Search for $b \rightarrow s\ell\ell$ Anomalies at the LHC Les Rencontres de Physique de la Vallee d'Aoste

Technion: Israel Institute of Technology

Yoav Afik

11.03.2019

The $b \rightarrow s \ell \ell$ Anomalies

- Recent LHCb measurements present a pattern of deviations from the Standard Model prediction for rare B-meson decays $(R_{K^{(*)}})$.
- Possible Violation of Lepton Flavour Universality.
- New Physics may lay between the common initial and final state (bsll).

 e^+e^-K

11.03.2019 2 / 9

 $\mu^+\mu^-K$

EFT Framework

 Taking a general model describing the anomalies (A. Greljo and D. Marzocca, Eur. Phys. J. C (2017) 77: 548):

$$- \mathcal{L}_{eff} = \frac{C_{ij}^{U\mu}}{v^2} (\bar{u}_L^i \gamma_\mu u_L^j) (\bar{\mu}_L \gamma^\mu \mu_L) + \frac{C_{ij}^{D\mu}}{v^2} (\bar{d}_L^i \gamma_\mu d_L^j) (\bar{\mu}_L \gamma^\mu \mu_L) - C_{ij}^{U\mu} = \begin{pmatrix} C_{u\mu} & 0 & 0 \\ 0 & C_{c\mu} & 0 \\ 0 & 0 & C_{t\mu} \end{pmatrix}, C_{ij}^{D\mu} = \begin{pmatrix} C_{d\mu} & 0 & 0 \\ 0 & C_{s\mu} & C_{bs\mu}^* \\ 0 & C_{bs\mu} & C_{t\mu} \end{pmatrix}$$

- Non-diagonal term corresponds to the anomalies: $\mathcal{L}_{eff} \supset \frac{C_{bs\mu}}{v^2} (\bar{b}_L \gamma_\mu s_L) (\bar{\mu}_L \gamma^\mu \mu_L) + h.c.$
- Best fit corresponds to (B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, J. High Energ. Phys. (2018) 2018: 93):

$$-\frac{\pi}{\alpha V_{tb}V_{ts}^*}C_{bs\mu} = -0.62 \pm 0.13$$
$$-C_{bs\mu} = g_*^2 v^2/\Lambda^2.$$

• Best fit corresponds New Physics scale of $\Lambda/g_* \approx 31^{+4}_{-3}$ TeV.

Low Energy to High Energy

- Generalizing the *bsll* interactions (4-fermion operator).
- Looking at direct production via proton proton collisions:

- We can search for New Physics in final states contain two opposite sign muons and exactly one b-jet.
- Phenomenological framework detailed at: Y. A., J. Cohen, E. Gozani, E. Kajomovitz and Y. Rozen, J. High Energ. Phys. (2018) 2018: 56.

LHC Feasibility Study

- Simulating multi-purpose LHC detector.
- Basic selection:
 - Two opposite sign muons.
 - Exactly one b-tagged jet.
- New final state, not targeted in previous analyses.
- Dominant Standard Model background processes:
 - tt
 tilt
 ingh missing transverse momentum (neutrinos).
 - Z + jets, ZZ, WZ low invariant mass of the muon pair (Z-resonance).

Figure: Kinematic distributions for the invariant mass of both muons (up) and the missing transverse energy (bottom).

11.03.2019 5 / 9

- The signal and the background have differences in the kinematic distributions.
- Therefore, in addition to the basic selection, we apply the selection that maximize the sensitivity:
 - $E_T^{miss} < 180 \text{ GeV}.$
 - $-m_{\ell\ell} > 1700 \,\,{
 m GeV}.$

Figure: The signal cross-section as a function of the expected sensitivity (Z-value).

• Upper limit on the coefficient of the 4-fermion operator $(bs\ell\ell)$:

Figure: The predicted upper limit as a function of the total integrated luminosity.

Y. Afik (Technion, IL)

- Several interesting measurements find deviations in B-meson decays into a pair of leptons and a Kaon.
- The deviations observed may indicate new physics in *bsll* interactions.
- Traditionally this type of interactions have been searched using B-meson decays.
- We propose a new approach to search for those interactions via the production mechanism in *proton proton* collisions.
- The new approach significantly improves to the sensitivity of ATLAS/CMS to new physics in bsll interactions.

Thank You

Backup Slides

Backup

= >

B-meson Decay Anomalies

- The value of this ratio is stated within a given range of the lepton pair mass squared, $[q_{min}^2, q_{max}^2]$.
- 2.6 σ discrepancy with respect to the SM in:

$$R_{K} = \frac{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\Gamma(B^{+} \to K^{+} \mu^{+} \mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\Gamma(B^{+} \to K^{+} e^{+} e^{-})}{dq^{2}} dq^{2}}$$
$$R_{K,[1.0,6.0] \text{GeV}^{2}} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

• $2.1 - 2.5\sigma$ discrepancy in the related mode with the vector meson:

$$R_{K^*} = \frac{\int_{q_{min}}^{q_{max}^2} \frac{d\Gamma(B^0 \to K^{0*} \mu^+ \mu^-)}{dq^2} dq^2}{\int_{q_{min}}^{q_{max}^2} \frac{d\Gamma(B^0 \to K^{0*} e^+ e^-)}{dq^2} dq^2}$$

$$R_{K^*,[0.045,1.1]\text{GeV}^2} = 0.66^{+0.11}_{-0.07} \pm 0.03$$

$$R_{K^*,[1.1,6.0]\text{GeV}^2} = 0.69^{+0.11}_{-0.07} \pm 0.05$$

(1)

(2)

The Detector

- Detecting products of proton proton collisions.
- 4 main layers that can detect stable Standard Model particles (left to right):

Particle	μ^{\pm}	e [±]	γ	Hadrons	ν
Inner Detector	1	1	x	√/x	x
EM Calorimeter	1	1	1	V/x	x
Hadronic Calorimeter	1	x	x	1	x
Muon Spectrometer	1	x	x	x	x

- Particles originate from quarks appear as Hadron Jets.
- b-jets are identified by the Jet substructure.

Figure: A schematic description of tracks at ATLAS for different particles.

• The upper limit:

Figure: The predicted Z-value (left) and upper limit (right) as a function of the total integrated luminosity.

- Studies for the expected sensitivity at ATLAS were done.
- Figures are from: Y. Afik et. al. JHEP (2018) 2018: 56.

Figure: The expected Z-Value for $L = 120 fb^{-1}$ (left) and the predicted discovery of 5σ (right) as a function of the total integrated luminosity.

How do we Reduce the Background?

- The signal and the background have differences in the kinematic distributions.
- We scan for different values of:
 - the missing transverse momentum.
 - the invariant mass of the muon pair.
- We choose the values with the maximum expected sensitivity, given the signal and background yields.

Figure: A schematic description of the missing transverse momentum.