

Impact of timing and cross-talk properties of Burle MCP PMTs on counter performace – status report

Peter Križan University of Ljubljana and J. Stefan Institute

SuperB PID, December 13, 2007

December 13, 2007

SuperB PID meeting

New bench tests: cross-talk and timing properties

Burle MCP PMT has excellent timing properties, a promising photon detector also for very precise time measurements.

Additional bench tests needed: study detailed timing properties and cross-talk.

Determine their influence on the •position resolution and •time resolution

Basic parameters of BURLE MCP-PMTs

Both tubes with 6mm photocathode to MCP distance

- multi-anode PMT with two MCP steps
- bialkali photocathode
- gain ~ 0.6 x 10⁶
- collection efficiency $\sim 60\%$
- box dimensions 71x71mm²
- active area fraction ~ 52%
- 2mm quartz window

BURLE 85011 MCP-PMT

- 64 (8x8) anode pads
- pitch ~ 6.5mm, gap ~ 0.5mm
- $\bullet~25~\mu m$ pores

BURLE 85001 MCP-PMT

- 4 (2x2) anode pads
- pitch ~ 25mm, gap ~ 1mm
- •10 μm pores

Scanning setup: optical system

Outside dark box:

- PiLas diode laser system EIG1000D (ALS)
- 404nm laser head (ALS)
- filters (0.3%, 12.5%, 25%)
- optical fiber coupler (focusing)
- optical fiber (single mode,~4μm core)

Inside dark box mounted on 3D stage:

- optical fiber coupler (expanding)
- semitransparent plate
- reference PMT (Hamamatsu H5783P)
- focusing lens (spot size $\sigma \sim 10 \mu m$)

SuperB PID meeting

Timing resolution, contributions

•Laser: 15ps (rms) •Electronics: 12ps (rms) TTS of photo-electron (blue): 90ps/sqrt(12) = 26ps (rms) Sum in squares: 32ps \rightarrow very close to 37-40ps

Understanding time-of-arrival distribution

December 13, 2007

Time-of-arrival resolution

What happens if a tube with d=1mm is used in B field?

Main peak: Δt_0 flat over 90ps/6=15ps \rightarrow rms=4.5ps \rightarrow probably negligible contribution to timing 70%

 \rightarrow rms of the TDC distribution 450ps $\rightarrow \sim$ 80ps, for N photons again use only the 'first' ones

- Typical situation in TOF measurements; not the same as multiphoton hits on a single pad.
- A study is under way (measurements have already been done, but Samo did not manage to analyze the data yet), and we shall report about the results next time.

Photon detection uniformity

- Number of detected events at different positions of light spot
 sum of all 4 channels
- double counting at pad boundaries due to charge sharing

December 13, 2007

SuperB PID meeting

Peter Križan, Ljubljana

Charge sharing

Fraction of the signal detected on channel 1 vs. x position of light spot

sizable charge sharing in
~2mm wide boundary area
can be used to improve position resolution

December 13, 2007

As expected: more photo-electron initial energy for blue photons

Charge sharing impact on photon impact point resolution

Charge sharing over +-2mm around teh boundary \rightarrow can be used to improve the resolution for a sizeable fraction of the detector.

Ultimate resolution: depends on the color, 0.3mm for blue.

Smaller d: even better!

Magnetic field: even better! But: charge sharing area becomes smaller. This can be further tuned by the voltage at the last step.

What happens if a tube with d=1mm is used in B field?

→ Back-scattering range will be drasticaly reduced in high B field

small doviation

small deviation at pad boundaries

Not understood, need more tests, in particular in B field

Scanning setup: read-out

MCP with 8x8 pads: detection vs. x

- Number of detected signals vs. x
- Small variation over central part

Response similar to 2x2 MCP PMT: charge sharing and long tails due to photo-electron back-scattering.

8x8: Timing uniformity for single pads

TDC vs. x correlation of single pads: same features as for the 2x2 tube

- uniform for central pads
- large variation for pads at the outer edges of the tube

TDC [ps]

Beam test: time-of-flight measurement

Time-of-flight with Cherenkov photons from aerogel radiator and PMT window

Conclusions

Back-scattering range and spread in timing depend on the

- photocathode-MCP plate distance
- photocathode-MCP plate voltage

- →The distance should be as small as possible, ~0.5mm-1mm (in the tested tube 6mm)
- →The voltage should be as high as possible, 500V max. allowed (in the tested tube fixed to 200V)
- → Some of the effects will be reduced (or disappear) in high B field, some will remain (timing)