

Search for Anomalous Electroweak Production of WW/WZ/ZZ Boson Pairs in Association with two Jets in p-p Collision at 13 TeV

La Thuile 2019 - Les Rencontres de Physique de la Vallée d'Aoste La Thuile, Aosta Valley, Italy 10-16 March 2019

> Ram Krishna Sharma On Behalf of CMS Collaboration

Vector Boson Scattering

- Without Higgs, vector boson scattering cross section would violate unitarity at the TeV scale.
- Vector boson scattering at the LHC probes triple and quartic gauge couplings
- Anomalous triple and quartic gauge couplings (aTGC, aQGC) would indicate the presence of new physics
 - Increases the cross-section at large di-boson mass and transverse momentum.
 - sensitive to new physics contributions in the kinematic tail.
- Anomalous couplings can be introduced as a model independent way using Effective Field Theory (EFT).

aQGC in the EFT Framework

- BSM search using model independent way:
 - Modify triple and quartic gauge couplings by redefining SM Lagrangian.

$$L_{SM} \longrightarrow L_{eff} = L_{SM} + \sum_{n=1}^{\infty} \sum_{i} \frac{c_i^{(n)}}{\Lambda^n} \mathcal{O}_I^{(n+4)}$$

- $\Lambda >> m$ & L_{eff} \rightarrow L_{sm} as $\Lambda \rightarrow \infty$
- An effective field theory is the low energy approximation to the new physics, where "low" means $< \Lambda$

	WWWW	WWZZ	$WW\gamma Z$	WWγγ	ZZZZ	ZZZγ	ΖΖγγ	Ζγγγ	γγγγ
$\mathcal{O}_{S0}, \mathcal{O}_{S1}$	\checkmark	\checkmark			\checkmark				
$\mathcal{O}_{M,0}, \mathcal{O}_{M,1}, \mathcal{O}_{M,6}, \mathcal{O}_{M,7}$	\checkmark								
$\mathcal{O}_{M,2}, \mathcal{O}_{M,3}, \mathcal{O}_{M,4}, \mathcal{O}_{M,5}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{O}_{T,0}, \mathcal{O}_{T,1}, \mathcal{O}_{T,2}$	\checkmark								
$\mathcal{O}_{T,5}, \mathcal{O}_{T,6}, \mathcal{O}_{T,7}$		\checkmark							
$\mathcal{O}_{T,8}, \mathcal{O}_{T,9}$					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ram Krishna		La Thu	ile 2019			03/15/2	019	3	

Introduction & Motivation-II

- WV/ZV production in association with two jets
 - Semi-leptonic final state with a boosted hadronic W/Z
- Benefits:
 - larger branching ratio than same sign analysis.
 - Full WW invariant mass reconstruction (neutrino p_z calculation by constraining W-boson mass)
 - aQGC contribution from all possible vertex (for WVjj process):
 - WWWW, ZZWW, $\gamma\gamma$ WW, γ ZWW, ZZZZ
 - It should significantly improve the current limits.

Signal Selection

- Optimised for aQGC sensitivity.
- V boson candidate (reconstructed as merged jet):
 p_T > 200 GeV, |η|<2.4, 65 < m_V < 105 GeV
- VBS Topology:
 - High pseudo-rapidity gap between VBF jets: $\Delta \eta_{jj} > 4.0$
 - Larger di-jet invariant mass: M_{jj} > 800 GeV
- Additional requirement to enhance aQGC:

• Zeppenfeld Variable :
$$Z = \frac{\eta - \frac{\eta_{j1} + \eta_{j2}}{2}}{|\eta_{j1} - \eta_{j2}|} < 0.3$$

• Centrality:
$$\xi_{V} = \min\{\Delta\eta_{-}, \Delta\eta_{+}\} > 1.0$$

• Mere,

$$\Delta\eta_{-} = \min\{\eta(V_{had}), \eta(V_{lep})\} - \min\{\eta_{j1}, \eta_{j2}\}$$

$$\Delta\eta_{+} = \max\{\eta_{j1}, \eta_{j2}\} - \max\{\eta(V_{had}), \eta(V_{lep})\}$$

},

03/15/2019

Data driven background estimation for W(Z)+jets

- Large background from W (Z) + jets
 - Extrapolate data from side-band to signal region using transfer function (from simulation)
 - Accounts for data-MC differences in shape and normalisation.
- QCD initiated VV contribution taken from simulation (LO Madgraph)
- ttbar and single top background checked in top enriched control region

WV/ZV Signal Extraction

- We used M_{vv} distribution to get the limits for both WV and ZV channel.
 - SM EWK production is treated as background.

