Studio dei processi di produzione del bosone di Higgs nell'esperimento ATLAS di LHC

Relatori:

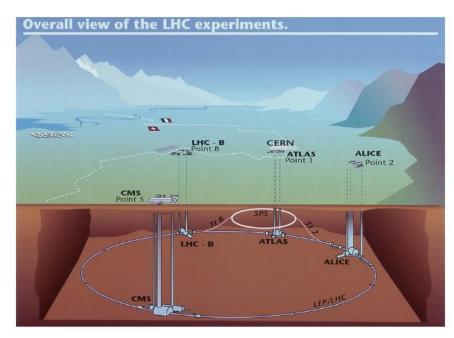
Prof. Vincenzo Canale

Dott. Francesco Conventi

Candidato:

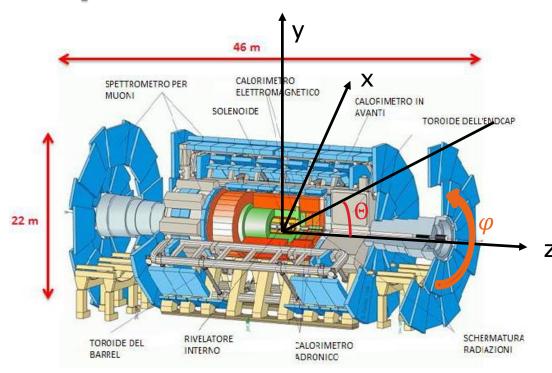
Nicola de Biase

Matricola N85000845


Tesi di laurea triennale in Fisica A.A. 2017/2018

Outline

- · LHC
- ATLAS
- Ricerca del Bosone di Higgs
 - Introduzione dei processi di produzione del bosone di Higgs
 - Metodo per la discriminazione dei processi di produzione dell'Higgs basato su tagli unidimensionali e bidimensionali
- Metodo multivariato per la discriminazione dei processi di produzione dell'Higgs
- Applicazione ai dati raccolti nel 2015/2016 e previsioni sui dati raccolti nel 2017/2018


LHC: Large Hadron Collider

- 27 km di circonferenza
- Profondità media di 100 m
- Accelerazione di 2 fasci di protoni su traiettoria circolare, mediante magneti e cavità a radiofrequenze
- Fasci di protoni divisi in bunch
- Collisioni p-p

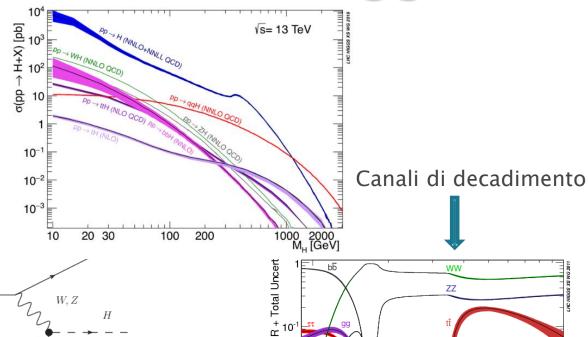
Caratteristiche	RUN-I (2011-2012)	RUN-II (2015-2018)
Energia nel CM	7 ÷ 8 <i>TeV</i>	13 <i>TeV</i>
Luminosità istantanea	$10^{32 \div 33} \ cm^{-2} \ s^{-1}$	$21.4 \times 10^{33} \ cm^{-2} \ s^{-1}$
Luminosità integrata	$5.5 - 22.8 fb^{-1}$	$147 fb^{-1}$

Esperimento ATLAS

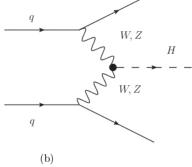
Parti dell'apparato:

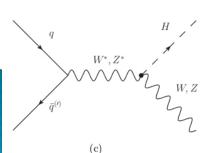
- Rivelatore interno (ID)
- Calorimetro
 Elettromagnetico
- Calorimetro Adronico
- Spettrometro per muoni
- Sistema magnetico
- Sistema di Trigger
- Sistema di acquisizione dati

