

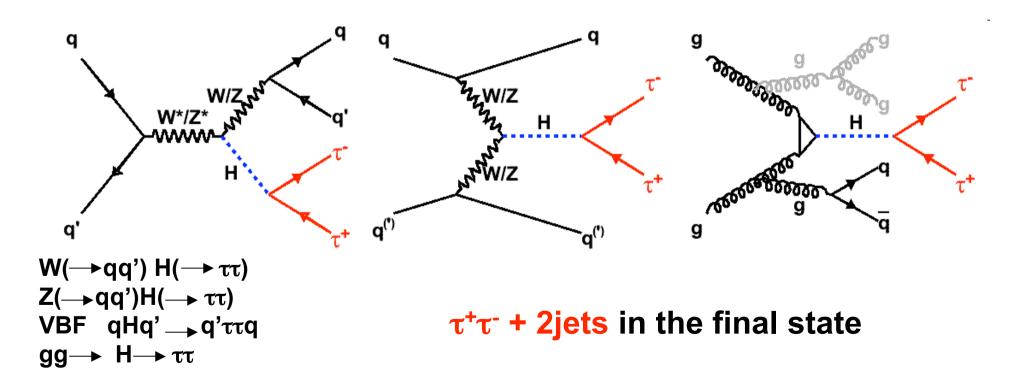
Università degli Studi di Trieste INFN Sezione di Trieste

LOW MASS STANDARD MODEL HIGGS—— TT SEARCH

Melisa Rossi, <u>Pierluigi Totaro</u>, Anna Maria Zanetti

Meeting CDF Italia
Trieste, 1-2 settembre 2009

Summary



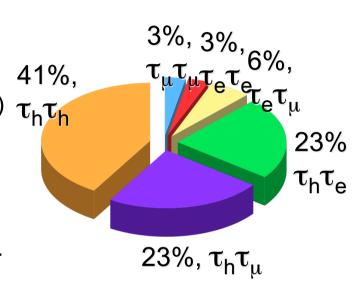
- Motivations
- Analysis strategy
- Tau identification based on Boosted Decision Trees: some details
- Status of the analysis
- Next steps

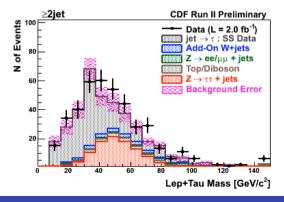
Motivations

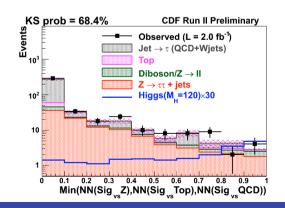
- Improve low mass Higgs search sensitivity.
- H $\rightarrow \tau \tau$ is a decay mode complementary to H \rightarrow bb:
- Simultaneous search of four signal processes. Total σ x B.R. is comparable to other Higgs analyses
- Dominant background is expected to be Z->tautau+jets which is well understood

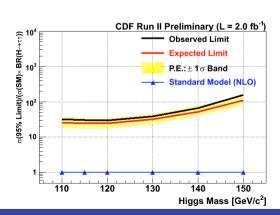
Current blessed result (K.Yorita & Y-K. Kim, note 9179)

Data: 2.0 fb⁻¹ (up to period 12)

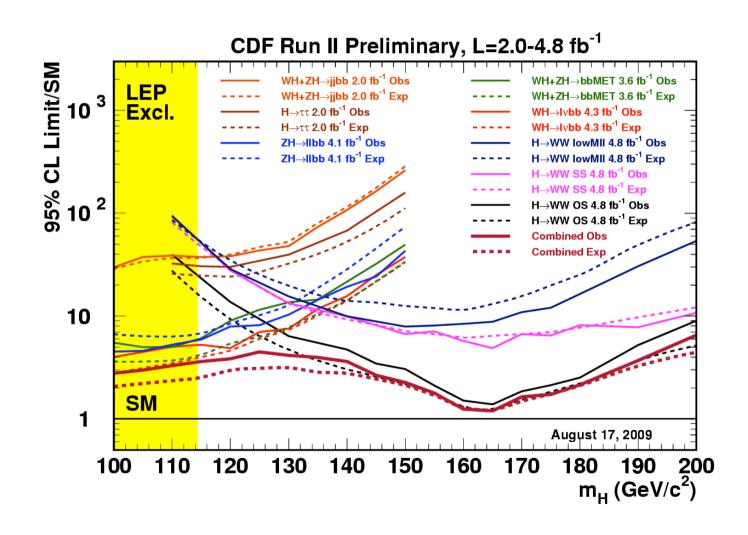

Signature: one leptonic + one hadronic tau (46% B.R.) $\tau_{\rm h}\tau_{\rm h}$


+ 2 jets


Analysis tecnique: a set of 3 artificial Neural Networks to discriminate signal from principal backgrounds (Z, tt and QCD)


obs.(exp.) limit/SM σ : 30.5 (24.8) at m_H = 115 GeV/c².

