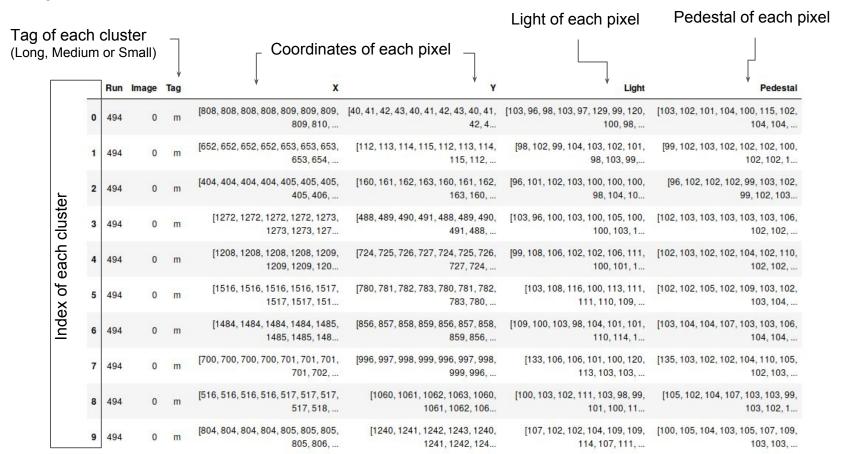
Analysis i2DBSCAN

02-14-2019

Status Report


- Developed the algorithm to:
 - ☐ Run *i2DBSCAN* over the images (one or more runs);
 - Create a table with the necessary information;
 - ☐ The algorithm is taking 8-10 minutes to run over 300 images and save the **table**.
- We chose to not generate all the variables in the same time that we are doing the clusterization.
- But the 'table' has all the information needed to create the variables.
 - For now, it is better to have 'checkpoints' in this stage of developing the framework;

File name	Tens GEM (V)	He:CF4	T2 (kV/cm)	Drift field	esposizione (s)	Commenti
run494	440	60/40	2	1	2	neutroni from AmBe + CMOS + 1 panetto di Pb+piu' vicini (300 eventi)

☐ On Going:

- We are using 'Pandas' to be able to analyze the clusterization output;
- ☐ In this way, we are capable of create any variable easily;
- And our focus is characterize the 'long' tracks.

Output table of iDBSCAN

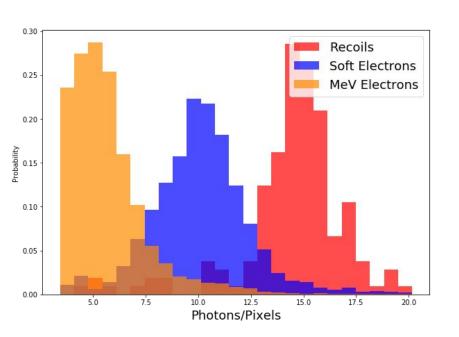
New table with a few variables

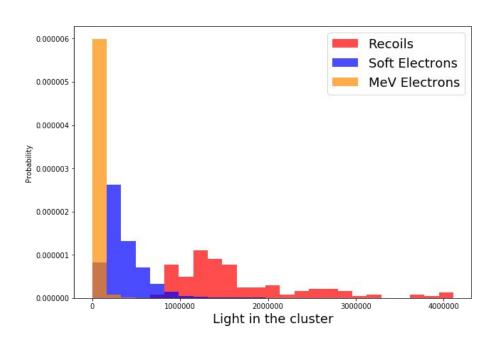
Using this 'Pandas' tools is very simple to managed the information:

- Insert or remove variables;
- Filter by any feature.

