Search for ZZ production in the 4 lepton channel with 4.8 fb^{-1} of data

M. Bauce

INFN and University of Padova

CDF Italia 1-2 September 2009

M. Bauce (INFN Padova)

3

(ロ) (四) (三) (三)

Summary

Analysis Goal:

Observation of ZZ and measurements of cross section in 4lepton decay in $p\overline{p}$ collision at $\sqrt{s}=1.96$ TeV at CDF.

Summary

- Analysis technique
- Background modelling
- Analysis significance
- Cross-section measurement

For reference:

- More details can be found in
 - CDF Note 9852
 - http://www-cdf.fnal.gov/physics/ewk/2009/ZZ1111/ZZWeb/index.html
- This is an extension of a previous analysis (CDF Note 9137 on 1.9 fb^{-1}):
 - new muon categories, adds new trigger paths (PHIGAP and CMX-MsKs)
 - extended to 4.8 fb^{-1}

3

Summary

Importance of diboson analyses

• Diboson production at CDF:

- Foundamental checks of the Standard Model.
- Important channel in the search of new physics:
 - Higgs decay channel in the high mass region:

 $\star H \rightarrow WW$

$$H \rightarrow ZZ$$

Anomalous Trilinear Gauge Couplings (TGCs).

ZZ→III'l' analysis

• At \sqrt{s} =1.96 TeV the NLO theoretical production cross section is: $\sigma_{p\bar{p}\rightarrow ZZ} = 1.4 \pm 0.1$ pb

The decay channel considered (4 leptons) has two main features:

- $\bullet\,$ Very low branching ratio: \sim 0.6 %
- Very low background (no physical processes).

Summary

Leptons considered

- Electrons:
 - Central Electrons, $|\eta| < 1$, TCE (triggerable)
 - Forward Electrons, $1 < |\eta| < 2$, PHX
- Muons:
 - Central Muons, $|\eta| < 0.6$, CMUP, CMP (triggerable)
 - Intermediate Muons, $0.6 < |\eta| < 1$, CMX arches, MiniSkirt-KeyStone (triggerable)
 - Forward Muons, $1 < |\eta| < 1.5$, BMU
 - Stubless Muons (m.i.p.), CMIOCES $|\eta| < 1$, CMIOPES $1 < |\eta| < 1.5$
- Track:
 - tracking coverage $|\eta| < 1.2$, CrkTrk

Summary	Data Samp	es
---------	-----------	----

Data samples

Trigger paths

MUON_CMUP18

MUON_CMP18_PHIGAP

MUON_CMX18

ELECTRON_CENTRAL18

Good run lists - v29

Good run list	$\mathcal{L}(pb^{-1})$
EM NOSI	4828.8
EM CMUP NOSI	4772.5
EM MU NOSI CMXIGNORED	4661.5
EM_SI	4549.4
EM CUP SI	4499.5
EM_MU_SI_CMXIGNORED	4394.8

Table: These luminosity have been scaled by the factor of 1.019.

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Signal

Event selection

Signal region

- Exactly 4 leptons.
- Trigger Lepton ($p_T \ge 20 \text{GeV}$)
- Other leptons $p_T \geq 10 \, \text{GeV}$
- No Track Iso (gain in acceptance)
- min $dR_{Leptons} > 0.1$
- *M*_{II1} in (76-106) GeV (closest to the nominal Z mass, X-axis),
- *M*_{II2} in (40-140) GeV (Y-axis).
- II must have Same Flavor Opposite Charge

Figure: $M_{\parallel -2}$ vs. $M_{\parallel -1}$ for expected signal from MC.

Signal

Multi step efficiencies from MC ZZ sample.

	Efficiencies	
Triggered 4-Recons Pt min dR min	one triggerable letpon scaled with trigger efficiency 4 leptons fully reconstructed in the detector min Pt request (20 GeV, 10 GeV, 10 GeV, 10 GeV) min(dR _{all-leptons})> 0.1	67 % 20 % 93 % 100 %
Mass cut	76 GeV $< M_{II-1} <$ 106 GeV , 40 GeV $< M_{II-2} <$ 140 GeV	80 %
Total		9.7 %

Each efficiency is referred to the previous cut.

Expected number of signal events

• From ZZ MC sample we obtain:

$$4.68 ~\pm~ 0.02(stat) ~\pm~ 0.76(syst)$$

M. Bauce (INFN Padova)

э

イロト イポト イヨト イヨト

in 4.8 fb⁻¹

Background

Background modeling

Background

- Z+jets and Z γ +jets are the dominant background
- jet(s) mis-identified as lepton(s) \rightarrow fake lepton(s).
- count the number of 3leptons + 1fake & 2leptons+2fakes events.

