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Search for the neutron-antineutron oscillations was suggested by 
Vadim Kuzmin in 1970, and such experiments are under active 
discussion now, see 
Particular interesting perspectives are due to European Spallation 
Source currently under construction in Lund — the most powerful
pulsed neutron source.

This is a transition where the baryon charge     is changed by two 
units.  The observation of the transition besides demonstration of 
the baryon charge non-conservation could be also important for 
explanation of baryogengesis. Of course, following Sakharov 
conditions, it should be also accompanied by CP non-conservation.          

Thus, discrete symmetries associated with neutron-antineutron 
mixing are of real interest.
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We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles
all these symmetries are preserved in spite of the opposite parities of neutron and antineutron.
Explaining the subtlety in definition of parity we apply this to C, P and T classification of six-
quark operators with |�B| = 2. It allows to specify operators contributing to neutron-antineutron
oscillations. Remaining operators contribute to other |�B| = 2 processes and, in particular, to
nuclei instability.

We also show that presence of external magnetic field does not induce any new operator mixing
the neutron and antineutron provided that rotational invariance is not broken.

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.

Essentially the same issues were addressed in our
previous note [3]. There we emphasize the point that
parity P, such that P

2
= 1, is broken in the neutron-

antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�
µ
@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! e
i↵
n, n̄! e

�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.

Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
e
i��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

n
T
Cn , n

T
C�5n , n̄Cn̄

T
, n̄C�5n̄

T
. (4)

Here C = i�
2
�
0 is the charge conjugation matrix in the

standard representation of gamma matrices.
Using the chiral basis we show in the part 4 that all

these modifications (4) with a help of field redefinitions
reduce to one possibility for the baryon charge breaking
by two units,

�LB6 = �
1

2
✏
⇥
n

T
Cn + n̄Cn̄

T
⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�

µ
@µn as it is demonstrated in the part

4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and n

c

fields,

C : n ! n
c
= Cn̄

T
. (6)

This is a sort of discrete Z2 symmetry, C2
= 1. The

most simple it looks in the Majorana representation
where

n
c
= n

⇤
. (7)

6

9. In summary, we show that the Lorentz and CPT

invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K
0 � K

0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄

oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of

|�B| = 2 operators coming from new physics, par-
ticularly in association with Sakharov conditions for
baryogenesis which involves both, non-conservation of
baryon charge and CP-violation.
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e
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4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).
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under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
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Zurab Berezhiani, AV, arXiv:1506.05096In our 2015 text
we noted that the parity   , defined in such a way that 
         , is broken in n-nbar transition as well as     . 
Indeed, eigenvalues of parity    are      and opposite for 
neutron and antineutron. So, n-nbar mixing breaks    . 

We noted, however, that it does not automatically imply 
an existence of CP breaking in absence of interaction. 
In September of the same 2015 we presented at the INT 
workshop in Seattle a modified definition of parity     , 
such that             , and parities      are   for both, neutron 
and antineutron.  With this modification all discrete 
symmetries are preserved in n-nbar transition. 
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with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
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Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
e
i��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:
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where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�

µ
@µn as it is demonstrated in the part

4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and n
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fields,
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. (6)

This is a sort of discrete Z2 symmetry, C2
= 1. The

most simple it looks in the Majorana representation
where
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. (7)
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neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! e
i↵
n, n̄! e

�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.

Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
e
i��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

n
T
Cn , n

T
C�5n , n̄Cn̄

T
, n̄C�5n̄

T
. (4)

Here C = i�
2
�
0 is the charge conjugation matrix in the

standard representation of gamma matrices.
Using the chiral basis we show in the part 4 that all

these modifications (4) with a help of field redefinitions
reduce to one possibility for the baryon charge breaking
by two units,

�LB6 = �
1

2
✏
⇥
n

T
Cn + n̄Cn̄

T
⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�

µ
@µn as it is demonstrated in the part

4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and n

c

fields,

C : n ! n
c
= Cn̄

T
. (6)

This is a sort of discrete Z2 symmetry, C2
= 1. The

most simple it looks in the Majorana representation
where

n
c
= n

⇤
. (7)
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! e

i��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! e

i��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T

+h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc
= Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = Pe
iB⇡/2

: n ! i�0n , nc ! i�0n .

(7) P↵ = Pe
iB↵

: n ! e
�i↵�0n , nc ! �e

i↵�0n .