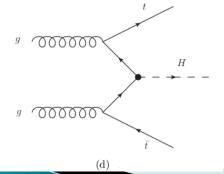
Pseudorapidità:


$$\eta = -\ln\left(\tan\frac{\vartheta}{2}\right)$$

- Barrel region ($|\eta| < 1.05$): regione interna, più vicina al punto di collisione
- Endcap region $(1.05 < |\eta| < 2.7)$: regione laterale


Ricerca del bosone di Higgs


Processi di produzione possibili a LHC:


- a) gluon-gluon Fusion (ggF)
- b) Vector Boson Fusion (VBF)
- c) W/Z Bremsstrahlung
- d) $t\bar{t}$ fusion

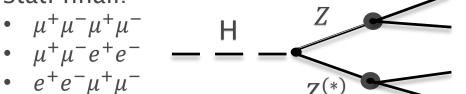
Sono semplici da studiare grazie al buon rapporto segnale-fondo:

300

400 500

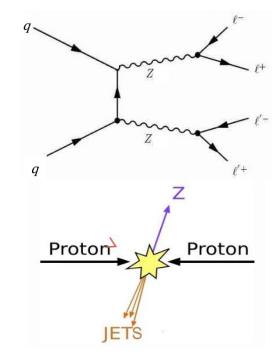
• $H \rightarrow ZZ \rightarrow 4l$

10⁻²

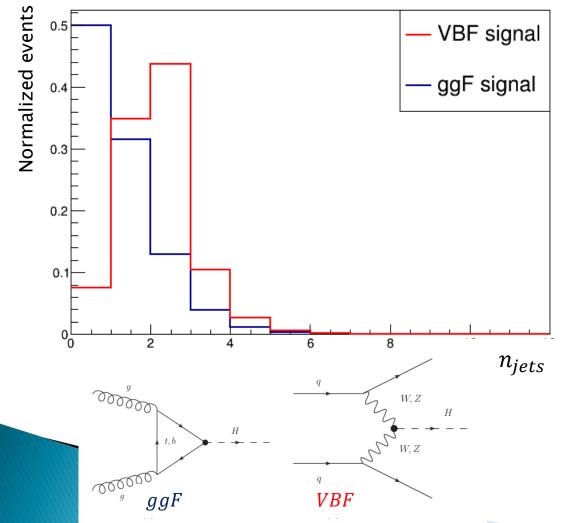

- $H \rightarrow \gamma \gamma$
- $H \rightarrow WW \rightarrow l\nu l\nu$

1000 M_H [GeV]

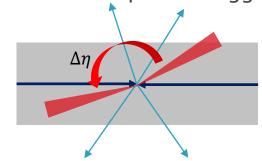
Canale $H \rightarrow ZZ \rightarrow 4l$


Denominato «Golden Channel»: buona ricostruzione dei leptoni, buon rapporto segnale/fondo, assenza di energia mancante.

Stati finali:

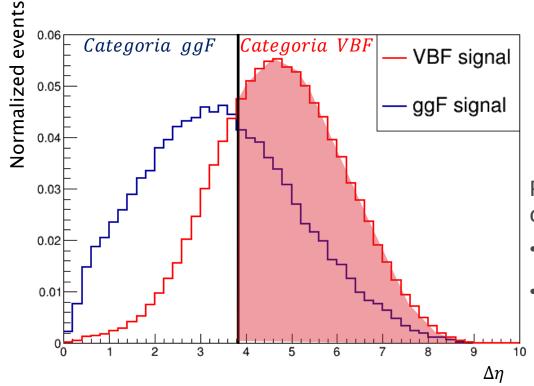

- e⁺e⁻e⁺e⁻
- Fondi sperimentali:
- ZZ: è detto «fondo irriducibile» in quanto presenta lo stesso stato finale con 4 leptoni
- Z+jets: è dovuto a errori di ricostruzione dei jet e non presenta lo stesso stato finale in 4 leptoni, pertanto è detto «fondo riducibile»

- Z reale
- $Z^{(*)}$ virtuale



Processo di produzione VBF

Nel processo VBF due quark irradiano ognuno un bosone W/Z e dunque adronizzano formando due jet. I bosoni *fondono* producendo un Higgs.