~10% contribution to low mass limit combination



Current blessed result (K.Yorita & Y-K. Kim, note 9179)

How can we increase sensitivity in the H→ττ channel?

Many possibilities for improvements in the analysis.

- · adding more data
- Improve sensitivity by implementing a new hadronic tau identification algorithm
- adding 0jet and 1jet channels
- looking at other decay modes

How can we increase sensitivity in the H→ττ channel?

Many possibilities for improvements in the analysis.

adding more data _______

It is in our plans to double the data analyzed (4 fb⁻¹) by the end of 2009

 Improve sensitivity by implementing a new hadronic tau identification algorithm

I dedicated the second year of my Ph.D. to this work (see note 9667) and I will give more details in the next slides

adding 0jet and 1jet channels

Acceptance can increase x4, but backgrounds become overwhelming

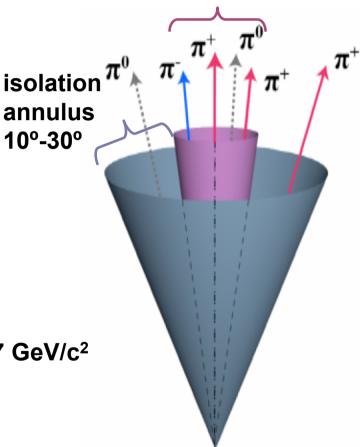
looking at other decay modes

 $τ_e$ + $τ_μ$ channel should be straightforward:very clean signature (no DY bkg); +6% acceptance almost for free

CDF tau identification

TAUS decay modes:

$$\tau \longrightarrow X_h \nu_{\tau}$$
 hadronic decay B.R. 65% (X_h mainly $\pi^{\pm 0}$, small frac. o kaons)


HADRONIC TAUS

- a narrow calorimeter jet;
- charged tracks with low multiplicity (1 or 3)
- reconstructed neutral pions
- Invariant mass of hadron system $M_h < M_\tau = 1.777 \text{ GeV/c}^2$

STANDARD TAU IDENTIFICATION

- two-cone based algorithm
- a set of rectangular cuts on tracks and neutral pions
- objects in isolation region are used to veto tau-like QCD-jets

signal cone:0-10°

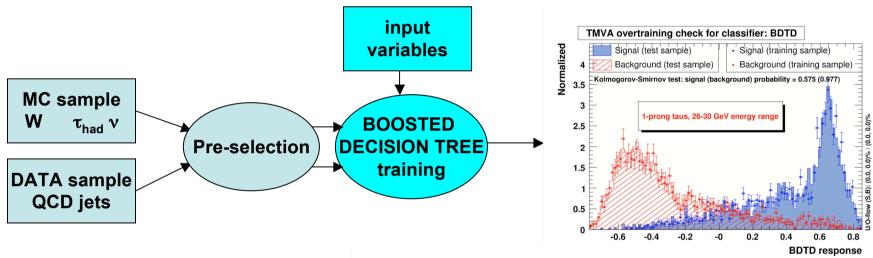
Can we improve tau identification?

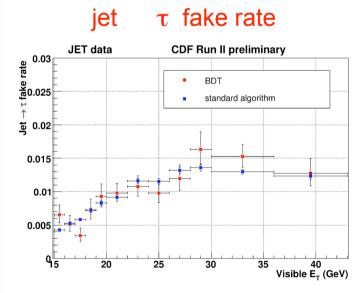


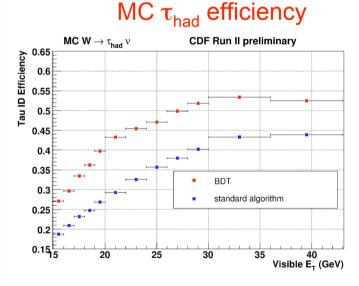
- •All information available in each event is used
- Correlations between different variables are taken into account
- •Discrimination between different objects (in our case taus and tau-looking jets) can be more powerful

We tested a classifier method based on the BOOSTED DECISION TREES

A DECISION TREE: a sequence of rooted binary splits Ingredients :1) a <u>training sample</u> for signal and background 2) a set of <u>discriminating variables</u>


At the end of a splitting, an event is classified as "signal"(+1) or "background"(-1)


BOOSTING: N trees are created. Events misclassified in the N-th tree, are given an <u>increased weight</u> in the (N+1)th tree.