(8) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0
= �C. The breaking of

parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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NEUTRON–ANTINEUTRON OSCILLATION AS A SIGNAL OF CP

VIOLATION

ZURAB BEREZHIANI AND ARKADY VAINSHTEIN

Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

M± = m ± ✏

P
2
= 1

P :

P
2
↵ = e

2iB↵ 6= 1

P
2
z = �1

↵ = ⇡/2

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! e
i↵n, n̄ ! e

�i↵n̄
2

2

Using the chiral basis we show in the part 4 that all
these modifications (4) are reduced by field redefinitions
to just one possibility for the baryon charge breaking by
two units,

�L 6B = �
1

2
✏
⇥
n

T
Cn + nCn

T
⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of
the kinetic term in�

µ
@µn. Four-parametric U(2)

transformations allow to exclude the term (3) and to
reduce four terms (4) to just one structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and n

c

fields,

C : n ! n
c
= Cn

T
. (6)

This is a sort of discrete Z2 symmetry, C2
= 1. The

most simple it looks in the Majorana representation
where

n
c
= n

⇤
. (7)

It is straithforward to verify that both Lagrangians
above, (1) and (5), are C invariant. Indeed, they could
be rewritten in the form

LD =
i

2

⇥
n�

µ
@µn + n

c
�
µ
@µn

c
⇤
�

m

2

⇥
nn + n

c
n

c
⇤
,

�L 6B = �
✏

2

⇥
n

c
n + nn

c
⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1,2 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
n

c
1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
nk�

µ
@µnk �mnknk

⇤
,

�L 6B = �
1

2
✏
⇥
n1 n1 � n2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets. The C-even
n1 field gets the mass M1 = m + ✏ while the mass of
the C-odd n2 is M2 = m� ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n! �
0
n , n

c
! ��

0
n

c
, (11)

where �
0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem [10] on the opposite parities of fermion and an-
tifermion. The definition (11) satisfies P

2
= 1, so the

eigenvalues of P are ±1 and opposite for fermion and
antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes�L 6B to (��L 6B) . Together with
C invariance it implies then that �L 6B is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only when interaction is present.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [11, 12].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation (2) and define
P↵,

P↵ = Pe
iB↵

: n! e
i↵
�
0
n , n

c
! �e

�i↵
�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵
6= 1 but the phase is unob-

servable when B is conserved.
When baryon charge is not conserved the only rem-

nant of baryonic U(1)B rotations is Z2 symmetry asso-
ciated with changing sign of the fermion field, n! �n.
This symmetry is protected: unphysical 2⇡ space rota-
tion changes the sign of the fermion field. It means that
besides the original P 2

= 1 we can consider a di↵erent
parity definition Pz , such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n! i�
0
n , n

c
! i�

0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �L 6B .
Couple of related comments. First, one can choose

↵=�⇡/2 and have parities of fermion and antifermion
both equal to (�i) instead of i. The absolute sign has
no physical meaning – it could be changed by a 2⇡

space rotation – but relative parity between two dif-
ferent fermions does make sense. Second, it is amus-
ing that the same Pz parity for n and n

c equal to i

is still consistent with the notion of opposite parities of
fermion and antifermion, having in mind that that for
the complex value of parity we should compare Pz(n)

with [Pz(n
c
)]

⇤. Also for a fermion-antifermion pair the
product Pz(n)Pz(n

c
) = �1. One more comment is

to notice that Pz commutes with C, i.e., CPz=PzC, in
contrast with P which instead anticommutes with C, i.e.,
CP=�PC . For Majorana fermion both charge and par-
ity conjugations are diagonal in the Hilbert space: their

2

Using the chiral basis we show in the part 4 that all
these modifications (4) are reduced by field redefinitions
to just one possibility for the baryon charge breaking by
two units,

�L 6B = �
1

2
✏
⇥
n

T
Cn + nCn

T
⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of
the kinetic term in�

µ
@µn. Four-parametric U(2)

transformations allow to exclude the term (3) and to
reduce four terms (4) to just one structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and n

c

fields,

C : n ! n
c
= Cn

T
. (6)

This is a sort of discrete Z2 symmetry, C2
= 1. The

most simple it looks in the Majorana representation
where

n
c
= n

⇤
. (7)

It is straithforward to verify that both Lagrangians
above, (1) and (5), are C invariant. Indeed, they could
be rewritten in the form

LD =
i

2

⇥
n�

µ
@µn + n

c
�
µ
@µn

c
⇤
�

m

2

⇥
nn + n

c
n

c
⇤
,

�L 6B = �
✏

2

⇥
n

c
n + nn

c
⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1,2 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
n

c
1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
nk�

µ
@µnk �mnknk

⇤
,

�L 6B = �
1

2
✏
⇥
n1 n1 � n2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets. The C-even
n1 field gets the mass M1 = m + ✏ while the mass of
the C-odd n2 is M2 = m� ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n! �
0
n , n

c
! ��

0
n

c
, (11)

where �
0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem [10] on the opposite parities of fermion and an-
tifermion. The definition (11) satisfies P

2
= 1, so the

eigenvalues of P are ±1 and opposite for fermion and
antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes�L 6B to (��L 6B) . Together with
C invariance it implies then that �L 6B is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only when interaction is present.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [11, 12].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation (2) and define
P↵,