Two methods:

- Data driven estimated on Data using *fake-rates*.
 - Evaluate in jet data the probability for a lepton candidate (*denominator*) to be identified as a lepton (*fake rates*).
 - Apply this fake rates to our data sample for events with denominator object(s) to derive the expected background contribution.
- MC driven estimated the contribution of several process (WZ, $t\bar{t}$, Z γ) to our analysis

Just for cross check. Reported in backup slides.

Data Driven

Fake Rates

Calculate Fake Rates on a sample enriched in jets subtracting real EWK contribution:

- Denominator: candidate lepton (almost a good track)
- Numerator: Fully identified lepton

$$f_i(p_T) = rac{N_i(identified \ leptons)}{N_i(denominator \ objects)}$$

- Subtract expected contribution from real leptons.
- Fake Rates are calculated as function of p_T for each lepton type.
- Averaging measurements in JET20, JET50, JET70, JET100.
- Take the maximum spread as systematic uncertainty.

Background estimation

• To evaluate $Z(\gamma)$ +jets background events we estimate the number of events with 3leptons+1fake and 2leptons+2fakes.

All numbers are expressed in 100 ^{ths} of event				
$\mathcal{L}=4.8~{\rm fb}^{-1}$	Total Fake Estimation	ZZ contamination		
Standard (Callso<0.3)	$19.31 \pm 6.57 ({ m stat.}) \pm 4.85 ({ m syst.})$	12.35		
NoIso	8.41 \pm 2.35(stat.) \pm 3.60(syst.)	2.67		
AntiIso (Callso>0.2)	$4.15 \pm 1.62 ({ m stat.}) \pm 2.87 ({ m syst.})$	0.96		

• We chose the Data driven method with AntiIso denominators because it a priori has the better statistical precisions combined with a smaller ZZ contamination:

 $4.15 \pm 1.62(stat.) \pm 2.87(syst.) \ 100^{ths}$ of event

3

Systematics

Systematics considered in this analysis

Fractional Uncertainty (%)				
NLO Acceptance	10.0 %	same as previous analysis		
Cross -section	10.0 %	theoretical uncertainty		
PDF uncertainty	2.7 %	same as previous analysis		
Luminosity	6.0 %	from joint physics group		
LeptonID $\pm 1~\sigma$	3.6 %	varying ID SF in MC signal sample		
Trigger Efficiency	2.1 %	varying ϵ^{trig} in MC signal sample		
Fake rates: 3l+1d	42 %	from spread in fake rate calculation		
Fake rates: 2l+2d	113 %	from spread in fake rate calculation		

• The main systematic contribution is from Fake Rates.

2

(ロ) (四) (三) (三)

Significance

Significance

- Calculate the probability that the background fluctuate to give a number of events greater or equal to the expected ones.
- With pseudo-experiments:
 - We use a poissonian distribution of the background b
 - Add a Gaussian smearing of the probability distribution for systematic

$$b \rightarrow b \cdot \prod_{i=1}^{\#sys} (1 + s_i \cdot x_i)$$

 x_i is a normal distributed variable; s_i is the systematic considered.

• Evaluate the probability to have $n_{obs} \ge n_{exp}$.

 $ZZ \rightarrow IIII$ cross-section

Significance

Expected Results

Discovery Probability

Events in $\mathcal{L}=$ 4.8 fb $^{-1}$				
Signal	$4.68 \pm 0.02 ({ m stat.}) \pm 0.76 ({ m syst.})$			
$Z(\gamma)$ +jets	$0.041 \pm 0.016 ({\sf stat.}) \pm 0.029 ({\sf syst.})$			
Total expected	$4.72 \pm 0.03 (ext{stat.}) \pm 0.76 (ext{syst.})$			

2

・ロト ・四ト ・ヨト ・ヨト

Results

Candidate	leptons	M_{II-1}	M _{II-2}	4 lepton invariant mass
1	$trk\mu/\mu\mu$	90.5 GeV/c ²	88.5 GeV/c ²	324.8 GeV/c ²
2	$trk\mu/\mu\mu$	91.6 GeV/c ²	94.2 GeV/c ²	169.4 GeV/c ²
3	$ee/\mu\mu$	93.0 GeV/c ²	86.4 GeV/ c^2	191.9 GeV/c ²
4	$ee/\mu\mu$	93.3 GeV/c ²	79.7 GeV/ c^2	229.2 GeV/c ²
5	$\mu\mu/\mu\mu$	91.7 GeV/ c^{2}	55.1 GeV/c^2	325.0 GeV/c^2

