Status of WW/WZ in lepton-neutrino + jets final state

Viviana Cavaliere, Pierluigi Catastini, Maria Agnese Ciocci, Alberto Annovi, Januscia Duchini, Paolo Mastrandrea, Marco Rescigno, Anna Sfyrla

University of Siena & INFN Pisa

CDF italy, 1/09/2009

V. Cavaliere (Univ. Siena & INFN Pisa)

 $WW/WZ \rightarrow l\nu + jets$

CDF italy, 1/09/2009 1 / 23

Outline

- Analysis blessed:
 - Event selection
 - Background Estimate
 - 🗿 Fit to data
- Status of the analysis
- Future improvement

Data and MC sample: 3.9 fb^{-1}

DATA

- We use the high P_T lepton data sample for a total statistic of 3.9 fb⁻¹ up to period 21
- Electron trigger: ELECTRON_CENTRAL_18
- Muon trigger:

MC

- **PYTHIA** is used for signal and top: WW, WZ and tt
- ALPGEN used for primary backgrounds:
 - $\begin{tabular}{ll} 0 & W \rightarrow l(e,\mu,\tau), \nu \ + \ {\rm partons} \\ 0 & Z \rightarrow ll(e,\mu,\tau), \ + \ {\rm partons} \\ \end{tabular}$
- Trigger efficiency and Lepton reconstruction efficiency by MC, with correction from data
- QCD background extracted from data

Good run list v28

Leptonic W candidate:

- M_T (W) > 30 GeV/c² to get rid of large part of the QCD background

Hadronic W candidate:

- At least 2 jets (reconstructed using JETCLU, R = 0.4) with:
 - $E_T > 20 GeV$ corrected at L7.

2
$$|\eta| < 2.4$$

$$\ 0 \ \ \Delta\eta < 2.5$$

Iectron removal

- We extract the non W background from data fitting the $\not \in_T$ distribution.
- For the non-W template
 - - For CMUP and CMX we use $\not \! E_T$ of non-isolated data (Iso > 0.2).
- Then knowing the theoretical cross section of the other processes we obtain the W+jets normalization.

Dijet events

• Poor modeling around 50 GeV/c^2 .

• Signal peaks very close to background's shoulder.

p_T of the W

- W Pt distribution not well modelled
- Apply cut: $p_T > 40 GeV/c$ to smooth the distribution of M_{jj}
- Throw away almost 40% of signal...

- Signal peaks very close to background: nearly impossible to separate.
- Need more careful study to fully understand this sub-sample.

- There's clearly a cut in the kinematic acceptance
- 2 the two mjj have very different shapes
- the combined mjj hides important information on what component has problems and problems can cancel out.

V. Cavaliere (Univ. Siena & INFN Pisa)

 $WW/WZ \rightarrow l\nu + jets$

• Binned fit to the mjj shape taking as templates the histograms:

- EWK (sum of W+jet, Z+jet and top) → completely free in the fit
 ② SIGNAL (WW and WZ)
- 3 QCD \longrightarrow gaussian constraint to the value found in the $\not \in_T$ fit with 20% width (twice the error).
- Fit to the whole shape with $M_{jj} > 36 \text{GeV}/c^2$
- Fit electrons and muons separately
- Template statistics uncertainty included in the fit.
- Normalization floating in the fit.
- $\bullet~$ Fit: Norm , $f_{\texttt{sig}}$ and $f_{\texttt{qcd}}$

10 / 23

	Source	e %	μ%	e # of Ev.	μ # of Ev .
Signal Extraction	QCD shape	6.4%	4.8 %	28	31
	EWK shape	9.8%	6.6%	42	43
	JES up	5.1%	5.7%	22	37
	JES down	2.8%	1.6%	12	10
	JER	1.4%	1.1 %	6	7
TOTAL		13.1 %	10.1 %	56	65
Cross section	Luminosity	6%	6%	26	39
	Lepton Acceptance	2%	2%	9	13
	ISR more	1.9%	1.4%	8	9
	ISR less	-1.9%	-1.4%	8	9
	FSR more	0.5%	3%	2	19
	FSR less	-0.5%	-3%	2	19
	PDF	2.0%	2.0 %	9	13
TOTAL		14.8 %	12.8%	63	83

