CYGNO simulations

E. Baracchini¹, G. Cavoto², G. D'Imperio², F. Di Clemente², E. Marconato², D. Pinci², G. Dho¹, D. Marques¹

¹GSSI L'Aquila

CYGNO meeting 18/10/19

² Università La Sapienza e INFN Roma

Summary of simulation activities

- Background simulations with GEANT4
 - o ambient gamma/neutrons and shielding studies(Giulia, Gianluca)
 - o internal background, radioactivity of the setup (Flavio, Gianluca)
- Signal simulations: nuclear recoils with SRIM (Emanuele M., Davide P.)
- **Drift and detector effect**: simulation of electron drift and diffusion with Garfield (Emanuele M., Davide P.)
- Study of feasibility of **solar neutrino measurements**, electron range in different gas mixtures (Elisabetta, G. Dho, D. Marques)

Background simulation with GEANT4

Background components

- Ambient neutrons/gammas (origin: outside setup, mostly rock)
- "Radiogenic" neutrons/gammas (origin: materials in setup)
- Cosmogenic neutrons (origin: muon interactions)

Shielding options

1) 50 cm water + 15 cm Pb + 5 cm Cu

2) 250 cm water + 5 cm Cu

5 cm copper shield

250 cm water shield

Background from ambient gammas

- Goal total background < 10⁴ evt/yr
- → both options (1 and 2) ~10³ evt/yr

Pro's option 1:

- good gamma rejection
- compact shielding
- Pb shields gammas produced by neutron capture in water

Con's option 1:

- expensive
- OPERA Pb is too radioactive, need archaeological lead

Pro's option 2:

- good gamma rejection
- negligible cost of primary material (water)
- only cost of infrastructure (tanks, etc.)
- water is radio-pure

Con's option 2:

- large size
- need to verify the effect of secondary gammas from neutron interactions (wip)

Radioactivity background of lead shield (OPERA)

- Energy deposit in CYGNO detector from lead shield radioactivity
- assume ²¹⁰Pb of OPERA lead
- U, Th, K activities from T-REX paper (arxiv <u>1812.04519</u>)
- shielding option 1 (50 cm water + 5 cm Pb + 5 cm Cu)

	Activity [mBq/kg]	Rate [cts/yr]
²³⁸ U	0.33	11.2 10 ³
²¹⁰ Pb	10 ⁵	1.97 10 ⁶
²³² Th	0.10	4.51 10 ³
⁴⁰ K	1.2	4.6 10 ³

Total rate 2 10⁶ cts/yr

Even a 5 cm-thick shield of lead for 1 m³ detector gives a large background, unless using archaeological lead.

Status shielding & to do

- Shielding with 15 cm lead is a reasonable option only if we use archaeological lead (expensive), otherwise too radioactive
- Water + copper shielding is good for ambient gammas and for radioactivity but need to evaluate the effect of secondary gammas from neutron capture in water
- To do: Neutron background + secondary gammas (work in progress..)

Camera radioactivity

Measured with HPGE at LNGS High content of U, Th and K in the camera body, mostly K in the camera lens

Camera lens Camera body sample: objective of Hamamatsu orcaflash4.0, 213.5 q (with plastic cap), CYGNO camera, Hamamatsu, orca-flash4.0, 2.1275 kg, CYGNO sample: number: number: live time: 504104 s live time: 83383 S GePaolo detector: detector: GeMPI radionuclide concentrations: radionuclide concentrations: Th-232: Th-232: Ra-228: (0.077 +- 0.009) Bg/pc Ra-228: (2.1 + - 0.2) Bq/pc Th-228: (0.078 +- 0.006) Bq/pc Th-228: (2.1 +- 0.1) Bq/pc U-238: Ra-226 (0.41 +- 0.02) Bq/pc U-238: (0.9 +- 0.3) Bq/pc Pa-234m Ra-226 (1.8 + - 0.1) Bq/pc (7 +- 2) Bq/pcPa-234m U-235: (0.031 +- 0.008) Bg/pc U-235: (0.4 +- 0.1) Bq/pc K-40: (11 +- 1) Bq/pc K-40: (1.9 +- 0.3) Bg/pc Cs-137: < 0.0057 Bg/pc Cs-137: (0.09 +- 0.03) Bq/pc Co-60: < 0.0099 Bg/pc @ start of measurement: 10-JUL-2018 @ start of measurement: 12-JUL-2018 Co-60: < 0.012 Bq/pc La-138: (0.52 +- 0.04) Bq/pc

Background from cameras (body + lens)

Energy deposit in CYGNO detector:

Events in [0-20] keV: **2.05** x **10**⁷ cpy

We investigated the effect of a copper shielding to the camera body and a fused silica layer between lens and acrylic box

> 4.5 cm copper 5 cm fused silica

Shielding for cameras

Energy deposit in CYGNO detector:

Events in [0-20] keV: 6.60 x 10⁶ cpy

Status background study & to do

- Cameras (body+lens) are the most radioactive element of the setup
- Large background in CYGNO gas, even with copper + fused silica shielding
- Possible solutions:
 - o understand what part of the camera body is most radioactive, R&D of the camera assembly (measure separate pieces of a broken camera from Hamamatsu)
 - investigate use of fused silica lens (low radioactivity)
 - o use mirrors, and place the cameras far from the detector, with some thick shielding
 - o other...?
- To do: systematic studies of internal background, starting from the parts close to the sensitive region (GEM, field cage, etc..)

Signal simulation

Range of ions

Dark matter expected signal is a nuclear recoil (NR) SRIM used to calculate the range of nuclei (p, He, C, F) in different gas mixtures

He nuclei energy in 60/40 (almost double in 80/20)
10 keV → 170 μm
20 keV → 300 μm
100 keV → 1.1 mm

- Comparison between SRIM and GEANT for 0.5 MeV He in 60/40 shows that results are compatible: 3 mm in SRIM and 2 mm in GEANT
- SRIM can't simulate electrons

Energy vs track length for p and He

Manual fit to data in Ev[i]L plot provided by Emanuele & Igor:

- He slope: 80/4 = 20 keV/mm
- proton slope: 25/4 = 6.2 keV/mm

Diffusion in 60:40 He:CF₄ mixture

This corresponds to directionality thresholds in energy of:

- 60 keV (60/40)
- 45 keV (70/30)
- 30 keV (80/20)

- Diffusion effects were also simulated with Garfield
- Agreement with experimental data
- Diffusion effect does not decrease for drift field > 500 V/cm

Simulation of the detector

He 60 keV in $HeCF_4$ 60%/40% simulated with SRIM and GEANT

→ applied diffusion in 10 cm depth camera

SRIM and GEANT are in agreement, also agreement with data (No equivalent comparison for electrons because SRIM can't simulate electron recoils)

Status signal simulation & to do

Results of simulation eventually should be used as input to the Analysis & Reconstruction in order to study ER rejection and NR efficiency

- Systematic analysis of NR MC pictures (SRIM + diffusion)
- Validation GEANT4 vs SRIM (in progress)
- Systematic analysis of NR and ER MC pictures (GEANT4 + diffusion)
- Comparison data-MC and interpretation of data

Electron recoils and solar neutrinos

Range of electrons

- Exploring the possibility to use CYGNO as a detector for solar neutrinos
- Neutrino scattering produces electron recoils
- Study of the electron range in different gas mixtures

Status & to do

- Simulate diffusion with Garfield
- Apply detector effect and produce MC pictures of the tracks
- Study energy and angular resolution of the tracks
- Study threshold for directionality