Final state	WV	ZV
Data	$\phantom{00000000000000000000000000000000000$	47 ± 7
V+jets	187 ± 21	41.2 ± 6.1
top	120 ± 18	0.16 ± 0.04
SM QCD VV	28 ± 10	6.4 ± 2.2
SM EW VV	17 ± 2	$>2.4\pm0.4$
Total bkg.	352 ± 21	50.1 ± 5.9
$f_{T2}/\Lambda^4 = -0.5, -2.5 \text{ TeV}^{-4}$	22 ± 1	7.6 ± 0.6
$m_{H_5} = 500$ GeV, $s_h = 0.5$	40 ± 1	4.3 ± 0.1

 Before doing this we estimated W+jets (for WV channel) and Z+jets (for ZV channel) in data driven way.

Ram Krishna Sharma

La Thuile 2019

Systematic Uncertainty

- Systematic uncertainty can affect the shape and normalisation of the M_W distribution.
 - Largest impact is from signal theory uncertainty.
 - Experimental uncertainty is mainly dominated by jet energy scale/resolution and V+jet background estimation.

	Source	Shape	Signal	V+jets	SM EW	SM QCD VV	top
	QCD scale	\checkmark	9-20		12	30	
	PDF unc.	\checkmark	15		10	10	
	Jet momentum scale	\checkmark	1-9		1-9	3.0-15	5.0-7.0
1	V-jet selection		8.0		8.0	8.0	
	GM model EW		7.0				
	bkg. normalization			7-16			2.0
	V+jets shape	\checkmark		shape			_
	Integrated luminosity		2.5	_	2.5	2.5	_
	Lepton efficiency		1.0-2.0		1.0-2.0	1.0-2.0	
	Lepton momentum scale	\checkmark	0.2-0.4	_/	0.5	1.0-1.3	1.0
	b-quark jet efficiency		2.0	_ \	2.0	2.0	3.0
	Jet/MET resolution		4.0	_ \	3.0	2.0	
	Pileup modeling		4.0	<u> </u>	4.0	4.0	_
	Limited MC stat.	\checkmark	shape	$\langle \neq \rangle$	shape	shape	shape
Ra	m Krishna Sharma		La Thuile	2019		03/15/	2019

Results – Anomalous Coupling Limits

- Limits for the WV and ZV final states and combination
 - As expected WV significantly more sensitive compared to ZV

	Observed (WV)	Expected (WV)	Observed (ZV)	Expected (ZV)	Observed	Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
f_{S0}/Λ^4	[-2.6, 2.7]	[-4.0, 4.0]	[-37, 37]	[-29, 29]	[-2.6, 2.7]	[-4.0, 4.0]
f_{S1}/Λ^4	[-3.2, 3.3]	[-4.9, 4.9]	[-30, 30]	[-23, 23]	[-3.3, 3.3]	[-4.9, 4.9]
f_{M0}/Λ^4	[-0.66, 0.66]	[-0.95, 0.95]	[-6.9, 6.9]	[-5.1, 5.1]	[-0.66, 0.66]	[-0.95, 0.95]
f_{M1}/Λ^4	[-1.9, 2.0]	[-2.8, 2.8]	[-21, 21]	[-15, 15]	[-1.9, 2.0]	[-2.8, 2.8]
f_{M6}/Λ^4	[-1.3, 1.3]	[-1.9, 1.9]	[-14, 14]	[-10, 10]	[-1.3, 1.3]	[-1.9, 1.9]
f_{M7}/Λ^4	[-3.3, 3.2]	[-4.8, 4.8]	[-33, 33]	[-24, 24]	[-3.3, 3.3]	[-4.8, 4.8]
f_{T0}/Λ^4	[-0.11, 0.10]	[-0.16, 0.15]	[-1.3, 1.3]	[-0.95, 0.95]	[-0.12, 0.10]	[-0.16, 0.15]
f_{T1}/Λ^4	[-0.11, 0.12]	[-0.17, 0.17]	[-1.4, 1.4]	[-0.98, 0.99]	[-0.11, 0.12]	[-0.17, 0.17]
f_{T2}/Λ^4	[-0.27, 0.27]	[-0.38, 0.38]	[-3.1, 3.2]	[-2.3, 2.3]	[-0.27, 0.27]	[-0.38, 0.38]

