

A Top Quark Mass in The Dilepton Channel

CDF Italia meeting

Top Production and Signature

Decaying in Wb ~ 100 % of the times \rightarrow 3 possible signatures depending on W's products

State of the art @ Tevatron

5

Features

- \rightarrow Very clean sample (S:B ~ 3:1)
- → Less affected from JES systematic (2 jets)
- → Low statistics
- → Unconstrained kinematics (2 neutrinos)

Importance

- As uncorrelated sample:
 - \rightarrow contribute to improve overall resolution on M_{top}
- Due its unique bg:
 - → helps including/excluding other non-SM signal processes (stop)

Dilepton channel

 \rightarrow sensitive to non-SM background processes

A particular top mass measurement

Documentation for this work:

- × 340/pb: PRD 73 112006, CDF note 7641
- × 2.9/fb: CDF notes 9048, 9433, 9505, **arXiv:0901.3773**

<u>Authors</u>: I. Suslov, <u>M. Trovato</u>, G. Velev, V. Glagolev, Oleg Pukhov, G. Bellettini, G. Chlachidze, J. Budagov, Alexei Sissakian

Selection of the events: LTRK algorithm

INFN Istituto Nazion di Fisica Nucle

General cuts

- A well identified isolated lepton ("tl")
- $\frac{1}{2}$ Cluster E_T > 20 GeV

ੂ { P⊤ >20 GeV

- A well isolated track lepton (trkl)
- → PT > 20 GeV
- ✓ Two or more jets → $E_T^{@L5} > 20 \text{ GeV}$

Missing energy

 $\rightarrow E_T > 25 \, \text{GeV}$

2 September 2009 – CDF Italia

Vetoes

- MET < 40 GeV (if 76 GeV/ $c^2 < M_{tl-trkl} < 106 GeV/c^2$)
- Cosmic
- Same sign dilepton ltrk
 - $\Delta \varphi$ (tl, MET) < 5°;> 175°
 - $\Delta \varphi$ (trkl, MET) < 5°
- $\Delta \varphi$ (MET, jet) < 25°

(if MET<50GeV)

Why LTRK?

Compared to the other competive selection (DIL)

- 1) Statistics is increased at the price of higher (but
 - well modeled) background rates

PRD 73 112006	DIL	LTRK
Luminosity	340 pb ⁻¹	360 pb ⁻¹
Expected $t\bar{t}$	15.7 ± 1.3	19.4 ± 1.4
Drell-Yan	5.5 ± 1.2	8.7 ± 3.3
$W(\rightarrow \ell \nu)$ + jets fakes	3.5 ± 1.4	4.0 ± 1.2
Diboson	1.6 ± 0.3	2.0 ± 0.4
Total background	10.5 ± 1.9	14.7 ± 3.6
Total expected	26.2 ± 2.3	34.1 ± 3.9
Observed	33	46

6) We investigate a sample otherwise unexplored

2 September 2009 – CDF Italia

Marco Trovato - SNS & INFN Pisa

The method: event by event

- Constrain the kinematics PHI method: Assume φ₁, φ₂ of the neutrinos as known
 → optimal 144 point grid created in (0,π)x(0,π)
- Kinematical event reconstruction:

 \rightarrow for each (ϕ_1, ϕ_2) we minimize χ^2 with respect to M_t

Templates are parametrized with analytic functions (f_s) depending on M_t

Marco Trovato - SNS & INFN Pisa

Bg contamination

- \rightarrow DY & Diboson are simulated and weighted according to their cross-section
- \rightarrow Fakes are obtained from data

Reconstructed events are normalized to the expected rates

Process	Expected rate	
	$(\int Ldt = 2.9/fb)$	
Signal (ttbar)	162.6 ± 5.1	
Diboson	15.2 ± 1.0	
Drell-Yan	49.6 ± 7.2	
Fakes	80.2 ± 15.7	
Total background	145.0 ± 17.3	

Fisica Nucleare

The method: bg templates

<u>A bg mass template</u> defines the probability density function to renconstruct M_t^{reco} from a non-ttbar event

Templates are parametrized with analytic functions (f_b) M_t - undependent

 \geq

Marco Trovato - SNS & INFN Pisa

Fisica Nucleare

The method: Likelihood

- INFN Istituto Nazionali di Fisica Nucleare
- The likelihood expresses the probability that a M_t^{reco} distribution be obtained from a sample of N events composed of n_s signal events and n_b background events

Calibrations

Systematic uncertainty

Source	Uncertainty (GeV/c^2)
Jet energy scale	2.9
<i>b</i> -jet energy scale	0.4
Lepton energy scale	0.3
Monte Carlo generators	0.2
Initial and final state radiation	0.2
Parton distribution functions	0.3
Luminosity profile (pileup)	0.2
Background composition	0.5
Fakes shape	0.4
Drell-Yan shape	0.3
Total	3.1

* JES is ~94% of the overall systematic uncertainty

2 September 2009 - CDF Italia

Marco Trovato - SNS & INFN Pisa

With respect to the previous published result $(M_{top} = 169.7^{+8.9}_{-9.0}(stat) \pm 4.1(syst) GeV/c^2)$, PRD 73 2006 we note:

A ~ 20% improvement in mass sensitivity due to the introduction in the χ^2 of a BW instead of a Gaussian distribution

- First dilepton mass measurement with ~ 3/fb data
 - → first to investigate the LTRK sample at high luminosities (50% overlap with DIL sample)
 - → first to use relativistic Breit-Wigner distribution function and top-mass dependent top width in the kinematical event reconstruction

Plans at nex step:

- Analysing separately b-tagged and untagged events
- Exploiting event by event probability
- Increasing statistics

BACKUP

: Orthogonal measurement