Per il processo VBF, è molto probabile la presenza di almeno 2 jet nello stato finale, a differenza del processo ggF.

Nell'85% degli eventi VBF con almeno 2 jet nello stato finale, esiste una coppia di jet con coordinate η di segno opposto. Per maggior purezza nella selezione VBF, si studiano solo questi eventi.

Selezione basata su tagli 1D

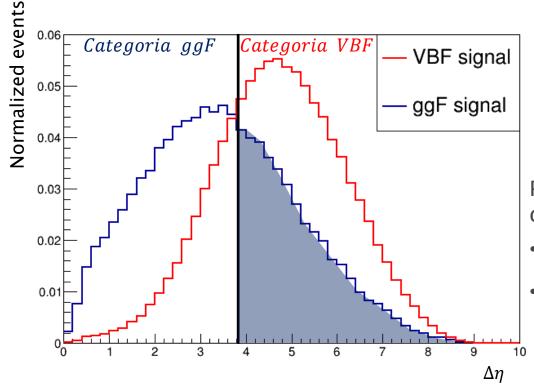
La differenza in pseudorapidità ($\Delta \eta$) tra i jet della coppia con massa invariante più alta è una variabile discriminante tra i processi VBF e ggF

Applico un taglio (*cut*) sulla variabile $\Delta \eta$:

- $\Delta \eta > cut \Rightarrow Categoria\ VBF$
- $\Delta \eta < cut \Rightarrow Categoria ggF$

Per stabilire la posizione del taglio, definisco delle efficienze:

$$\begin{split} \bullet \quad & \varepsilon_{VBF} = \frac{N_{VBF}(\Delta \eta > cut)}{N_{VBF}} = \frac{N_{VBF}(Categoria\ VBF)}{N_{VBF}} \\ \bullet \quad & \varepsilon_{ggF} = \frac{N_{ggF}(\Delta \eta > cut)}{N_{ggF}} = \frac{N_{ggF}(Categoria\ VBF)}{N_{ggF}} \end{split}$$


$$arepsilon_{ggF} = rac{N_{ggF}(\Delta\eta > cut)}{N_{ggF}} = rac{N_{ggF}(Categoria\ VBF)}{N_{ggF}}$$

La posizione ottimale del taglio si ottiene per ε_{VBF} prossimo a 1 e ε_{qqF} prossimo a 0. Ciò si può ottenere massimizzando lo stimatore:

$$\Sigma = \varepsilon_{VBF} (1 - \varepsilon_{ggF})$$

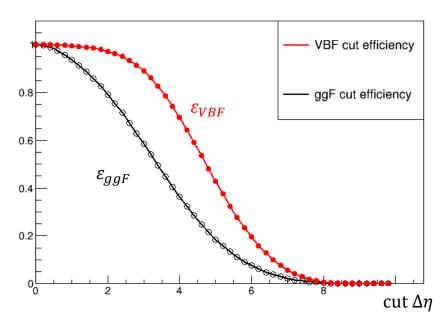
Selezione basata su tagli 1D

La differenza in pseudorapidità ($\Delta \eta$) tra i jet della coppia con massa invariante più alta è una variabile discriminante tra i processi VBF e ggF

Applico un taglio (cut) sulla variabile $\Delta \eta$:

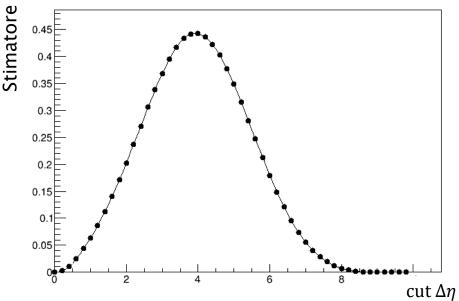
- $\Delta \eta > cut \Rightarrow Categoria\ VBF$
- $\Delta \eta < cut \Rightarrow Categoria ggF$

Per stabilire la posizione del taglio, definisco delle efficienze:

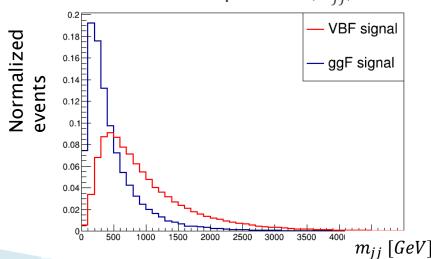

$$\begin{split} \bullet \quad & \varepsilon_{VBF} = \frac{N_{VBF}(\Delta \eta > cut)}{N_{VBF}} = \frac{N_{VBF}(Categoria\ VBF)}{N_{VBF}} \\ \bullet \quad & \varepsilon_{ggF} = \frac{N_{ggF}(\Delta \eta > cut)}{N_{ggF}} = \frac{N_{ggF}(Categoria\ VBF)}{N_{ggF}} \end{split}$$

$$\epsilon_{ggF} = \frac{N_{ggF}(\Delta\eta > cut)}{N_{ggF}} = \frac{N_{ggF}(Categoria\ VBF)}{N_{ggF}}$$

La posizione ottimale del taglio si ottiene per ε_{VBF} prossimo a 1 e ε_{qqF} prossimo a 0. Ciò si può ottenere massimizzando lo stimatore:


$$\Sigma = \varepsilon_{VBF} (1 - \varepsilon_{ggF})$$

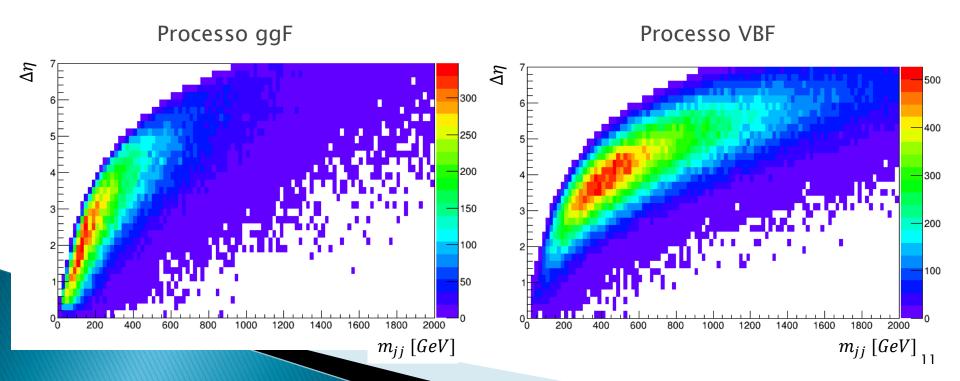
Selezione basata su tagli 1D



Il valore ottimale del taglio, ottenuto massimizzando Σ è 4. Si ottengono le seguenti efficienze e contaminazioni:

	Truth Monte Carlo	
Category	ggF	VBF
ggF	0.64	0.31
VBF	0.36	0.69

Altra variabile discriminante: massa invariante della coppia di jet con massa invariante più alta (m_{ij})

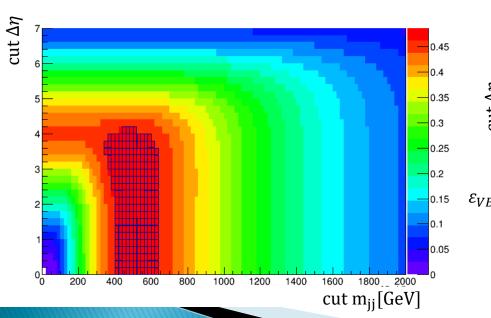


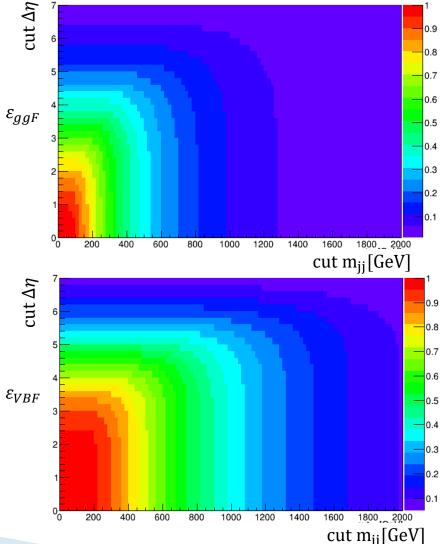
Selezione basata su tagli 2D

Avendo verificato che le variabili $\Delta \eta$ e m_{jj} sono discriminanti, si effettua una categorizzazione dei due processi VBF e ggF basata su tagli bidimensionali su tali variabili:

- $\Delta \eta > cut_{\Delta \eta} \ e \ m_{jj} > cut_{m_{jj}} \Rightarrow Categoria \ VBF$
- $\Delta \eta < cut_{\Delta \eta} \ e \ m_{jj} < cut_{m_{jj}} \Rightarrow Categoria \ ggF$

Distribuzioni bidimensionali delle variabili $\Delta \eta$ e m_{ij} :


Selezione basata su tagli 2D


Analogamente a quanto fatto per i tagli unidimensionali, si definiscono delle efficienze e uno stimatore da massimizzare per determinare la posizione ottimale del taglio bidimensionale:

Mappe di efficienza del taglio bidimensionale

$$egin{aligned} arepsilon_{VBF} &= rac{N_{VBF}(Categoria\ VBF)}{N_{VBF}} \ &egin{aligned} arepsilon_{ggF} &= rac{N_{ggF}(Categoria\ VBF)}{N_{ggF}} \ &\Sigma &= arepsilon_{VBF}(1-arepsilon_{ggF}) \end{aligned}$$

Mappa del valore dello stimatore Σ

Selezione basata su tagli 2D

La posizione ottimale del taglio sulla coppia di variabili $(m_{jj}, \Delta \eta)$ risulta essere $(480 \ GeV, 3)$.

Tabella di efficienze e contaminazioni ottenuta effettuando la categorizzazione tramite un taglio bidimensionale sulla coppia $(m_{ij}, \Delta \eta)$:

	Truth Monte Carlo	
Category	ggF	VBF
ggF	0.67	0.28
VBF	0.33	0.72

Miglioramento non significativo rispetto a taglio unidimensionale

Analisi multivariata dei processi VBF/ggF

Variabili discriminanti:

- Numero di jet in ogni evento
- Massa invariante della coppia di jet con massa invariante più alta (m_{ij})
- Impulso trasverso della coppia di jet con massa invariante più alta (pt_{ij})
- Quadrimpulsi dei due jet appartenenti alla coppia con massa invariante più alta
- Distanza angolare in pseudorapidità tra i due jet della coppia con massa invariante più alta $(\Delta \eta)$
- Modulo della coordinata η più alta nella coppia di jet con massa invariante più alta (η_{max})
- Impulso trasverso e coordinata η dei 4 leptoni nello stato finale

Per gestire il grande numero di variabili

Un programma apprende dall'esperienza E con riferimento a alcune classi di compiti T (*Task*) e con misurazione della performance P, se le sue performance nel compito T, come misurato da P, migliorano con l'esperienza E

Artificial Neural Net

> Sistemi algoritmici non lineari basati sui modelli del sistema neurale biologico weights output signal

Elemento di base: Neurone artificiale input signals

Neuroni organizzati in layer

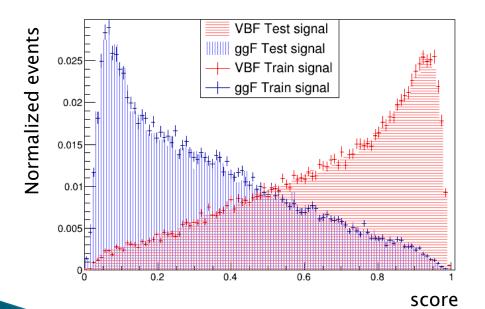
 X_2

> Apprendimento supervisionato: per ogni evento, è noto l'output

desiderato (target).