March 2019	CMS					
	ATLAS	C	Channel	Limits	Ldt	√s
$f_{\rm Max}/\Lambda^4$		W	VVγ	[-1.3e+02, 1.3e+02]	20.2 fb ⁻¹	8 TeV
·M,0 / * *		N N	VVγ	[-7.7e+01, 8.1e+01]	19.3 fb ⁻¹	8 TeV
		Z	γ	[-7.1e+01, 7.5e+01]	19.7 fb ⁻¹	8 TeV
		Z	ζγ	[-7.6e+01, 6.9e+01]	20.2 fb ⁻¹	8 TeV
Easter of		v	Vγ	[-7.7e+01, 7.4e+01]	19.7 fb ⁻¹	8 TeV
Factor of	~ O H	S	s WW	[-6.0e+00, 5.9e+00]	35.9 fb ⁻¹	13 TeV
and a second starting	H	N	VZ	[-8.8e+00, 8.6e+00]	35.9 fb ⁻¹	13 TeV
	► – – – – – – – – – – – – – – – – – – –	n	γ→WW	[-2.8e+01, 2.8e+01]	20.2 fb ⁻¹	8 TeV
	н	ກ	γ→WW	[-4.2e+00, 4.2e+00]	24.7 fb ⁻¹	7,8 TeV
		N	VV ZV	[-6.6e-01, 6.6e-01]	35.9 fb ⁻¹	13 TeV
f /A ⁴		W	VVγ	[-2.1e+02, 2.1e+02]	20.2 fb ⁻¹	8 TeV
M,1 72		v	VVγ	[-1.3e+02, 1.2e+02]	19.3 fb ⁻¹	8 TeV
		Z [·]	ζγ	[-1.9e+02, 1.8e+02]	19.7 fb ⁻¹	8 TeV
		Z [·]	ζγ	[-1.5e+02, 1.5e+02]	20.2 fb ⁻¹	8 TeV
		v	Vγ	[-1.2e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV
Eactor of	~ 1 H	S	s WW	[-8.7e+00, 9.1e+00]	35.9 fb ⁻¹	13 TeV
Factor Or	H	v	VZ	[-8.2e+00, 8.9e+00]	35.9 fb ⁻¹	13 TeV
e the second second second		– ო	γ→WW	[-1.1e+02, 1.0e+02]	20.2 fb ⁻¹	8 TeV
	⊢ -	η	γ→WW	[-1.6e+01, 1.6e+01]	24.7 fb ⁻¹	7,8 TeV
	H	N	VV ZV	[-1.9e+00, 2.0e+00]	35.9 fb ⁻¹	13 TeV
f / A ⁴		N	VVγ	[-5.7e+01, 5.7e+01]	20.2 fb ⁻¹	8 TeV
I _{M,2} //Y	⊢−−− 1	Z	γ	[-3.2e+01, 3.1e+01]	19.7 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	Z	Zγ	[-2.7e+01, 2.7e+01]	20.2 fb ⁻¹	8 TeV
	⊢ −−−1	N	Vγ	[-2.6e+01, 2.6e+01]	19.7 fb ⁻¹	8 TeV
f / 1 4		- V	VVγ	[-9.5e+01, 9.8e+01]	20.2 fb ⁻¹	8 TeV
M,3 //	· · · · · · · · · · · · · · · · · · ·	Z	ζγ	[-5.8e+01, 5.9e+01]	19.7 fb ⁻¹	8 TeV
	· · · · · · · · · · · · · · · · · · ·	Z	Zγ	[-5.2e+01, 5.2e+01]	20.2 fb ⁻¹	8 TeV
		N	Vγ	[-4.3e+01, 4.4e+01]	19.7 fb ⁻¹	8 TeV
f / 1 4		W	VVγ	[-1.3e+02, 1.3e+02]	20.2 fb ⁻¹	8 TeV
I _{M,4} //X	⊢−−−−	N	Vγ	[-4.0e+01, 4.0e+01]	19.7 fb ⁻¹	8 TeV
f / A ⁴		W	VVγ	[-2.0e+02, 2.0e+02]	20.2 fb ⁻¹	8 TeV
M,5 //		N	Vγ	[-6.5e+01, 6.5e+01]	19.7 fb ⁻¹	8 TeV
f / Λ^4		W	Vγ	[-1.3e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV
	tor of ~9 H	S	s WW	[-1.2e+01, 1.2e+01]	35.9 fb ⁻¹	13 TeV
	H	v	VV ZV	[-1.3e+00, 1.3e+00]	35.9 fb ⁻¹	13 TeV
f / Λ^4		W	Vγ	[-1.6e+02, 1.6e+02]	19.7 fb ⁻¹	8 TeV
	or of ~1	S	s WW	[-1.3e+01, 1.3e+01]	35.9 fb ⁻¹	13 TeV
Faci		I . W	VV ZV	[-3.3e+00, 3.3e+00]	35.9 fb ⁻¹	13 (TeV
_2	00 0	200		400	600	800
-		200				 /-
				aQGC Limits	@95% C.I	[TeV*1
]