	Run	Image	Tag	SumLight	SumPedestal	SumPixels	PhotonPPixels	XYCorrelation	LightPPixel
0	494	0	m	639904.0	605129.0	5888.0	5.906080	0.680871	108.679348
1	494	0	m	276976.0	261851.0	2544.0	5.945362	0.693469	108.874214
2	494	0	m	283543.0	271467.0	2640.0	4.574242	0.716070	107.402652
3	494	0	m	223004.0	208398.0	2016.0	7.245040	0.234880	110.617063
4	494	0	m	933856.0	886972.0	8544.0	5.487360	0.876593	109.299625
5	494	0	m	152000.0	143567.0	1376.0	6.128634	0.826296	110.465116
6	494	0	m	441261.0	413057.0	3968.0	7.107863	0.452934	111.204889
7	494	0	m	180194.0	167429.0	1616.0	7.899134	0.665383	111.506188
8	494	0	m	241204.0	228315.0	2208.0	5.837409	0.115408	109.240942
9	494	0	m	153964.0	150582.0	1456.0	2.322802	0.280943	105.744505

Simple Example

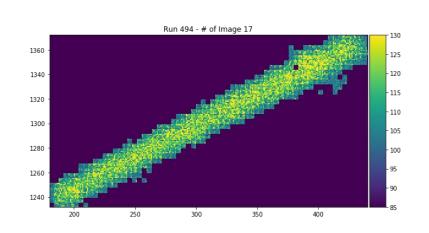

If we want to check the clusters that have:

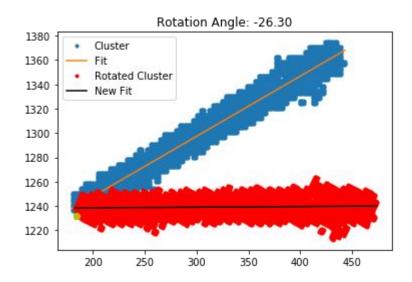

- □ Tag = 'L'
- ☐ Photon/Pixel < 10

So, will be easy to plot the cluster and debug if it is necessary

ut[134]:		Run	Image	Tag	SumLight	SumPedestal	SumPixels	PhotonPPixels	XYCorrelation	LightPPixel
	6930	00000	83	1	4066372.0	3992954.0	38944.0	1.885220	0.336163	104.415879
	6931	494	83	1	1239130.0	1198118.0	11680.0	3.511301	0.242340	106.089897
	7933	494	93	- 1	5170105.0	4956233.0	47984.0	4.457152	0.097981	107.746436
	18080	494	209	1	13862470.0	13572413.0	132880.0	2.182849	0.798478	104.323224
	18081	494	209	ı	1765949.0	1742871.0	17104.0	1.349275	0.573098	103.247720
	18082	494	209	1	8106981.0	7801219.0	75600.0	4.044471	0.049161	107.235198
	18083	494	209	-1	965660.0	948860.0	9280.0	1.810345	0.267739	104.058190
	25661	494	271	1	7176089.0	6885724.0	66688.0	4.354082	0.233786	107.606901