Per modificare i pesi in modo da ottenere la risposta (*score*) desiderata: esposizione a dataset di Training, in cui è noto alla rete il target

f(net-θ)


Per verificare che l'addestramento sia andato a buon fine: esposizione a dataset di Test, in cui non è noto alla rete il target

Utilizzo della rete neurale MLP

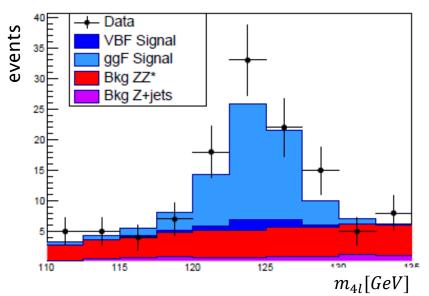
Rete neurale utilizzata: Multi Layer Perceptron (pacchetto TMVA di Root)

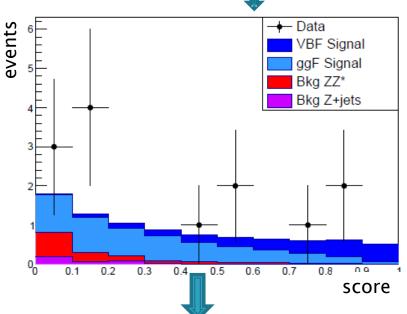
- Risposta: funzione tra 0 e 1
- Target processo VBF: 1
- Target processo ggF: 0

Score della rete dopo Training e Test

Lo score della rete è una variabile discriminante tra i processi VBF e ggF. Si effettua la categorizzazione basandosi su un taglio sullo score della rete:

- score $> cut \Rightarrow Categoria\ VBF$
- score $< cut \Rightarrow Categoria \ ggF$


Il valore ottimale del taglio è stimato essere 0.5. Con questi criteri di categorizzazione si ottiene:


	Truth Monte Carlo	
Category	ggF	VBF
ggF	0.75	0.25
VBF	0.25	0.75

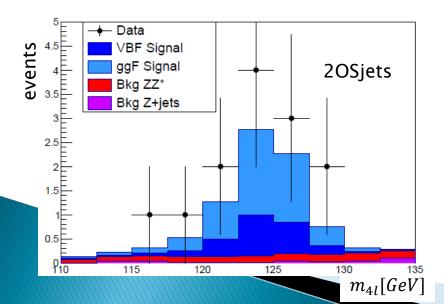
Utilizzo della rete neurale MLP

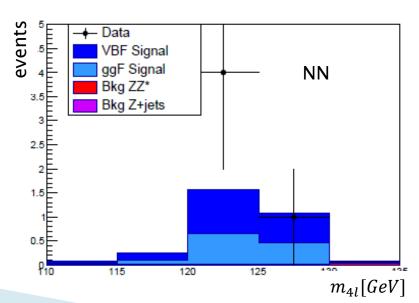
Score della rete addestrata sul segnale, sui fondi e sui dati raccolti nel biennio 2015/2016, con la richiesta che la massa del sistema dei 4 leptoni nello stato finale sia compresa tra 110 GeV e 135 GeV.

Massa dei 4 leptoni nello stato finale, senza richieste cinematiche sui jet

Scarsa contaminazione nella categoria VBF da parte del processo ggF e dei fondi

Normalizzazione ottenuta tenendo conto della luminosità integrata raccolta nel biennio 2015/2016 e delle sezioni d'urto dei processi.