P↵ = Pe
iB↵

: n! e
i↵
�
0
n , n

c
! �e

�i↵
�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵
6= 1 but the phase is unob-

servable when B is conserved.
When baryon charge is not conserved the only rem-

nant of baryonic U(1)B rotations is Z2 symmetry asso-
ciated with changing sign of the fermion field, n! �n.
This symmetry is protected: unphysical 2⇡ space rota-
tion changes the sign of the fermion field. It means that
besides the original P 2

= 1 we can consider a di↵erent
parity definition Pz , such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n! i�
0
n , n

c
! i�

0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �L 6B .
Couple of related comments. First, one can choose

↵=�⇡/2 and have parities of fermion and antifermion
both equal to (�i) instead of i. The absolute sign has
no physical meaning – it could be changed by a 2⇡

space rotation – but relative parity between two dif-
ferent fermions does make sense. Second, it is amus-
ing that the same Pz parity for n and n

c equal to i

is still consistent with the notion of opposite parities of
fermion and antifermion, having in mind that that for
the complex value of parity we should compare Pz(n)

with [Pz(n
c
)]

⇤. Also for a fermion-antifermion pair the
product Pz(n)Pz(n

c
) = �1. One more comment is

to notice that Pz commutes with C, i.e., CPz=PzC, in
contrast with P which instead anticommutes with C, i.e.,
CP=�PC . For Majorana fermion both charge and par-
ity conjugations are diagonal in the Hilbert space: their

2

Using the chiral basis we show in the part 4 that all
these modifications (4) are reduced by field redefinitions
to just one possibility for the baryon charge breaking by
two units,

�L 6B = �
1

2
✏
⇥
n

T
Cn + nCn

T
⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of
the kinetic term in�

µ
@µn. Four-parametric U(2)

transformations allow to exclude the term (3) and to
reduce four terms (4) to just one structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and n

c

fields,

C : n ! n
c
= Cn

T
. (6)

This is a sort of discrete Z2 symmetry, C2
= 1. The

most simple it looks in the Majorana representation
where

n
c
= n

⇤
. (7)

It is straithforward to verify that both Lagrangians
above, (1) and (5), are C invariant. Indeed, they could
be rewritten in the form

LD =
i

2

⇥
n�

µ
@µn + n

c
�
µ
@µn

c
⇤
�

m

2

⇥
nn + n

c
n

c
⇤
,

�L 6B = �
✏

2

⇥
n

c
n + nn

c
⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1,2 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
n

c
1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
nk�

µ
@µnk �mnknk

⇤
,

�L 6B = �
1

2
✏
⇥
n1 n1 � n2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets. The C-even
n1 field gets the mass M1 = m + ✏ while the mass of
the C-odd n2 is M2 = m� ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n! �
0
n , n

c
! ��

0
n

c
, (11)

where �
0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem [10] on the opposite parities of fermion and an-
tifermion. The definition (11) satisfies P

2
= 1, so the

eigenvalues of P are ±1 and opposite for fermion and
antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes�L 6B to (��L 6B) . Together with
C invariance it implies then that �L 6B is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only when interaction is present.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [11, 12].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation (2) and define
P↵,

P↵ = Pe
iB↵

: n! e
i↵
�
0
n , n

c
! �e

�i↵
�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵
6= 1 but the phase is unob-

servable when B is conserved.
When baryon charge is not conserved the only rem-

nant of baryonic U(1)B rotations is Z2 symmetry asso-
ciated with changing sign of the fermion field, n! �n.
This symmetry is protected: unphysical 2⇡ space rota-
tion changes the sign of the fermion field. It means that
besides the original P 2

= 1 we can consider a di↵erent
parity definition Pz , such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n! i�
0
n , n

c
! i�

0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �L 6B .
Couple of related comments. First, one can choose

↵=�⇡/2 and have parities of fermion and antifermion
both equal to (�i) instead of i. The absolute sign has
no physical meaning – it could be changed by a 2⇡

space rotation – but relative parity between two dif-
ferent fermions does make sense. Second, it is amus-
ing that the same Pz parity for n and n

c equal to i

is still consistent with the notion of opposite parities of
fermion and antifermion, having in mind that that for
the complex value of parity we should compare Pz(n)

with [Pz(n
c
)]

⇤. Also for a fermion-antifermion pair the
product Pz(n)Pz(n

c
) = �1. One more comment is

to notice that Pz commutes with C, i.e., CPz=PzC, in
contrast with P which instead anticommutes with C, i.e.,
CP=�PC . For Majorana fermion both charge and par-
ity conjugations are diagonal in the Hilbert space: their

NEUTRON–ANTINEUTRON OSCILLATION AS A SIGNAL OF CP VIOLATION 3

of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! e

i��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! e

i��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T

+h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc
= Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = Pe
iB⇡/2

: n ! i�0n , nc ! i�0n .

(7) P↵ = Pe
iB↵

: n ! e
�i↵�0n , nc ! �e

i↵�0n .