Results

Results

4 leptons invariant mass for events in data

M. Bauce (INFN Padova)

Cross section

Cross-section

Cross section calculated with the standard formula:

$$\sigma_{ZZ} = \frac{N_{obs} - N_{bck}}{\mathcal{L} \cdot \epsilon}$$

•
$$N_{obs} = 5$$
 • $\epsilon = 0.065 \%$

•
$$N_{bck} = 4.15 \pm 1.62(stat) \pm 2.87(syst) \cdot 10^{-2}$$

• Considered: $\sigma_{\mathcal{L}} \rightarrow 6\%$ $\sigma_{\epsilon_{Trig}} = 2.1 \%$ $\sigma_{\epsilon_{leplD}} = 3.6 \%$ $\sigma_{X_{th}} = 10 \%$

 $\sigma_{ZZ} = 1.56^{+0.80}_{-0.63}(\textit{stat}) \pm 0.25(\textit{syst})~\textit{pb}$

(expected at NLO
$$\sigma_{ZZ} = \sim 1.4 \pm 0.1 \ pb$$
)

previous CDF analysis

$$\sigma_{ZZ} = 1.4^{+0.7}_{-0.6} (\textit{stat} + \textit{syst}) \mathrm{pb}$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへで

Different cross σ_{ZZ} measurements

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへで

Conclusions

- $_{\bullet}$ First CDF observation of ZZ production: $\underline{5.7~\sigma}$
- Result blessed on 20th of August 2009.
- Cross section measurement:

$$\sigma_{ZZ} = 1.56^{+0.80}_{-0.63}(\textit{stat}) \pm 0.25(\textit{syst})~\textit{pb}$$

ъ.

Conclusions

backup

M. Bauce (INFN Padova)

 \mathbf{ZZ} \rightarrow IIII cross-section

CDF Italia 1-2/09/09 22 / 42

2

<ロト <回ト < 国ト < 国ト

backup

MC samples

Signal samples

• ZZ \rightarrow II+X - Pythia • 22 ev/nb • NLO cross section 1.511 pb • Filter on two leptons with M_{ll} >15 GeV • samples: we0s7d, we0sdd, we0sid, we0smd, we0spd, we0scf, we0sif.

Background samples

- WZ \rightarrow II Pythia
 - ► 7 ev/nb
 - NLO cross section 0.365 pb
 - samples: we0s6d, we0scd, we0shd, we0sld, we0sod, we0sbf, we0shf.
- tt Pythia
 - 10 ev/nb
 NLO cross section 0.68778 pb
 te0s2z
- $Z\gamma \rightarrow II$ Pythia
 - 5 ev/nb
 - NNLO cross section 10.33 pb k-factor 1.36
 - Filter on two leptons with $M_{\rm H}$ >15 GeV
 - samples: re0s33(ee), re0s34($\ddot{\mu}\mu$), re0s37(au au)

Trigger efficiency

Trigger Efficiencies

- Calculated directly from $Z \rightarrow II$ data using Tag & Probe method for muons with $p_T > 20$ GeV.
- Treat 2D/3D triggers (XFT stereo upgrade) separately.
- Apply livetime corrections when necessary for different DPS.
- CMUP/CMX efficiencies calculated with CMX-CMUP events.

e.g.

$$\epsilon(CMUP, 2D) = \frac{\#(CMX - 2D \&\& CMUP - 2D)}{\#CMX - 2D}$$
$$\epsilon(CMUP, 3D)[I] = \frac{\#(CMX - 2D \&\& CMUP - 2D \&\& CMUP - 3D)}{\#(CMX - 2D \&\& CMUP - 2D)}$$
$$\epsilon(CMUP, 3D)[II] = \frac{\#(CMX - 3D \&\& CMUP - 3D)}{\#CMX - 3D}$$

• CMP efficiencies calculated with CMP-CMX events

$$\epsilon(CMP) = \frac{\#(CMX - 2D \&\& CMP)}{\#CMX - 2D}$$

M. Bauce (INFN Padova)

(日) (同) (三) (三)