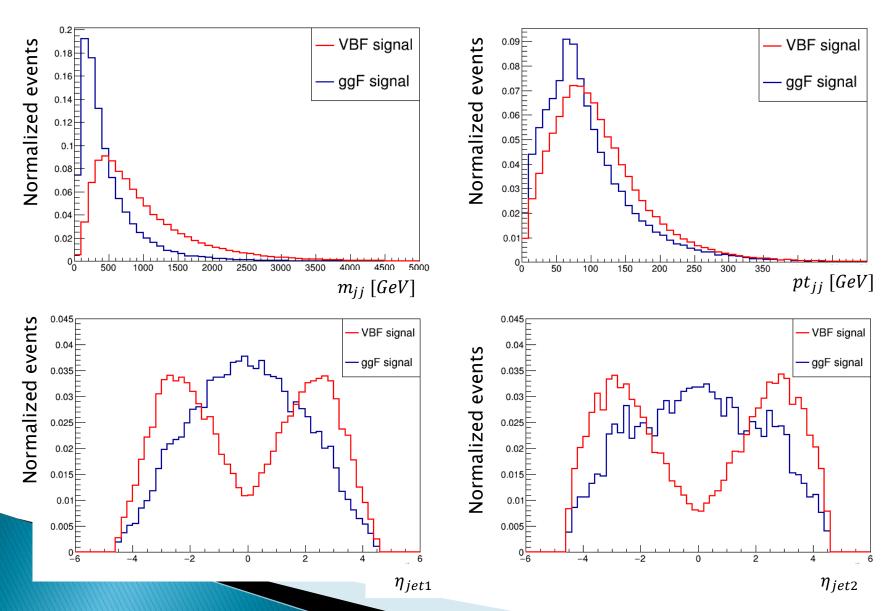

Conclusioni e prospettive

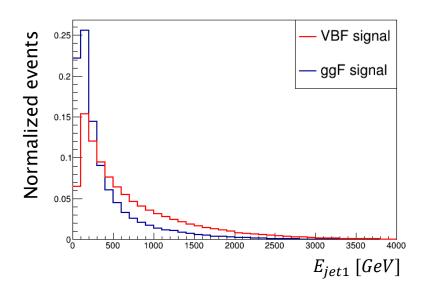

Per verificare come l'utilizzo della rete neurale migliori la selezione del processo VBF rispetto ai tagli bidimensionali, introduco la significatività globale:

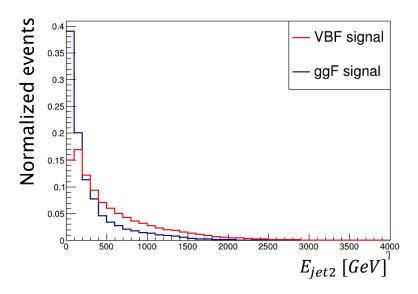
$$\sigma_g = \frac{S}{\sqrt{B}}$$
 $S = N_{VBF}$
 $B = (N_{ggF} + N_{fondo})$

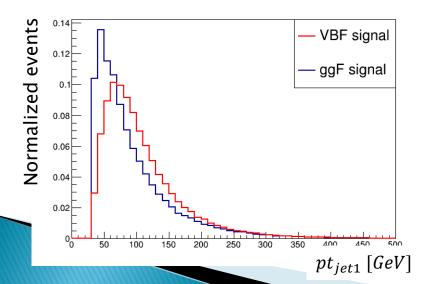
selezione	σ_g	miglioramento
20Sjets	0.9	1.00
2D cuts	1.17	1.30
NN	1.52	1.69

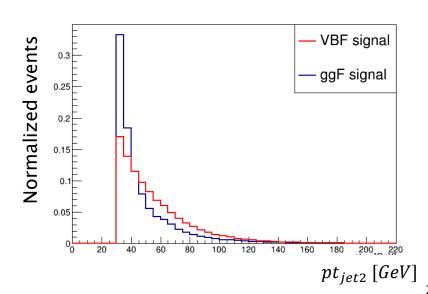
Per poter affermare di avere osservato l'Higgs prodotto mediante il processo VBF è necessario avere una significatività almeno pari a 3. Includendo anche i dati raccolti nel biennio 2017/2018, si otterrà una luminosità integrata superiore a $150 \, fb^{-1}$ e si prevede di ottenere una significatività maggiore di 3.