(8) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0
= �C. The breaking of

parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently

2

Using the chiral basis we show in the part 4 that all
these modifications (4) are reduced by field redefinitions
to just one possibility for the baryon charge breaking by
two units,

�L 6B = �
1

2
✏
⇥
n

T
Cn + nCn

T
⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of
the kinetic term in�

µ
@µn. Four-parametric U(2)

transformations allow to exclude the term (3) and to
reduce four terms (4) to just one structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and n

c

fields,

C : n ! n
c
= Cn

T
. (6)

This is a sort of discrete Z2 symmetry, C2
= 1. The

most simple it looks in the Majorana representation
where

n
c
= n

⇤
. (7)

It is straithforward to verify that both Lagrangians
above, (1) and (5), are C invariant. Indeed, they could
be rewritten in the form

LD =
i
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µ
@µn + n
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(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1,2 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
n

c
1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
nk�

µ
@µnk �mnknk

⇤
,

�L 6B = �
1

2
✏
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n1 n1 � n2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets. The C-even
n1 field gets the mass M1 = m + ✏ while the mass of
the C-odd n2 is M2 = m� ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n! �
0
n , n

c
! ��

0
n

c
, (11)

where �
0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem [10] on the opposite parities of fermion and an-
tifermion. The definition (11) satisfies P

2
= 1, so the

eigenvalues of P are ±1 and opposite for fermion and
antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes�L 6B to (��L 6B) . Together with
C invariance it implies then that �L 6B is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only when interaction is present.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [11, 12].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation (2) and define
P↵,

P↵ = Pe
iB↵

: n! e
i↵
�
0
n , n

c
! �e

�i↵
�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵
6= 1 but the phase is unob-

servable when B is conserved.
When baryon charge is not conserved the only rem-

nant of baryonic U(1)B rotations is Z2 symmetry asso-
ciated with changing sign of the fermion field, n! �n.
This symmetry is protected: unphysical 2⇡ space rota-
tion changes the sign of the fermion field. It means that
besides the original P 2

= 1 we can consider a di↵erent
parity definition Pz , such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n! i�
0
n , n

c
! i�

0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �L 6B .
Couple of related comments. First, one can choose

↵=�⇡/2 and have parities of fermion and antifermion
both equal to (�i) instead of i. The absolute sign has
no physical meaning – it could be changed by a 2⇡

space rotation – but relative parity between two dif-
ferent fermions does make sense. Second, it is amus-
ing that the same Pz parity for n and n

c equal to i

is still consistent with the notion of opposite parities of
fermion and antifermion, having in mind that that for
the complex value of parity we should compare Pz(n)

with [Pz(n
c
)]

⇤. Also for a fermion-antifermion pair the
product Pz(n)Pz(n

c
) = �1. One more comment is

to notice that Pz commutes with C, i.e., CPz=PzC, in
contrast with P which instead anticommutes with C, i.e.,
CP=�PC . For Majorana fermion both charge and par-
ity conjugations are diagonal in the Hilbert space: their



The subject has an interesting history which goes back to 
the famous paper by Ettore Majorana in 1937 where he 
introduced the notion of Majorana fermions. In the 
footnote there he noted that the parity for Majorana 
fermion is   . In the same issue of Nuovo Cimento this 
was discussed in more detail by Gulio Racah.

Wolfenstein and Kaiser followed this definition in their 
applications to neutrino. But it took some time to apply it 
to neutron-antineutron mixing.
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NEUTRON–ANTINEUTRON OSCILLATION AS A SIGNAL OF CP

VIOLATION

ZURAB BEREZHIANI AND ARKADY VAINSHTEIN

Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! e
i↵n, n̄ ! e

�i↵n̄

of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! e

i��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
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Another term                  consistent with    conservation                                                         
can be rotated away by the chiral rotation,                     .
Four degenerate states: two spin doublets differ by    .            
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How does baryon number non-conservation shows up? 
At the level of free particles it could be only bilinear           
                mass terms:

FTPI-MINN-15/29, NSF-KITP-15-073

Neutron–Antineutron Oscillation and Discrete Symmetries

Zurab Berezhiani1, 2 and Arkady Vainshtein3, 4

1
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We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles
all these symmetries are preserved in spite of the opposite parities of neutron and antineutron.
Explaining the subtlety in definition of parity we apply this to C, P and T classification of six-
quark operators with |�B| = 2. It allows to specify operators contributing to neutron-antineutron
oscillations. Remaining operators contribute to other |�B| = 2 processes and, in particular, to
nuclei instability.

We also show that presence of external magnetic field does not induce any new operator mixing
the neutron and antineutron provided that rotational invariance is not broken.

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.

Essentially the same issues were addressed in our
previous note [3]. There we emphasize the point that
parity P, such that P

2
= 1, is broken in the neutron-

antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�
µ
@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! e
i↵
n, n̄! e

�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.

Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
e
i��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

n
T
Cn , n

T
C�5n , n̄Cn̄

T
, n̄C�5n̄

T
. (4)

Here C = i�
2
�
0 is the charge conjugation matrix in the
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where ✏ is a real positive parameter. The possibility
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@µn as it is demonstrated in the part

4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
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3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
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metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.
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parity P, such that P

2
= 1, is broken in the neutron-
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also noted that in absence of interaction it does not
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At these bilinear in fields the most generic Lorentz 
invariant modifications reduce by field redefinitions to the 
only one term, breaking baryon charge by two units,

NEUTRON–ANTINEUTRON OSCILLATION AS A SIGNAL OF CP VIOLATION 3

We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! e

i��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T

+h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc
= Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) n ! �0n .

This substitution changes �LB6 to ��LB6 because �0C�0
= �C. The breaking of

parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
pseudoscalar. Clearly, the parity violation comes together with breaking of T invariance
since CPT invariance is guaranteed by a local, Lorentz invariant form of the Lagrangian.

Thus, we demonstrated that observation of neutron-antineutron oscillation signals break-
ing of CP invariance together with breaking of baryon charge.

2. To show that the above consideration covers indeed a generic case it is convenient to
introduce two left-handed Weyl spinors [3], forming a flavor doublet

(7)  i↵ , i = 1, 2, ↵ = 1, 2 ,

together with their complex conjugates, representing the right-handed spinors,

(8)  
↵̇
i = ( i↵

)
⇤ , i = 1, 2, ↵̇ = 1, 2 .

One can raise and lower space ↵, ↵̇ and flavor i indices using ✏↵�, ✏↵̇�̇ and ✏ik. In terms
of Dirac spinor n these two left-handed Weyl spinors are nL and (nR)

⇤. The most generic
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metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
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invariance is not broken.
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view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.

Essentially the same issues were addressed in our
previous note [3]. There we emphasize the point that
parity P, such that P

2
= 1, is broken in the neutron-

antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�
µ
@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry
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of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.

Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
e
i��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
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where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�
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@µn as it is demonstrated in the part

4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
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3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
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, (11)

where �0
C�

0
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c reflect the well-known the-
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pioneered by Berestetsky [5]. The definition (11) satisfies
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Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
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Pz parity. It means that all discrete symmetries, C, Pz
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z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
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It is simple to verify that both Lagrangians above, (1)
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which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
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space coordinates, the substitution

NEUTRON–ANTINEUTRON OSCILLATION AS A SIGNAL OF CP VIOLATION 3

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! e

i��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T

+h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc
= Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) n ! �0n .

This substitution changes �LB6 to ��LB6 because �0C�0
= �C. The breaking of

parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
pseudoscalar. Clearly, the parity violation comes together with breaking of T invariance
since CPT invariance is guaranteed by a local, Lorentz invariant form of the Lagrangian.

Thus, we demonstrated that observation of neutron-antineutron oscillation signals break-
ing of CP invariance together with breaking of baryon charge.

2. To show that the above consideration covers indeed a generic case it is convenient to
introduce two left-handed Weyl spinors [3], forming a flavor doublet

(7)  i↵ , i = 1, 2, ↵ = 1, 2 ,

together with their complex conjugates, representing the right-handed spinors,

(8)  
↵̇
i = ( i↵

)
⇤ , i = 1, 2, ↵̇ = 1, 2 .

One can raise and lower space ↵, ↵̇ and flavor i indices using ✏↵�, ✏↵̇�̇ and ✏ik. In terms
of Dirac spinor n these two left-handed Weyl spinors are nL and (nR)

⇤. The most generic
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VIOLATION

ZURAB BEREZHIANI AND ARKADY VAINSHTEIN

Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

M± = m ± ✏

P
2
= 1

P :

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! e
i↵n, n̄ ! e

�i↵n̄

of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,
2
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! e

i��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
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⇥
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, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = Pe
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(7) P↵ = Pe
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This substitution changes �LB6 to ��LB6 because �0C�0
= �C. The breaking of

parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently

6

9. In summary, we show that the Lorentz and CPT

invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K
0 � K

0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄

oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of

|�B| = 2 operators coming from new physics, par-
ticularly in association with Sakharov conditions for
baryogenesis which involves both, non-conservation of
baryon charge and CP-violation.

We thank Susan Gardner, Yuri Kamyshkov, Kirill Mel-
nikov, Rabi Mohapatra, Adam Ritz and Misha Voloshin
for helpful discussions. A.V. appreciates hospitality of
the Kavli Institute for Theoretical Physics where his re-
search was supported in part by the National Science
Foundation under Grant No. NSF PHY11-25915. The
work of Z.B. was supported in part by the MIUR tri-
ennal grant for Research Projects of National Interest
PRIN No. 2012CPPYP7 “Astroparticle Physics”, and in
part by Rustaveli National Science Foundation grant No.
DI/8/6-100/12.