Run Period	P14-P19	P20	P21	P22	P23	P14-P23
Trigger ϵ						
CMUP 2-D	0.917	0.916	0.902	0.905	0.912	0.913
CMUP 3-D (I)	0.826	0.867	0.851	0.857	0.869	0.842
CMUP 3-D (II)	0.828	0.871	0.853	0.852	0.868	0.843
CMX ARCH 2-D	0.944	0.921	0.954	0.967	0.956	0.948
CMX ARCH 3-D (I)	0.916	0.898	0.919	0.937	0.899	0.916
CMX ARCH 3-D (II)	0.901	0.883	0.896	0.923	0.885	0.899
CMX MS/KS 2-D	0.828	0.802	0.826	0.774	0.863	0.822
CMX MS/KS 3-D (I)	0.810	0.783	0.813	0.752	0.811	0.801
CMX MS/KS 3-D (II)	0.794	0.753	0.787	0.775	0.808	0.787
CMP PHI-GAP	0.769	0.794	0.802	0.797	0.838	0.787
CMP PHI-GAP (II)	0.787	0.848	0.854	0.870	0.900	0.828
LiveTimes	P14-P19	P20	P21	P22	P23	P14-P23
CMUP 2-D	0.876	0.830	0.776	0.800	0.813	0.837
CMUP 3-D	1.000	1.000	1.000	1.000	1.000	1.000
CMX 2-D	0.802	0.750	0.667	0.701	0.711	0.750
CMX 3-D	0.992	1.000	1.000	1.000	1.000	0.996
CMP PG	0.920	0.876	0.813	0.800	0.811	0.871
CMU EG	0.933	0.93	0.83	0.71	0.74	0.870

- Good agreement with Joint Physics results.
- Trigger efficiencies on CMX Ms/Ks did not look as expected. We now derive them by scaling the efficiencies for CMX arches (\sim 10% difference).
- On these efficiencies we take as error ~ 2% added in quadrature to the average spread between different calculation of the efficiency (e.g. CMUP 2D (I) - CMUP 2D (II)).
- TCE & PHX trigger efficiencies are the same calculated by Joint Physics group.

(日) (同) (三) (三)

Lepton ID

Lepton considered

- Electron: TCE, PHX.
- Muon: CMUP, CMP, CMX, MsKs, BMU, CMIOCES, CMIOPES In blue new muon categories .
- Track: CrkTrk
- No Track isolation requirement.
- Most of our lepton definitions are the same of Joint Physics.

Lepton ID efficiencies

- Reconstruction and ID efficiencies calculated in Data and MC divide the two results to have a scale factor for MC simulations.
- Tag & Probe method: Z candidates with 76 GeV $< M_{II} < 106$ GeV. see CDFNote 8538
- $\bullet\,$ Generic probe for Central and Fordward muons $\rightarrow\,$ Fiduciality for the various efficiencies.
- Background subtraction from Z sidebands.
- Used the same lepton ID scale factors of the blessed analysis $H \rightarrow WW$.

Drell-Yan cross section

- Checks modeling of selection efficiencies for the different lepton types.
- Measured in data (4.8 ${\rm fb}^{-1}$) and $Z \rightarrow ee, \mu\mu$ Pythia MC.

• Most of lepton categories are in good ageement with theoretical prediction.

・ロト ・四ト ・ヨト ・ヨト

 $Z \to \tau \tau$

Theory in
$$\mathcal{L} = 4.8 fb^{-1}$$

 $X_{ZZprod} = 1.511 \text{ pb}$ 7252.8 ZZ events

Different BR

•
$$Z \rightarrow e^+e^- = 3.363$$
 %

•
$$Z \to \mu^+ \mu^- = 3.366 \%$$

•
$$Z \to \tau^+ \tau^- = 3.370$$
 %

$$au
ightarrow e
u(\gamma) = 19.6~\%$$

•
$$\tau \rightarrow \mu \nu = 17.36$$
 %

Actual signal region

$$BR(ZZ \rightarrow S.F.O.S.) \simeq 0.517 \% \rightarrow 37.50$$
 events (Expected: 4.8 $\rightarrow \epsilon \sim 15 \%$)

Signal region with different flavour

$$\mathsf{BR}(ZZ
ightarrow D.F.O.S.) \simeq 0.017~\%
ightarrow 1.23$$
 events (4.8 + 0.18) $|+\leq 3.75\%$

• \leq due to M_{II} cuts: probably we need to take (20 - 140) GeV with lot of background.

