuit;
• intrinsic ux noise in the SQUID;
• HEMT noise (dominant);
• Two-Level System (TLS) noise in the resonator;

• The HOLMES read out noise is around
ns = 30 pA/

√
Hz

• The INRiM TESs showed a 0.113 eV @ 0.8 eV
energy resolution with a read-out noise of

ns = 6 − 7 pA/
√

Hz

• Probably this reasult is not achievable with the current microwave multiplexing read out noise;

• What is the maximum read out noise acceptable for the PTOLEMY TESs?

• Is the microwave multiplexing noise compatible with the PTOLEMY requirements?

• (Maybe) too early to answer these questions but it is a technical aspect to take into account.
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Conclusion

• TES x-ray microcalorimeters have already demonstrated high resolution and fast response
⇒ Large array of these detectors are suitable for several applications;

• Standard multiplexing technologies are reaching their full potential;

• For much faster and/or more numerous sensors, a wider system bandwidth is needed;

• Microwave multiplexing reached the needed maturity for reading out large array of TESs;
• Next generation of ADCs/DACs (6-8 GS/s) and of programmable logics could increase the multiplexing

factor by at least 1 order of magnitude;

• The Microwave multiplexing read out noise is dominated by the HEMT noise;

• The current noise level guarantees a good resolution in case of X-ray spectroscopy:
∆E = (4.5 ± 0.1) eV @ 5.9 keV;

• ... but it may represents a limitation in low energy threshold applications (Dark Ma er, CEνNS, etc)

• The current HEMT noise temperature is around TN ≃ 2 K (it could be improved in the future);

• The development of a parametric ampli er (with quantum-limited noise) could guarantee a
noise level ∼ 1/50 times be er;
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