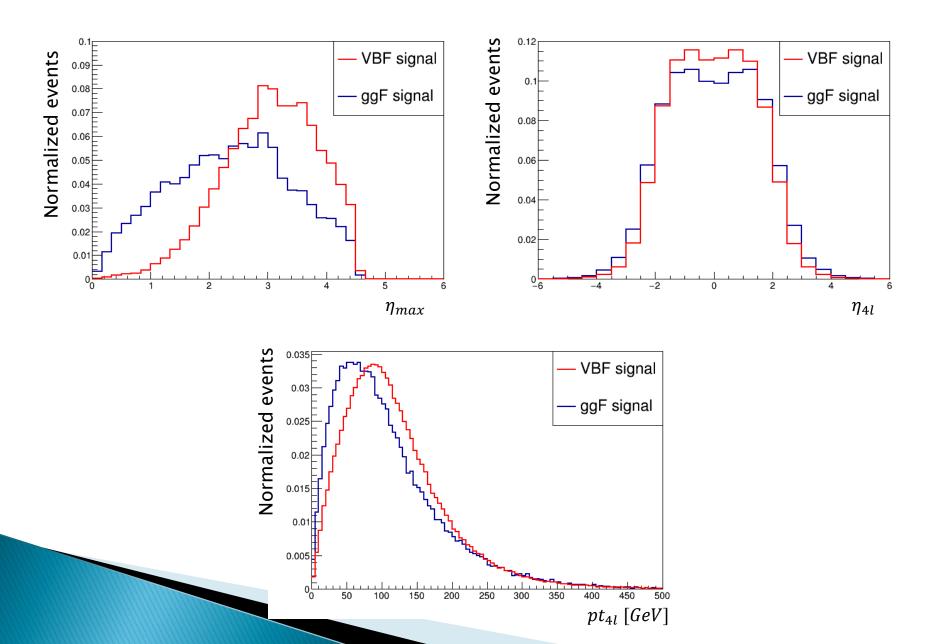

Grazie per l'attenzione

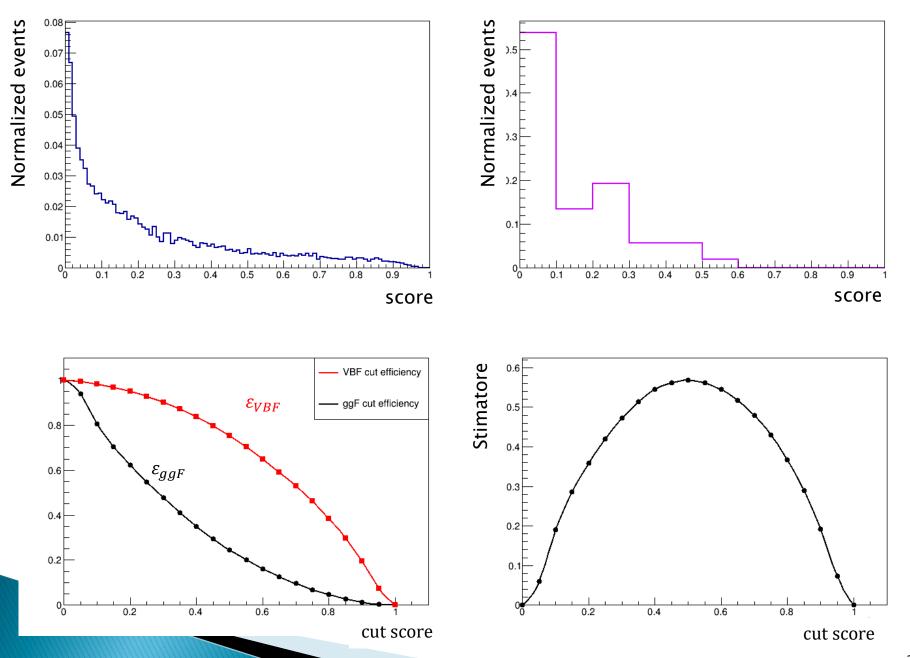

Backup


Variabili discriminanti



Variabili discriminanti




Variabili discriminanti

	Truth Monte Carlo	
Category	ggF	VBF
ggF	$1-arepsilon_{ggF}$	$1-arepsilon_{VBF}$
VBF	$arepsilon_{ggF}$	$arepsilon_{VBF}$

	Truth Monte Carlo	
Category	ggF	VBF
ggF	1	0
VBF	0	1