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ZZ with one *Z* $\rightarrow \tau \tau$

From ZZ MC sample selected events with $\tau^+\tau^-$ generated.

M. Bauce (INFN Padova)

 $ZZ \rightarrow IIII$ cross-section

ZZ with one $Z \rightarrow \tau \tau$

Statistics

In \mathcal{L} =3.6 fb^{-1} 12.8 100^{ths} of event with $N_{\tau} \geq$ 2.

- Requiring just Opposite Charge:
 - ▷ 8.4 100^{ths} event with 40 GeV $\leq M_{\parallel -2} \leq$ 140 GeV
 - ▶ 12.2 100^{ths} event with 20 GeV $\leq M_{\parallel -2} \leq 140$ GeV
- Requiring Same Flavor Opposite Charge (actual signal region):
 - 5.2 $100^{\textit{ths}}$ event with 40 GeV \leq $M_{\textit{II}-2}$ \leq 140 GeV
 - ▶ 8.2 100^{ths} event with 20 GeV $\leq M_{H-2} \leq 140$ GeV

- 31

Fake Rates

Fakeable Electron

 $E_T > 10 GeV$ $E_{Had}/E_{EM} < 0.125 + 0.00045 \cdot E$ Isolation < 0.3Has a good quality track Is not a conversion Fiduciality to central or plug

Fakeable Muon

 $\begin{array}{rl} p_{T} &> 10 \, GeV \\ \# \ \text{Axial SL} \geq 2 \ \text{with} \geq 5 \ \text{hits} \\ \# \ \text{Stereo SL} \geq 2 \ \text{with} \geq 5 \ \text{hits} \\ & \text{Track} \ |z_{0}| < 60 \ \text{cm} \\ & \text{Track} \ |d_{0}| < 0.2 \ \text{cm} \ (< 0.02 \ \text{cm} \ \text{with} \ \text{silicon}) \\ & E/P \ < 1 \\ & \text{Isolation} < 0.3 \\ & \chi^{2}/dof \ < 4.0 \ (< 3.0 \ \text{if Run} > 186598) \\ & \text{Fiduciality to different muon chambers} \end{array}$

・ロト ・四ト ・ヨト ・ヨト

Data Driven

Fake Rates

Calculate Fake Rates on a sample enriched in jets subtracting real EWK contribution:

- Denominator: candidate lepton (almost a good track)
- Numerator: Fully identified lepton

$$f_{i}(p_{T}) = \frac{N_{i}(\text{identified leptons}) - \sum_{j \in EWK} N_{ij}(\text{Identified leptons})}{N_{i}(\text{denominator objects}) - \sum_{j \in EWK} N_{ij}(\text{Denominator objects})}$$

- Fake Rates are calculated as function of p_T for each lepton type.
- Averaging measurements in JET20, JET50, JET70, JET100.
- Take the maximum spread as systematic uncertainty.

M. Bauce (INFN Padova)

 $ZZ \rightarrow IIII$ cross-section

CDF Italia 1-2/09/09 33 / 42

M. Bauce (INFN Padova)

 $ZZ \rightarrow IIII$ cross-section

CDF Italia 1-2/09/09 34 / 42

M. Bauce (INFN Padova)

 $ZZ \rightarrow IIII$ cross-section

CDF Italia 1-2/09/09 35 / 42

Background estimation

• We want to measure the number of events with:

3 leptons + 1 fake 2 leptons + 2 fakes

- Evaluate N_{3l+1f} and N_{2l+2f} from events with 3l+1d or 2l+2d avoiding overlap.
- Weight those events with the fake rates of each denominator object present.
- For the 2 leptons + 2 fakes contribution:

$$N_{Z+2fakes} = \sum_{d_1, d_2} f_{d1}(p_T^{d1}) \cdot f_{d2}(p_T^{d2}) = f^2 \cdot N_{2l+2d}$$

• While for 3 leptons + 1 fake there are two contributions:

$$N_{3l+1d} = N_{Z\gamma+d} + N_{2l+1f+1d} = N_{Z\gamma+d} + 2 \cdot f \cdot N_{2l+2d}$$

• Finally the total background, due to both 3l+1f and 2l+2f is

$$N_{Z\gamma+1fake} + N_{Z+2fake} = f \cdot N_{3l+1d} - f^2 \cdot N_{2l+2d}$$

• For each event considered all the possible combinations of denominators.