An event final score is given by the weighted average of different tree outputs

New algorithm based on BDTs trained to discriminate hadronic taus from QCD jets

With a similar jet → τ fake rate, corresponding efficiency is increased of about 15%.

Scale factor: more detail in next slides

Analysis overview

-We use "Lepton+Track" trigger: CEM/CMUP/CMX + an isolated track

-Final state:

- 1) one tight lepton (e or μ) with Pt > 10 GeV
- 2) one hadronic tau with visible Pt>15 GeV:

first step: std ID for code validation by comparing with Kohei's results **second step**: BDT-ID implementation; output lower cuts are chosen in order to keep the same signal acceptance as std ID(and then maximize fake rejection)

3) two jets 0.4cone (0-jet and 1-jet events used as control regions)

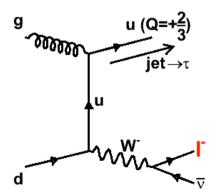
-Minimal event selection:

- Primary vertex Z_0 < 60 cm and class>=12
- Leptons are required to have opposite sign (OS)
- Leptons are required to be separated DR>0.4, close in Z (Δ Z<5 cm) and close to primary vertex (Δ Z₀ < 5 cm)
- Z veto (ee/μμ)
- Cosmics and conversions rejection
- MET corrected for muon and jets
- leading jet with E₊ > 20 GeV

Background estimation

-Physics background: $Z \rightarrow \tau \tau$, $Z \rightarrow ee$, $Z \rightarrow \mu \mu$

ZZ/WW/WZ/tt


estimated from MC (Pythia) and normalized to the

theoretical cross section

-Fake background: jet_ τ

based on SS DATA

1) QCD/γ+jets symmetric in charge (OS ≈ SS)

2)W+jets OS vs SS asymmetry: additional W+jets $(N_{OS}-N_{SS})$ estimated from Alpgen MC (followed the procedure described in 9179)

3)Small correction to avoid double counting of jet $\rightarrow \tau$ in $Z \rightarrow$ ee and $Z \rightarrow \mu\mu$ MC.

TAU ID SF evaluation

• We scale the number of the events to the $Z \rightarrow \tau\tau$ cross section

$$\sigma(Z \to \tau \tau) = \frac{N_{obs} - SF_{IDtau}N_{bkg}^{MC} - N_{bkg}^{SSdata}}{A \times \varepsilon_{trig} \times SF_{IDlep} \times SF_{IDtau} \times \int Ldt}$$

where N_{obs} = number of observed events

 N_{bkg} = background expectation without $Z \rightarrow \tau\tau$ in the mass range 66 GeV/c² < $M_{\tau\tau}$ <116 GeV/c²

A = acceptance

 ϵ_{trig} = trigger efficiencies (electron+track and muon+track)

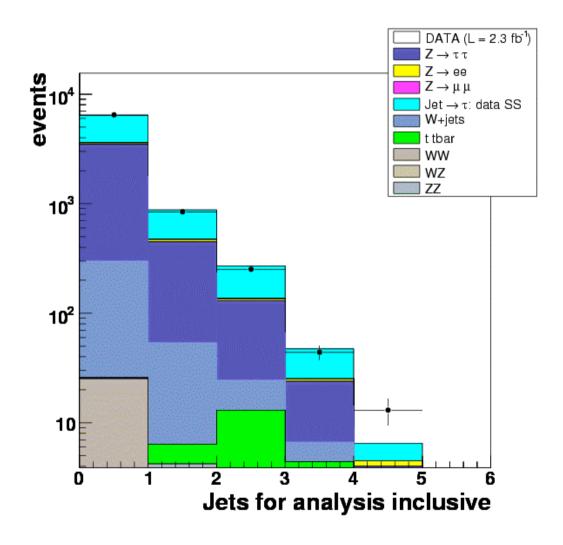
 SF_{IDlep} = ID scale factors for electron and muons σ = 251.3 pb theoretical value for cross section

$$SF_{IDtau} = \frac{N_{obs} - N_{bkg}^{SSdata}}{\sigma \times A \times \varepsilon_{trig} \times SF_{IDlep} \times \int Ldt + N_{bkg}^{MC}} = 0.99 \pm 0.07$$

Results: background summary 2.3 fb⁻¹

Number of	standard ID BDT ID		diff(%)
expected events	first stage	second stage	
Ζ/γ* ττ	3583	3702.5	+3
Z/γ* ee	150.1	133.1	-11
Ζ/ γ* μμ	102	26.5	-74
WW/WZ/ZZ	32.6	31.9	-2
t tbar	19.1	18.8	-2
jet τ (SS data)	4809	3361	-30
add-on W-jets	582.4	350.6	-40
TOTAL BKG	9278	7624	-18
DATA	9509	7634	-20