Introduction & Motivation-III (Result interpretation using charged Higgs model)

- Considering extended Higgs sector model: Georgi, Machacek (GM) model.
 - Extension of scalar sector using triplet Higgs field.
- Main feature:
 - Maintains custodial symmetry at tree level.
 - provides majorana mass to neutrino via Type-II Seesaw mechanism.
- It has triplet field:
 - Allows fermiophobic H^{±±} and H[±]produced via VBF.
 - Higher cross-section of $H^{\pm\pm} \rightarrow WW$

Charged-Higgs Limits

Model independent limit on singly and doubly charged Higgs production.

- Search for aQGC in WVjj and ZVjj at 13 TeV
 - Data sample of 35.9 fb⁻¹ collected with CMS detector in 2016.
- Semi-leptonic final states not sensitive to SM EW production yet with 35.9 fb⁻¹ data sample
 - But give stringent limits on AQGC
 - Signal extraction was done using invariant mass of WV/ZV system (M_{wv/zv})
 - Significant improvement in limits with respect to the fully leptonic searches
- Using same final state, set the model independent limit on the resonant charged Higgs production.

Ram Krishna Sharma

La Thuile 2019

Signal & Background

- VVJJ (aQGC EWK): Electroweak production of VVJJ with contributions from aQGC.
- **VVJJ (EWK) :** Electroweak production of WWJJ.
- VVJJ (QCD initiated): Irreducible background for analysis.
- **W+Jets:** Most dominating background.
- tt **Jets**: Top quark always decays to one b-quark and one W boson. So, $t\bar{t} \rightarrow bWbW \rightarrow bl\nu l\nu$, if we mis-measure one lepton and one b quark form jets.
- Drell-Yan: Z/Gamma decays to I+I- and we mis-measure one I because of acceptance or inefficiency effects, gives missing energy.
- Single top production: Here $t \rightarrow bW \rightarrow bl\nu$, and 3 jets is reconstructed.

Centrality and Zeppenfeld Definition

Boson Centrality (Phys. Rev. D 95, 032001)

$$\xi_{V} = min\{\Delta \eta_{-}, \Delta \eta_{+}\}$$
where,

$$\Delta \eta_{-} = min\{\eta(V_{had}), \eta(V_{lep})\} - min\{\eta_{j1}, \eta_{j2}\},$$

$$\Delta \eta_{+} = max\{\eta_{j1}, \eta_{j2}\} - max\{\eta(V_{had}), \eta(V_{lep})\}$$
• $\xi > 0$: Both W's should be within VBF jets
• $\xi < 0$: One or both lepton are at larger $|\eta|$
than the VBF jets

