Search for dark matter produced in association with a Higgs boson decaying to a pair of W bosons at CMS

> Nicolò Trevisani on behalf of the CMS collaboration

La Thuile 2019, 10-16 Mar 2019

IFCA - Santander

March 12, 2019

Dark Matter particle nature is unknown and cannot be explained within Standard Model

- At a hadron collider have to assume interaction between Standard Model and Dark Matter candidate particles
- Main candidate: Weakly Interacting Massive Particle
 - Not expected to interact with the detector material
- Final state with two Dark Matter particles and SM particle(s)
 - Missing transverse momentum (p_T^{miss}) + X signatures
 - In this case X is a Higgs boson

Mono-Higgs Physics Models

Typical p_T^{miss} + X searches are based on initial state radiation (ISR) of the Standard Model Particle

- ISR of a Higgs boson is strongly suppressed
- Direct Higgs-Mediator interaction at the vertex

Following recommendations from LHC DM Working Group two simplified models have been inspected

- Z'-2HDM (left)
- Baryonic Z' (right)

Z'-2HDM

The CMS Detector at the LHC

The Fully Leptonic WW Final State

The h \rightarrow WW final state

- Presents a large branching fraction
 - BR(hightarrowWW) \sim 21%
 - Second only to $BR(h \rightarrow bb)$
- Selecting the fully leptonic WW decay
 - Significant background reduction
 - Good control of systematic uncertainties
 - Partial reduction of signal yields
- Complements the searches in other Higgs decay channels
 - Can confirm deviations from SM expectations observed in different final states

Decays of a 125 GeV Standard-Model Higgs boson

The events used in the analysis must contain two opposite sign, different flavour leptons, one electron and one muon:

- Leading lepton $p_T > 25$ GeV
- Trailing lepton $p_T > 20$ GeV

The signal region is then **further optimized** in order to reject background events:

Background to reject	Selection
WZ, ZZ, VVV	Veto events with a third loose lepton with $p_{\mathcal{T}} > 10 \text{ GeV}$
Drell-Yan, light resonances	$\begin{array}{l} m_{\ell\ell} > 12 \mathrm{GeV} \\ p_T^{miss} > 20 \mathrm{GeV} \\ m_T^H > 40 \mathrm{GeV} \end{array}$
Non-prompt leptons	$p_T^{\ell\ell} > 30 \text{ GeV}$
Top quark	No b-jets with p_T > 20 GeV

Analysis Specific Selections

On top of the previous selections, valid to define a phase space enriched in WW/HWW events, two additional cuts have been defined

Background to reject	Selection
Non-resonant WW	$m_{\ell\ell} < 76 \text{ GeV}$
Non-boosted leptons	$\Delta R(\ell \ell) < 2.5$

- Z'-2HDM Signal: $m_{Z'}$ = 1200 GeV, m_A = 300 GeV
- Baryonic Z' Signal: $m_{Z'}$ = 500 GeV, m_{χ} = 1 GeV

After the basic selections are applied, the signal significance is still low

- $\bullet\,$ This is due to the presence of neutrinos, which spoils both the $m_{\ell\ell}$ and $p_{T}^{\textit{miss}}$ distributions
- To extract the signal, a multivariate analysis technique is exploited
 - One BDT is trained for each model
- Against main backgrounds
 - Higgs, SM WW, Top
- Trained using significant kinematic variables
- In order to have a flat response versus the mediator mass, trained using:
 - Z'-2HDM model: all mass points with $m_A = 300 \text{ GeV}$
 - Z'-Baryonic model: all mass points with $m_\chi = 1~\text{GeV}$
- The weight given to signal events is then divided by the expected number of events passing the pre-selections required for the training

The estimation of the main backgrounds entering the signal region follows different approaches:

- Jet-induced background (non-prompt leptons): fully data-driven
 - Tight-to-loose method
 - Probability for a lepton inside a jet to be reconstructed as a prompt lepton measured in a jet-entiched phase space
 - Then applied to events with one tightly-identified lepton and one loosely-but-not-tightly identified lepton
- WZ and W γ^* background: normalized to data in specific phase spaces with 3 leptons
 - Both the normalizations and their uncertainties are estimated in control regions to rescale the Montecarlo predictions
- WW, Top, DY: normalized in control regions that enter the fit
 - Normalizations are free to float
 - Nominal values and uncertainties come from the fit
- SM Higgs production and other minor processes: taken from MC
 - Normalization and its uncertainty from theory

Signal Extraction

The signal and background yields are obtained through a simultaneous fit to the signal region and the three control regions

- Signal region: 1D binned shape analysis on the BDT output
- Control regions: just one bin for normalization

Results

No significant discrepancies between data and the Standard Model have been found

- Limits have been set on the dark matter production cross section
- Results dominated by statistical uncertainty
 - Z'-2HDM model: 740 GeV $< m_{Z'} < 800$ GeV and 300 GeV $< m_A < 320$ GeV excluded
 - Baryonic Z' model: no sensitivity reached

100 200 300 400 500 600 700 800 900 1000

m_{7'} [GeV]

Baryonic Z' Model

Combination of Results

Results of the WW channel have been combined with other final states

- bb, $\gamma\gamma$, $\tau\tau$, and ZZ
- Sensitivity driven by bb channel due to much larger branching fraction
- Z'-2HDM model: 500 GeV $< m_{Z^\prime} <$ 3200 GeV and 300 GeV $< m_A <$ 800 GeV excluded
- Baryonic Z' model: 100 GeV < $m_{Z'}$ < 1500 GeV and 1 GeV < m_{χ} < 420 GeV excluded

Z'-2HDM Model

Baryonic Z' Model

Reinterpretation of Results

The limits on the Baryonic Z' model are reinterpreted in terms of spin-independent cross section $\sigma^{\rm SI}$ for dark matter scattering off a nucleus, allowing a comparison with direct detection experiments [CMS-EXO-18-011]

$$\sigma^{\rm SI} = \frac{f^2(g_q)g_{DM}^2\mu_{n\chi}^2}{\pi m_{med}^4}$$

- f(g_q) = mediator-nucleon coupling
- μ²_{nχ} = reduced mass of nucleon-DM system

Conclusions

The current CMS searches for mono-Higgs signature have been presented

- Main focus of the talk on the WW final state
 - In the context of the combination of 5 Higgs decay channels
- Two simplified models have been considered
 - Z'-2HDM: Z' mediator of mass from 1 TeV to 3 TeV and A mediator of mass up to 800 GeV are exluded
 - Z'-Baryonic: Z' masses up to 1500 GeV and DM particle masses up to 420 GeV are excluded
- Spin-Independent DM-nucleus cross section σ^{SI} limits have been set
 - Based on the Baryonic Z' model
 - Assuming the couplings of the Z' mediator $g_q = 0.25$ and $g_{\chi} = 1$
 - Values of $\sigma^{\rm SI}$ larger than $10^{-42}~{\rm cm}^2$ are excluded for light DM particles

• Future plans

- Look at full Run-2 dataset
- Explore additionally the 2HDM+a model

CMS has released different results on the mono-Higgs search using data taken at 13 ${\rm TeV}$

Channel	Dataset	Luminosity	Model
$h \rightarrow \gamma \gamma + h \rightarrow bb$	2015	$2.3 \ \mathrm{fb}^{-1}$	Z'-2HDM
$ \begin{array}{c} h \rightarrow \gamma \gamma + h \rightarrow \tau \tau \\ h \rightarrow b b \end{array} $	2016 2016	35.9 fb^{-1} 35.9 fb^{-1}	Z'-2HDM + Baryonic Z ' Z'-2HDM + Baryonic Z' + 2HDM+a

The focus of the talk is on the newest results, obtained inspecting the WW final state and combining 5 different Higgs decay channels (bb, $\gamma\gamma$, $\tau\tau$, WW, ZZ)

$h \rightarrow bb$ Data-MC in High-Purity Phase Space

2HDM + a Model