[1] V.A. Kuzmin, Pisma Zh. Eksp. Teor. Fiz. 12, 335 (1970);
R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett.
44, 1316 (1980).

[2] D. G. Phillips, II et al., Phys. Rept. 612, 1 (2016)
[arXiv:1410.1100 [hep-ex]].

[3] Z. Berezhiani and A.Vainshtein,
Neutron-Antineutron Oscillation as a Signal of CP Vio-

lation, arXiv:1506.05096 [hep-ph].
[4] K. Fujikawa and A. Tureanu,

Neutron-antineutron oscillation and parity and CP sym-

metries, arXiv:1510.00868 [hep-ph];
D. McKeen and A.E. Nelson, Phys. Rev. D 94, no. 7,
076002 (2016) [arXiv:1512.05359 [hep-ph]];
S. Gardner and X. Yan, Phys. Rev. D 93, no. 9, 096008
(2016) [arXiv:1602.00693 [hep-ph]];
K. Fujikawa and A. Tureanu, Phys. Rev. D 94, no. 11,
115009 (2016) [arXiv:1609.03203 [hep-ph]].

[5] V. B. Berestetskii, Zh. Eksp. Teor. Fiz. 10 21, 1321 (1951)
[6] V.B. Berestetsky, E.M. Lifshitz and L. P. Pitaevsky,

Quantum Electrodynamics, Oxford, UK: Pergamon
(1982) (Course Of Theoretical Physics, 4)

[7] M. E. Peskin and D. V. Schroeder, An Introduction to

quantum field theory, Reading, USA: Addison-Wesley
(1995)

[8] L. Wolfenstein, Phys. Lett. 107B, 77 (1981).
[9] P. Ramond, Journeys Beyond the Standard Model,

Reading, Mass., Perseus Books, 1999
[10] M. B. Voloshin, Sov. J. Nucl. Phys. 48, 512 (1988) [Yad.

Fiz. 48, 804 (1988)].
[11] See e.g. in P. Ramond, “Journeys Beyond the Standard

Model,” Reading, Mass., Perseus Books, 1999, where the
Weyl formalism is gracefully applied to description of
massive neutrinos.

[12] S. Gardner and E. Jafari, Phys. Rev. D 91, no. 9, 096010
(2015) [arXiv:1408.2264 [hep-ph]].

[13] M.B. Voloshin, Sov. J. Nucl. Phys. 48, 512 (1988) [Yad.
Fiz. 48, 804 (1988)].

[14] Z. Berezhiani and L. Bento, Phys. Rev. Lett. 96, 081801
(2006) [hep-ph/0507031]; Z. Berezhiani, Eur. Phys. J. C
64, 421 (2009) [arXiv:0804.2088 [hep-ph]].

[15] K. S. Babu and R.N. Mohapatra, Phys. Rev. D 91, no.
9, 096009 (2015) [arXiv:1504.01176 [hep-ph]].

[16] S. Rao and R. Shrock, Phys. Lett. 116B, 238 (1982).
[17] W. E. Caswell, J. Milutinovic and G. Senjanovic, Phys.

Lett. 122B, 373 (1983).
[18] X.W. Kang, H.B. Li and G.R. Lu, Phys. Rev. D 81,

051901 (2010) [arXiv:0906.0230 [hep-ph]].
[19] V.A. Kuzmin, In *Oak Ridge 1996, Future prospects of

baryon instability search* 89-91 [hep-ph/9609253].
[20] Ya. B. Zeldovich, Dokl. Akad. Nauk SSSR 86, 505 (1952);

E. J. Konopinski and H.M. Mahmoud, Phys. Rev. 92,
1045 (1953).

C.N. Yang ’50
V.B. Berestetsky ’51

2

It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form
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(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,
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(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = Pe
iB↵

: n ! e
i↵
�
0
n , n

c ! �e
�i↵

�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n ! i�
0
n , n

c ! i�
0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1
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together with their complex conjugates, representing the
leftt-handed spinors,
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One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n

these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,
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which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-
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which are even and odd under the charge conjugation C,
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = Pe
iB↵

: n ! e
i↵
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0
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Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,
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: n ! i�
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c ! i�
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with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1
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tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
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However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
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vided only by interaction.
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This CP-oddness, however, does not translates 
immediately into observable CP-breaking effects. 
To get them one needs an interference of amplitudes 
provided only by interaction.

This subtlety is discussed in number of textbooks, see e.g. 

Let’s remind it.

6

9. In summary, we show that the Lorentz and CPT

invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K
0 � K

0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄

oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of

|�B| = 2 operators coming from new physics, par-
ticularly in association with Sakharov conditions for
baryogenesis which involves both, non-conservation of
baryon charge and CP-violation.
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It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
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which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,
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which are even and odd under the charge conjugation C,
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,
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Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,
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: n ! i�
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c ! i�
0
n
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with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1
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means that besides the original P 2

= 1 we can consider
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T invariance follows from CPT theorem provided by
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making it complex and satisfying P

2
z = �1 instead of
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Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
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We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles
all these symmetries are preserved in spite of the opposite parities of neutron and antineutron.
Explaining the subtlety in definition of parity we apply this to C, P and T classification of six-
quark operators with |�B| = 2. It allows to specify operators contributing to neutron-antineutron
oscillations. Remaining operators contribute to other |�B| = 2 processes and, in particular, to
nuclei instability.

