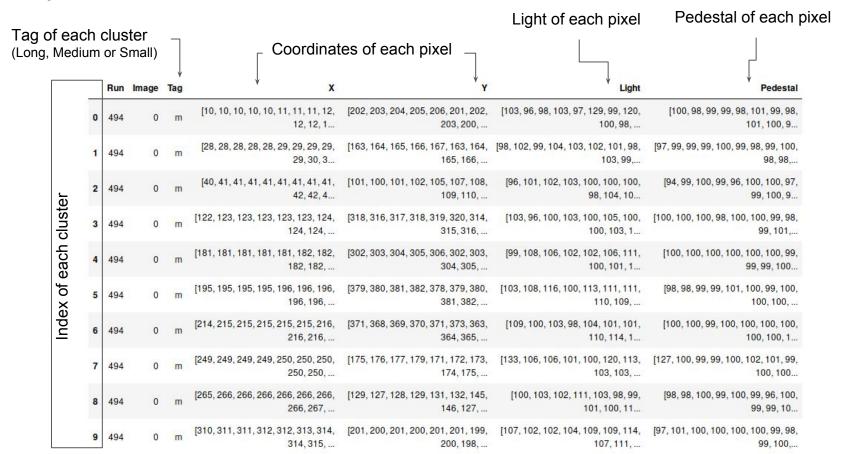
Analysis Task

02-08-2019

Status Report


- Developed the algorithm to:
 - Run iDBSCAN over the images (one or more runs);
 - Create a table with the necessary information.
 - ☐ The algorithm is taking 8 minutes to run over 300 images and save the table
- We chose to not generate all the variables in the same time that we are doing the clusterization
- But the 'table' has all the information needed to create the variables.
 - ☐ For now, it is better to have 'checkpoints' in this stage of developing the framework;

File name	Tens GEM (V)	He:CF4	T2 (kV/cm)	Drift field	esposizione (s)	Commenti		
run494	440	60/40	2	1	2	neutroni from AmBe + CMOS + 1 panetto di Pb+piu' vicini (300 eventi)		

On Going:

- We are using 'Pandas' to be able to analyze the clusterization output;
- In this way, we are capable of create any variable easily.

Output table of iDBSCAN

New table with a few variables

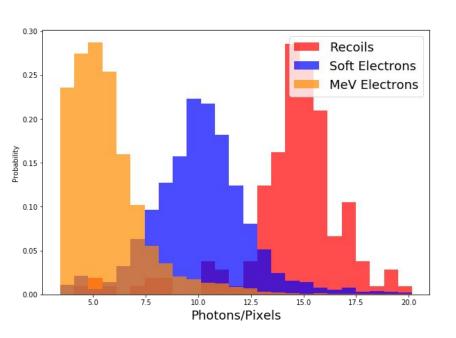
Using this 'Pandas' tools is very simple to managed the information:

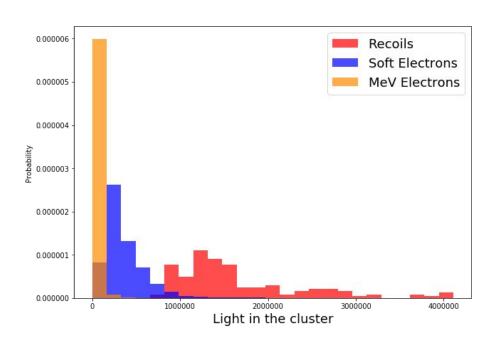
- ☐ Insert or remove variables;
- ☐ Filter by any feature.

	Run	Image	Tag	SumLight	SumPedestal	SumPixels	PhotonPPixels	XYCorrelation	lenX	lenY	XYlenR
0	494	0	m	639904.0	583755.0	5888.0	9.536175	0.681247	38.736842	26.285714	1.473684
1	494	0	m	276976.0	252262.0	2544.0	9.714623	0.694916	21.931034	33.473684	1.526316
2	494	0	m	283543.0	261904.0	2640.0	8.196591	0.717225	25.384615	27.500000	1.083333
3	494	0	m	223004.0	200517.0	2016.0	11.154266	0.236585	42.000000	26.526316	1.583333
4	494	0	m	933856.0	850428.0	8544.0	9.764513	0.877035	52.097561	28.105263	1.853659
5	494	0	m	152000.0	137146.0	1376.0	10.795058	0.829626	17.200000	24.571429	1.428571
6	494	0	m	441261.0	395988.0	3968.0	11.409526	0.454539	33.066667	62.000000	1.875000
7	494	0	m	180194.0	160986.0	1616.0	11.886139	0.670933	21.263158	40.400000	1.900000
8	494	0	m	241204.0	219535.0	2208.0	9.813859	0.115975	24.000000	42.461538	1.769231
9	494	0	m	153964.0	144778.0	1456.0	6.309066	0.285927	52.000000	11.030303	4.714286

Simple Example

If we want to check the clusters that have:

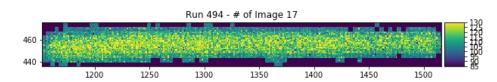

- ☐ Tag = 'L'
- □ Photon/Pixel < 10</p>

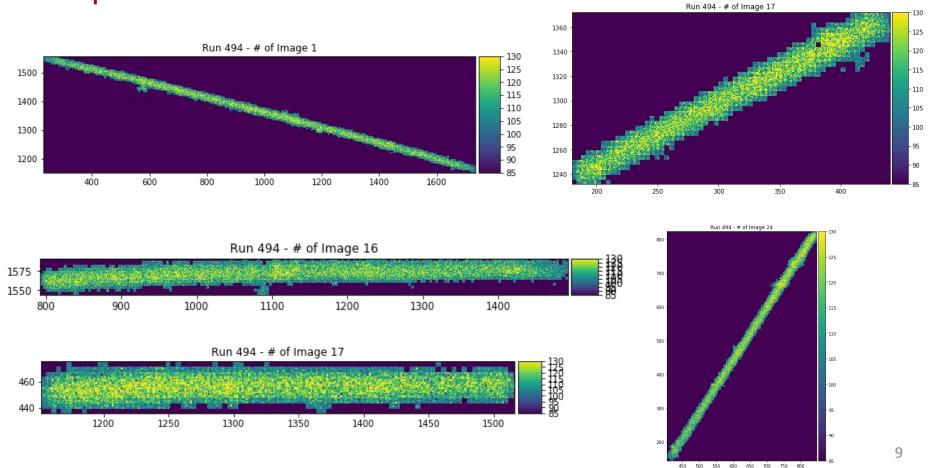

So, will be easy to plot the cluster and debug if it is necessary

In [17]: variables[(variables.Tag == 'l') & (variables.PhotonPPixels < 10)]
Out[17]:</pre>

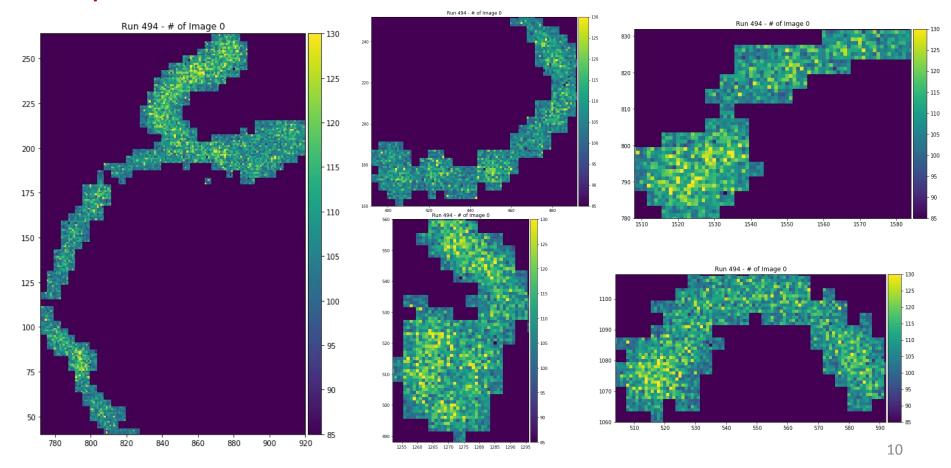
	Run	Image	Tag	SumLight	SumPedestal	SumPixels	PhotonPPixels	XYCorrelation	lenX	lenY	XYlenR
6930	494	82	Ţ	3926679.0	3642002.0	36592.0	7.779761	0.819349	83.926606	98.365591	1.172043
7159	494	83	1	4066372.0	3858063.0	38944.0	5.348937	0.336262	135.222222	139.085714	1.028571
7160	494	83	-1	1239130.0	1157115.0	11680.0	7.021832	0.242493	63.478261	74.871795	1.179487
8162	494	93	1	5170105.0	4771233.0	47984.0	8.312604	0.098008	133.288889	171.371429	1.285714
18309	494	209	- 1	13862470.0	13130051.0	132880.0	5.511883	0.798510	182.527473	180.543478	1.010989
18310	494	209	1	1765949.0	1690778.0	17104.0	4.394937	0.573358	73.724138	77.745455	1.054545
18311	494	209	-1	8106981.0	7509328.0	75600.0	7.905463	0.049168	157.500000	185.294118	1.176471
18312	494	209	Ţ	965660.0	916677.0	9280.0	5.278341	0.268274	122.105263	38.666667	3.157895
25890	494	271	- 1	7176089.0	6628847.0	66688.0	8.206004	0.233829	205.827160	171.876289	1.197531

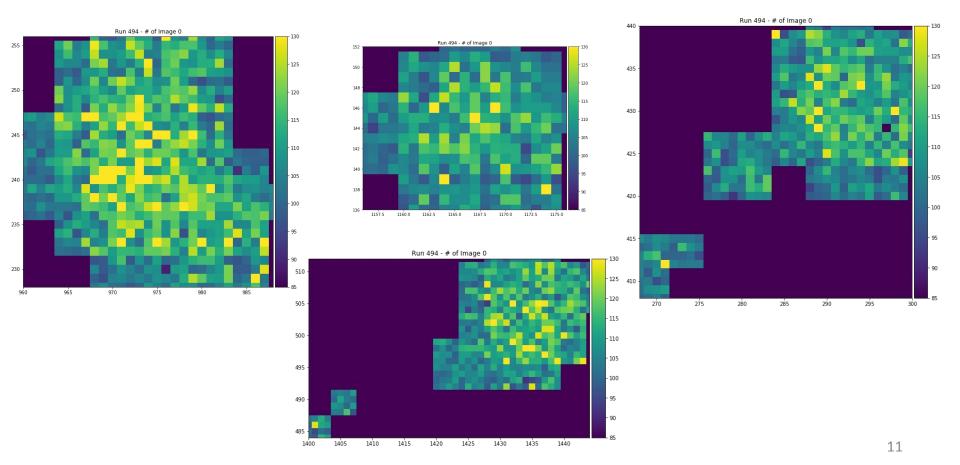
Preliminary Results - Variables




Backup

Characterize the 'long' tracks


- ☐ The idea is:
 - Do a Fit on the the coordinates;
 - Use this Fit to get the angle;
 - Use the angle to calculate the Transformation matrix;
 - And then slice the cluster and calculate the intensity of light of each slice.


Examples of 'L' Clusters - 160 found on Run 494

Examples of 'M' Clusters - 3328 found on Run 494

Examples of 'S' Clusters - 24964 found on Run 494