WV Channel	_		V Channel	3019
 Final Selection Electron 	ns (Muons)	• Final S	Selection	
 Exactly 1 lepton 		• Exa	actly 2 leptons	
 For electrons exclude η < 1.566 	le region 1.4442	• 76	< m _{LL} < 107	
 MET > 80 GeV (50 GeV) Fat Jet (having radiu 	GeV) Is parameter 0.8):	• Lar	ge radius parameter jet:	
 65< m_W < 105, T VBE jets (baying rad) 	au2/Tau1 < 0.55	•	65< mz < 105, Tau2/Tau1 0.55	<
• m _{ii} > 800 GeV. dE	ta > 4.0	• VB	F jets:	
 Boson-Centrality > ¹ Lontonic zopponfold 	1.0	•	m _{jj} > 800 GeV, dEta > 4.0)
 Leptonic zeppenield < 0.3 Hadronic zeppenfeld < 0.3 		• mz	v > 600	
• m _{wv} > 600		• Fit m _v	v distribution to get limits)
Ram Krishna Sharma	La Thuile 2019	9	03/15/2019	1

Event-Selection

aQGC parameters to probe

$$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right] \\\mathcal{L}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right] \\\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] \\\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu}\hat{W}^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] \\\mathcal{L}_{M,2} = \left[B_{\mu\nu}B^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] \\\mathcal{L}_{M,3} = \left[B_{\mu\nu}B^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] \\\mathcal{L}_{M,4} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}D^{\mu}\Phi \right] \times B^{\beta\nu} \\\mathcal{L}_{M,5} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\nu}D^{\mu}\Phi \right] \\\mathcal{L}_{M,6} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\mu}D^{\mu}\Phi \right] \\\mathcal{L}_{M,7} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\mu}D^{\nu}\Phi \right]$$

The operators in the red box are the one which we considered in our analysis.

• **Dimension 8 operators:** Lowest dimension operators that modify the quartic boson interactions.

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$
Ref: Phys.Rev. D74 (2006) 073005

Ram Krishna Sharma

La Thuile 2019

Neutrino pyz calculation

(To reconstruct leptonic W-boson invariant mass)

$$p_{\nu z} = \frac{1}{2 \times A} \left[-b \pm \sqrt{b^2 - 4 \times A \times C} \right]$$

Where,

$$A = 4(E_l^2 - p_{lz}^2)$$

$$b = -4ap_{lz}$$

$$C = 4E_l^2 p_{\nu T}^2 - a^2$$

$$a = M_w^2 - M_l^2 + 2(p_{lx} p_{\nu x} + p_{ly} p_{\nu y})$$

Full calculation: link

- Picked solution which is closest to lepton pz.
- If roots are complex then take real part.

Data driven background estimation for V+jets (Alpha-Ratio Method)

• To get V+jet contribution from data in signal region:

 $N_{signal}^{Data,W+Jets}(M_{WW}) = \alpha(M_{WW}) \times N_{sideband}^{Data}(M_{WW})$

• Alpha (taken from MC) is defined as:

$$\alpha(M_{WW}) = \frac{N_{signal}^{MC,W+Jets}(M_{WW})}{N_{sideband}^{MC,W+Jets}(M_{WW})} = \frac{N_{signal}^{Data}(M_{WW})}{N_{sideband}^{Data}(M_{WW})}$$

Large background from W (Z) + jets

- Extrapolate data from side-band to signal region using alpha (also known as transfer function)
- Accounts for data-MC differences in shape and normalisation.

Results - Anomalous Coupling Limits

aQGC Parameters Previous published limits		Our Limits					
		WV Channel	ZV Channel	Combined Limit			
FS0	[-7.7,7.7]	[-2.6,2.7]	[-37,37]	[-2.6, 2.7]			
FS1	[-22,22]	[-3.2,3.3]	[-30,30]	[-3.3,3.3]			
FT0	[-0.46,0.44]	[-0.11,0.10]	[-1.3,1.3]	[-0.12,0.10]			
FT1	[-0.28,0.31]	[-0.11,0.12]	[-1.4,1.4]	[-0.11,0.12]			
FT2	[-0.89,1.0]	[-0.27,0.27]	[-3.1,3.2]	[-0.27,0.27]			
FM0	[-4.2,4.2]	[-0.66,0.66] [-6.9,6.9]		[-0.66,0.66]			
FM1	[-8.7,9.1]	[-1.9,2.0] [-21,21]		[-1.9,2.0]			
FM6	[-12,12]	[-1.3,1.3]	[-14,14]	[-1.3,1.3]			
FM7	[-13,13]	[-3.3,3.2] [-33,33] [-3		[-3.3,3.3]			

Reference:

1. <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC#aQGC_Results</u>

Ram Krishna Sharma

La Thuile 2019