We also show that presence of external magnetic field does not induce any new operator mixing
the neutron and antineutron provided that rotational invariance is not broken.

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.

Essentially the same issues were addressed in our
previous note [3]. There we emphasize the point that
parity P, such that P

2
= 1, is broken in the neutron-

antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�
µ
@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! e
i↵
n, n̄! e

�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.

Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
e
i��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

n
T
Cn , n

T
C�5n , n̄Cn̄

T
, n̄C�5n̄

T
. (4)

Here C = i�
2
�
0 is the charge conjugation matrix in the

standard representation of gamma matrices.
Using the chiral basis we show in the part 4 that all

these modifications (4) with a help of field redefinitions
reduce to one possibility for the baryon charge breaking
by two units,

�LB6 = �
1

2
✏
⇥
n

T
Cn + n̄Cn̄

T
⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�

µ
@µn as it is demonstrated in the part

4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and n

c

fields,

C : n ! n
c
= Cn̄

T
. (6)

This is a sort of discrete Z2 symmetry, C2
= 1. The

most simple it looks in the Majorana representation
where

n
c
= n

⇤
. (7)

2

It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�

µ
@µn + n

c
�
µ
@µn

c
⇤
�

m

2

⇥
n̄n + n

c
n

c
⇤
,

�LB6 = �
1

2
✏
⇥
n

c
n + n̄ n

c
⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = Pe
iB↵

: n ! e
i↵
�
0
n , n

c ! �e
�i↵

�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n ! i�
0
n , n

c ! i�
0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1
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, i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,
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One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
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However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
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the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n
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compare Pz(n) with [Pz(n
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⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n
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) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
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making it complex and satisfying P
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z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
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4. To show that the above consideration covers a generic
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µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = Pe
iB↵

: n ! e
i↵
�
0
n , n

c ! �e
�i↵

�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n ! i�
0
n , n

c ! i�
0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 
i↵

, i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( 

i↵
)
⇤
, i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n

these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 

2
)
⇤

 
1

◆
. (16)

1
See, e.g., the book [11] where it is graciously applied to descrip-

tion of massive neutrinos.
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We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles
all these symmetries are preserved in spite of the opposite parities of neutron and antineutron.
Explaining the subtlety in definition of parity we apply this to C, P and T classification of six-
quark operators with |�B| = 2. It allows to specify operators contributing to neutron-antineutron
oscillations. Remaining operators contribute to other |�B| = 2 processes and, in particular, to
nuclei instability.

We also show that presence of external magnetic field does not induce any new operator mixing
the neutron and antineutron provided that rotational invariance is not broken.

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.

Essentially the same issues were addressed in our
previous note [3]. There we emphasize the point that
parity P, such that P

2
= 1, is broken in the neutron-

antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�
µ
@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! e
i↵
n, n̄! e

�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.

Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
e
i��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

n
T
Cn , n

T
C�5n , n̄Cn̄

T
, n̄C�5n̄

T
. (4)

Here C = i�
2
�
0 is the charge conjugation matrix in the

standard representation of gamma matrices.
Using the chiral basis we show in the part 4 that all

these modifications (4) with a help of field redefinitions
reduce to one possibility for the baryon charge breaking
by two units,

�LB6 = �
1

2
✏
⇥
n

T
Cn + n̄Cn̄

T
⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�

µ
@µn as it is demonstrated in the part

4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and n

c

fields,

C : n ! n
c
= Cn̄

T
. (6)

This is a sort of discrete Z2 symmetry, C2
= 1. The

most simple it looks in the Majorana representation
where

n
c
= n

⇤
. (7)
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It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form
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i
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n̄�

µ
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c
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⇥
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which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
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, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
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Of course, then P
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↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2
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a di↵erent parity definition Pz, such that P2
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Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,
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with P
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z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n
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)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 
i↵

, i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( 

i↵
)
⇤
, i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n

these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 

2
)
⇤

 
1

◆
. (16)
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tion of massive neutrinos.

NEUTRON–ANTINEUTRON OSCILLATION AS A SIGNAL OF CP VIOLATION 3

of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! e

i��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! e

i��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T

+h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc
= Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = Pe
iB⇡/2

: n ! i�0n , nc ! i�0n .

(7) P↵ = Pe
iB↵

: n ! e
�i↵�0n , nc ! �e

i↵�0n .