A matter of sign

3l+1d and 2l+2d

Writing in short notation:

$$N_{Z+2fakes} = \sum_{d_1, d_2} f_{d1}(p_T^{d1}) \cdot f_{d2}(p_T^{d2}) = f^2 \cdot N_{2l+2d}$$

The number of events with only one denominator is due to 2 contribution:

$$N_{3l+1d} = N_{Z\gamma+d} + N_{2l+1f+1d} = N_{Z\gamma+d} + 2 \cdot f \cdot N_{2l+2d}$$

$$N_{3l+f} = f \cdot N_{3l+d} = f \cdot N_{Z\gamma+d} + 2 \cdot f^2 \cdot N_{2l+2d}$$

So the total background, due both to 3l + 1f and 2l + 2f is

$$N_{Z\gamma+1fake} + N_{Z+2fake} = f \cdot N_{Z\gamma+d} + f^2 \cdot N_{Z+2d}$$

= $f \cdot N_{Z\gamma+d} + 2f^2 \cdot N_{2l+2d} - f^2 \cdot N_{2l+2d}$
= $f \cdot N_{3l+1d} - f^2 \cdot N_{2l+2d}$

Events with 3l+1d and 2l+2d are weighted with opposite sign.

Background overstimation

In Data Driven Background calculation, for each denom found, all candidates are duplicated and to the new ones the denominator is added and so on. In this process are neglected all the f^2 terms in event weight. In the case of an event with 2*d* we have

- 4l(+2d) 1 instead of $1 (f_1 + f_2 f_1 f_2)$ $3l + d_2(+d_1)$ · f_2 instead of $f_2(1 f_1)$
- $3l+d_1(+d_2)$ f_1 instead of $f_1(1-f_2)$ $2l+d_1+d_2$ f_1f_2 .

The former are correct if we consider the probability to have more than 4 leptons while the latter should be used in the case of just 4 leptons.

There should be no problems in such neglection because of the smallness of fake rates only if we have no more than 2 denominators per candidate.

In some case we really have more than 2 denominator candidate so in this way we are overstimating background.

3

Heavy flavour contribution

In JET sample - where we calculate Fake Rates

•
$$\left| \frac{\sigma(b\overline{b}-jets)}{\sigma(q\overline{q}-jets)} \sim 10^{-2} \right| \qquad (p_T^{\ j} \sim 50 \ \text{GeV})$$

In our Data Sample: 2I+2d candidates

- Required at least 2 real leptons in [76,106] GeV dilepton mass range.
- \bullet Contribution from Z + jets: $\frac{Z+b-jet(s)}{Z+jet(s)}~\sim 5\cdot 10^{-3} \rightarrow {\sf Negligible}$
- Main contribution to heavy flavor from $ZZ \to l^+ l^- + b \overline{b}$

From MC: 2.97% of the total ZZ contamination in 2l+2d sample is from heavy flavor.

- 2I+2d sample Data Driven:
 - 106 candidates corresponding to 0.082 100^{ths} of event
 - 0.014 100^{ths} ZZ contamination \rightarrow 17.4 % of total 2l+2d sample

 $0.174_{ZZ-cont} \times 0.03_{b\overline{b}} \sim 5 \cdot 10^{-3} \rightarrow \text{less than 1 candidate over 106 is from heavy flavor.}$

Heavy flavor contribution

 $ZZ \rightarrow IIII$ cross-section

Background modeling

MC driven

Evaluate the contribution of the following physics process looking for signal (4-leptons) in MC

- WZ: 0.335 100^{ths} of events.
- tt: 0.023 100^{ths} only 2l+2d.
- $Z\gamma = 0.27 \pm 0.05 \ 100^{ths}$ Nolso = 0.17 ± 0.01 100^{ths} .
- Total: 0.57 \pm 0.05 100^{ths} .
- Number of background events from MC simulation seems to be lower than what measured using Data driven methods, but they agree within the errors.
- To compare these results to that obtained with Data Driven method we must remember that in data there is contamination of real ZZ events.

(日) (同) (三) (三)

Significance

Significance

- Calculate the probability that the background fluctuate to give a number of events greater or equal to the expected ones.
- With pseudo-experiments:
 - Start from poissonian distribution n_{cand}^{3l+1d} and n_{cand}^{2l+2d} .

Weight those distribution with average fake rates.

Gaussian smearing of the probability distribution for systematic

$$b \rightarrow b \cdot \prod_{i=1}^{\#sys} (1 + s_i \cdot x_i)$$

• Evaluate the probability to have $n_{obs} \ge n_{exp}$.

• • • • •