Fit to data and results

	Electron	Muon
f _{sig}	0.0227 ± 0.0094	0.048 ± 0.011
f _{qcd}	0.083 ± 0.016	0.0428 ± 0.0083
Total#Events	18866 \pm 148	13549 \pm 122
Observed Total # Events	18905	13573

Fit to data and results

• In a data sample corresponding to 3.9 fb⁻¹ using a fit to the invariant mass distribution M_{jj} we estimate combining the two decays: 1070 ± 232 (stat.) ± 86 (syst) $WW/WZ \rightarrow lvjj$ events. Combining in quadrature the significance in the two channels we have 4.61 σ .

Finally, we measure:

 $\sigma_{WW/WZ} = 14.4 \pm 3.1(\text{stat.}) \pm 2.2(\text{syst.})\text{pb}$

Fit to data and results

• In a data sample corresponding to 3.9 fb⁻¹ using a fit to the invariant mass distribution M_{jj} we estimate combining the two decays: 1070 \pm 232 (stat.) \pm 86 (syst) $WW/WZ \rightarrow lvjj$ events. Combining in quadrature the significance in the two channels we have 4.61 σ .

• Finally, we measure:

 $\sigma_{WW/WZ} = 14.4 \pm 3.1(\text{stat.}) \pm 2.2(\text{syst.})\text{pb}$

13 / 23

- Writing the PRL togheter with the EPD group
- Extending the data sample to 4.3 ${\rm fb}^{-1}$
- Exploring the new MC high lumi sample
- Rebless within september with some changes to the fit.
- Write a PRD.

- Januscia Duchini is working on the multivariate extensions of the analysis:
 - **(1)** Right now learned how to use TMVA and found some problems with it.
 - On the idea is to keep it simple: use few variables that we have under control
- \bullet Then move on $WZ \rightarrow l\nu + b\bar{b}$: intrduce b-tagging into the analysis.

Backup

V. Cavaliere (Univ. Siena & INFN P<u>isa)</u>

 $WW/WZ \rightarrow \, l\nu \, + \, jets$

CDF italy, 1/09/2009 16 / 23

Official Tight Electron cuts

Variable	Cut	
Region	centra	
Track	yes	
lso/E _T	≤ 0.1	
Ε _T	$>20{ m GeV}$	
PT	$> 10 { m GeV}$	
Track $ Z_0 $	≤ 60 cm	
E/P	≤ 2 (unless $p_{ m t} \geq 50$ GeV/c)	
Had/Em	$\leq 0.055 + 0.00043 \cdot E$	
Signed CES ΔX	$3.0 \le q \Delta X \le 1.5$	
CES ΔX	< 3cm	
Lshr	< 0.2	
CES Strip χ^2	≤ 10	
Fiducial	yes	

Official muon CMUP and CMX cuts

Variable	Cut		
Iso/P _T	≤ 0.1		
Ρ _T	> 20 GeV		
Track Z ₀	≤ 60 cm		
CMU Fid	x - fid < 0cm, z - fid < 0cm		
CMP Fld	x - fid < 0cm, z - fid < -3cm		
CMX Fid	x - fid < 0cm, z - fid < -3cm		
Eem	$\leq 2 + \max(0, (p - 100) \cdot 0.0115)$		
Ehad	$\leq 6 + \max(0, (p - 100) \cdot 0.028)$		
COT Ax hits / Ax Seg	$\geq 5/\geq 3$		
COT Ax hits / Ax Seg	$\geq 5/\geq 3$		
Track no si hits $ \mathbf{d}_0 $	< 0.2cm		
Track si hits $ \mathbf{d}_0 $	< 0.02cm		
Pexit	> 140 if CMX		
ΔX_{CMU}	≤ 7 cm		
$ \Delta X_{CMP} $	≤ 5 cm		
$ \Delta X_{CMX} $	≤ 6 cm		
No muons in bluebeam	run $<$ 154449		
No muons in keystone	run < 186598		
No muons in miniskirt	run < 186598		
Larry corrections	data only		