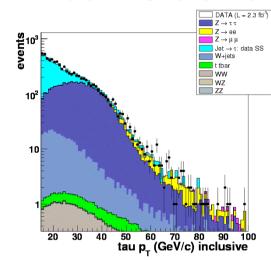
Results: background summary 2.3 fb⁻¹

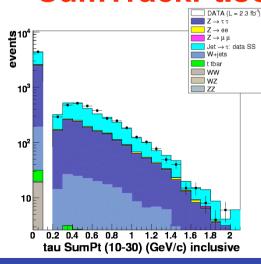


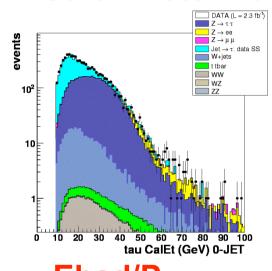
Number of expected events	0 – jet	1 – jet	>=2 jets
Ζ/γ* ττ	3182.7	393.9	125.9
Z/γ* ee	103.5	22.8	6.8
Ζ/ γ* μμ	22.7	2.8	1.0
WW/WZ/ZZ	25.4	4.2	2.2
t tbar	0.2	2.1	16.5
jet τ (SS data)	2798	405	158
add-on W-jets	272.5	47.6	14.2
TOTAL BKG	6405	878.4	324.6
DATA	6481	841	312

EXPECTED SIGNAL IN 2.3 fb⁻¹(2-JET channel) ~ 0.7 Higgs

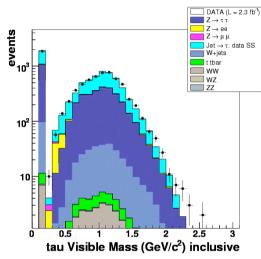
Results: some plots

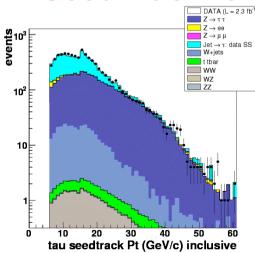



Results: some plots


Tau Visible Pt

SumTrackPtIso

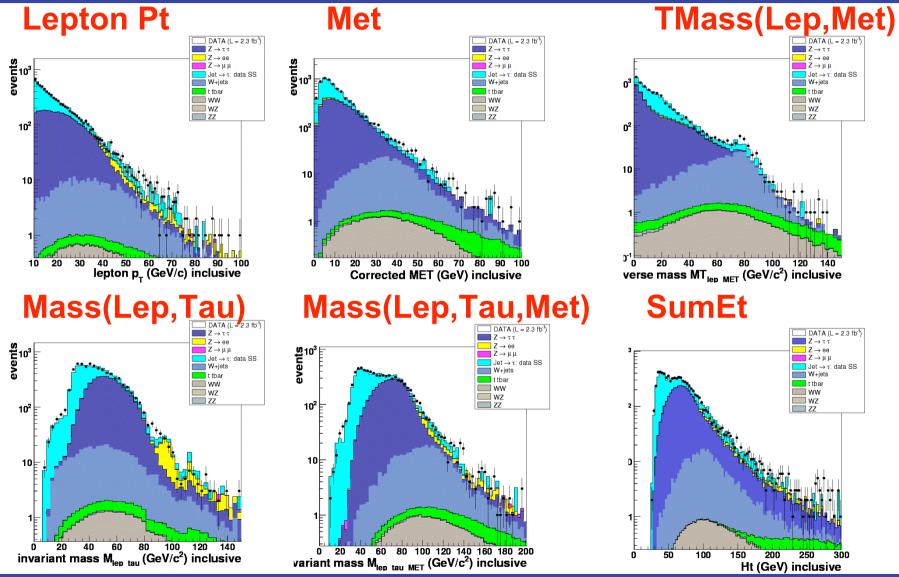

Calorimeter Et


Ehad/P | Z → ττ | Z → θθ | Z → μμ | Z → ττ | data SS | W-jets | Www | WZ | ZZ | ZZ | Data | C | Data (L = 2.3 fb²) | Data (L = 2.3 fb

0.2 0.4 0.6 0.8

Visible Mass

SeedTrackPt



1 1.2 1.4 1.6 1.8 2

tau Ehad/P inclusive

Results: some plots

Conclusions and future steps

- BDT performances are really good and promising;
- Background is pretty well modeled: some small discrepancies are unde investigation;

IN PROGESS:

- Systematics evaluation;
- BDT training for final event signal vs. background discrimination;
- Extension to 4 fb⁻¹: waiting for the trigger efficiencies for the last period (end of September).