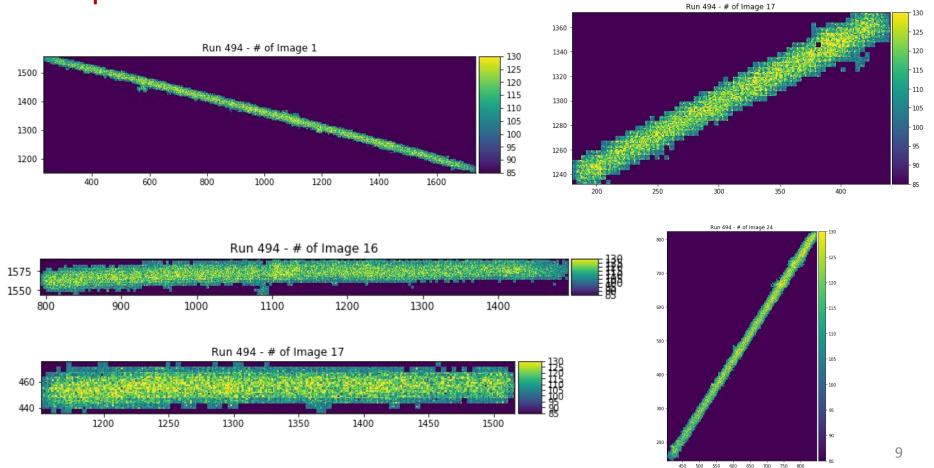
Preliminary Results - Variables

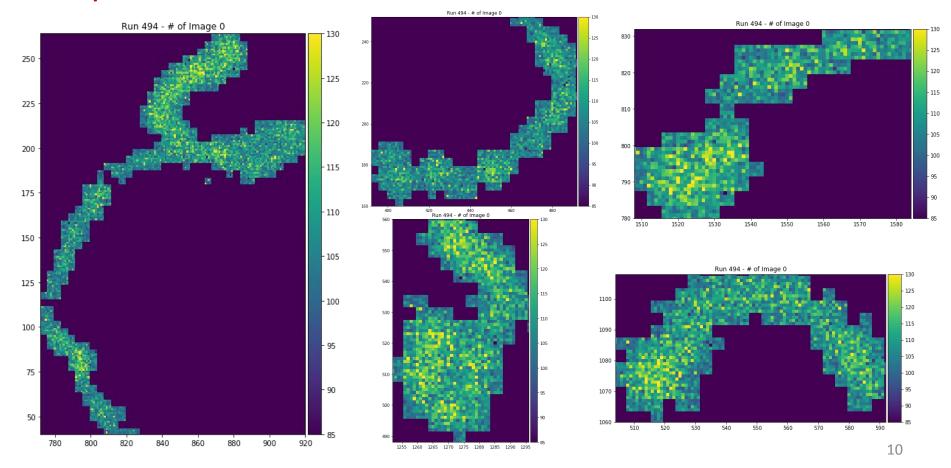



As we are creating the framework, we have not yet stopped to deeply analyze the results.

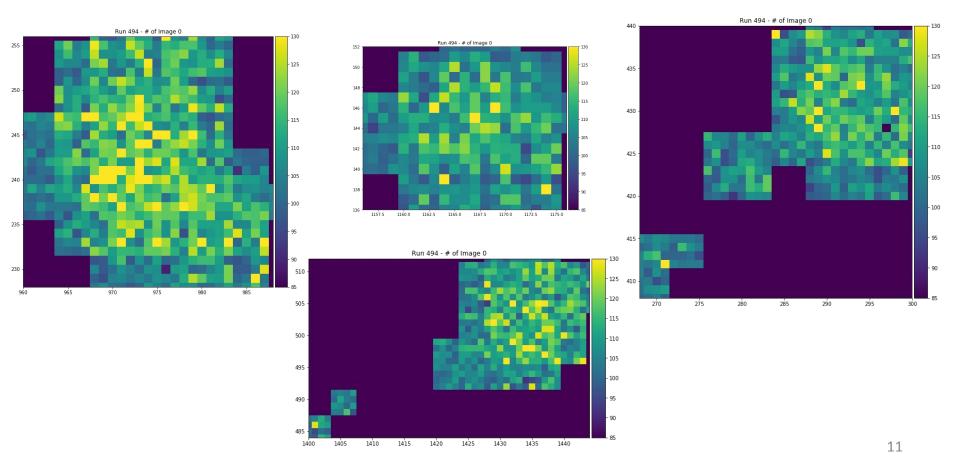
Characterize the 'long' tracks

→ The idea is:


- □ Do a Fit on the the coordinates;
- ☐ Use this Fit to get the angle;
- ☐ Use the angle to calculate the Transformation matrix;
- And then slice the cluster and calculate the intensity of light of each slice.



Backup


Examples of 'L' Clusters - 160 found on Run 494

Examples of 'M' Clusters - 3328 found on Run 494

Examples of 'S' Clusters - 24964 found on Run 494