- Signal Diboson: itopww, itopwz
- **3** Background : W(e, μ)+np (ALPGEN), Z(*ee*, $\mu\mu$, $\tau\tau$)+np, top

- while waiting for new samples plan to reweight N_vertices in MC to N_vertices in data event by event
- $\textcircled{O} \ \mathsf{QCD} \ \mathsf{Background:} \ \mathsf{done} \ \mathsf{using} \ \mathsf{lso} \ \mathsf{vs} \ \not{\mathbb{E}_T}$
 - corrected for MC!

sample	σ _{gen}	Ngen
Diboson		
itopww	12.40	2284862
it opw z	3.70	2306591
itopzz	3.80	2323812
W (e ⁺ e ⁻)+jets		
ptopw0	1800	4928812
ptopw1	225	4909767
ptop2w	35.30	1003193
ptop3w	5.59	1003040
ptop4w	1.03	989607
W $(\mu^+\mu^-)$ +jets		
ptopw5	1800	5017218
ptopw6	225	5003166
ptop7w	35.3	1002804
ptop8w	5.59	1013373
ptop9w	1.03	988545
W $(au^+ au^-)$ +jets		
utopw0	1800	4885557
utopw1	225	4987134
utop2w	35.3	923989
utop3w	5.59	1008221
utop4w	1.03	186494

sample	σ _{gen}	Ngen
W+HF		
btop0w	2.98	1542539
btop1w	0.888	1545970
btop2w	0.287	1498550
btop5w	2.98	1524880
btop6w	0.888	1508029
btop7w	0.287	1506613
ctop0w	5.	2008023
ctop1w	1.79	1987389
ctop2w	0.628	1926322
ctop5w	5.	1985033
ctop6w	1.79	1979810
ctop7w	0.628	1970504
top		
tt kt 75	6.7000	5445003

sample	σ _{gen}	Ngen
$Z(e^+e^-)$ +jets		
ztopp0	158.	2639520
ztopp1	21.60	2630345
ztop2p	3.47	536159
ztopzb	3.46	4641816
ztop3p	0.55	528491
ztop4p	0.0992	525065
$Z(\mu^+\mu^-)$ +jet s		
ztopp5	158	2665104
ztоррб	21.60	2664729
ztop7p	3.47	530843
ztopzt	3.46	4710842
ztop8p	0.548	536159
ztop9p	0.0992	536159

sample	σ _{gen}	Ngen
Z+HF		
ztopb0	0.511	516239
ztopb1	0.134	493381
ztopb2	0.0385	498736
ztopb5	0.511	437329
ztopb6	0.134	494480
ztopb7	0.0385	478485
ztopc0	1.08	662939
ztopc1	0.331	695289
ztopc2	0.107	658211
ztopc5	1.08	671375
ztop c6	0.331	663431
ztopc7	0.107	705108

sample	σ _{gen}	Ngen
DY		
xtop0p	160.0000	536159
xtop1p	8.3900	515515
xtop2p	1.6100	536159
xtoppb	1.6000	4610071
xtop3p	0.2330	525670
xtop4p	0.0398	520758
xtop5p	160.0000	524357
хtорбр	8.3900	530696
xtop7p	1.6100	525769
xtoppc	1.6000	4644940
xtop8p	0.2330	524697
xtop9p	0.0398	529635

Sample	σ _{gen}	Ngen
DY		
ytop0p	4.0700	519104
ytop1p	0.7060	524895
ytop2p	0.1170	513428
ytop3p	0.0185	531075
ytop4p	0.0033	527280
ytop5p	4.0700	536159
ytop6p	0.7060	529581
ytop7p	0.1170	531006
ytop8p	0.0185	520531
ytop9p	0.0033	527838

- Signal peaks very close to background: nearly impossible to separate.
- Need more careful study to fully understand this sub-sample.