(8) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0
= �C. The breaking of

parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

M± = m ± ✏

P
2
= 1

P :

P
2
↵ = e

2iB↵ 6= 1

P
2
z = �1

↵ = ⇡/2

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! e
i↵n, n̄ ! e

�i↵n̄
2

2

It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�

µ
@µn + n

c
�
µ
@µn

c
⇤
�

m

2

⇥
n̄n + n

c
n

c
⇤
,

�LB6 = �
1

2
✏
⇥
n

c
n + n̄ n

c
⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = Pe
iB↵

: n ! e
i↵
�
0
n , n

c ! �e
�i↵

�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n ! i�
0
n , n

c ! i�
0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 
i↵

, i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( 

i↵
)
⇤
, i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n

these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 

2
)
⇤

 
1

◆
. (16)

1
See, e.g., the book [11] where it is graciously applied to descrip-

tion of massive neutrinos.

Moreover, in case of Majorana fermions it is the only 
possible choice.  Indeed, in Majorana representation  
where

only      preserves reality of the Majorana spinor.  Also     
preserves the Majorana structure of        fields,
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9. In summary, we show that the Lorentz and CPT

invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K
0 � K

0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄

oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of

|�B| = 2 operators coming from new physics, par-
ticularly in association with Sakharov conditions for
baryogenesis which involves both, non-conservation of
baryon charge and CP-violation.
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It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�

µ
@µn + n

c
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µ
@µn

c
⇤
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m

2
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c
n

c
⇤
,

�LB6 = �
1

2
✏
⇥
n

c
n + n̄ n

c
⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = Pe
iB↵

: n ! e
i↵
�
0
n , n

c ! �e
�i↵

�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n ! i�
0
n , n

c ! i�
0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 
i↵

, i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( 

i↵
)
⇤
, i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n

these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =
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⇤
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See, e.g., the book [11] where it is graciously applied to descrip-

tion of massive neutrinos.
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! e

i��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! e

i��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T

+h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc
= Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = Pe
iB⇡/2

: n ! i�0n , nc ! i�0n .

(7) P↵ = Pe
iB↵

: n ! e
�i↵�0n , nc ! �e

i↵�0n .

(8) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0
= �C. The breaking of

parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
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, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,
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⇥
n̄k�

µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
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n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = Pe
iB↵

: n ! e
i↵
�
0
n , n

c ! �e
�i↵

�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n ! i�
0
n , n

c ! i�
0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 
i↵

, i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( 

i↵
)
⇤
, i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n

these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =
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2
)
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1

◆
. (16)
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See, e.g., the book [11] where it is graciously applied to descrip-

tion of massive neutrinos.
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Free neutron oscillations 

If we start at t=0 from neutron state then           
transition leads for probability to find antineutron

            

O∆B=−2 = uudddd

qi
Lα , qk

Rα̇ , i, k = 1, 2, 3 ,α, α̇ = 1, 2

ϵijk

ϵαβ

ϵα̇β̇

∆I = 1, 2, 3

n ↔ n̄

∆I = 2, 3

τnn̄

p

n

n̄

π+

B, ∆B = 2

⟨n̄|c∗OO
†|n⟩ = ϵ ūc

n̄γ5un |ϵ| =
!

τnn̄

A
∫

d4x eiqxT{O(x)O†(0)} = cq q̄q + . . .

2|cO|2Im
∫

d4x⟨A|T{O(x)O†(0)}|A⟩ =
!

τA
τA

τA = R τnn̄ , R =
∆

A!

|cO|2
∫

d4x eiqx⟨n|T{O(x)O†(0)}|n⟩ ∼
|ϵ|2

∆

q ∼ ∆

2

Here we implying that time t is much smaller than the
neutron lifetime. For such time intervals

      .                                         
Free neutron ILL experiment (1994) gives the bound

⟨A|q̄q|A⟩ ∼ A ⟨n|q̄q|n⟩
16O

∆ = 0.5 GeV

R = 5 × 1022 s−1

∆L = 2

τ (16O) > 1.97 × 1032 yr

τnn̄ > 3.53 × 108 s

τnn̄ > 0.86 × 108 s

1 Introduction

Since the inceptiōn of QCD till the end of Millennium the prime interest of the QCD
practitioners was the spectrum and properties of the low-lying hadronic states, such
as ρ mesons, pions and nucleons. A number of methods was developed to treat such
states, starting from the soft-pion technique which predates QCD by a decade, then
QCD sum rules, lattice calculations and so on. Little attention was paid to highly
excited states. The reason is obvious: the decay widths of the excited states grow
with the excitation number, so that they overlap and collectivize themselves, and
could be treated as continuum.

In the Regge theory which dominated high energy theory before QCD, highly
excited states played an important role in phenomenological analyses since they
determine the daughter Regge trajectories. The Regge theory gave rise to dual
resonance models which eventually grew into string theory. Ironically, string theory
that emerged from the dual resonance models shortly after became “string theory
for nonhadrons,” and was elevated to the status of “theory of everything” in the
1980s and early ’90s. With this promotion the previous interest to excited hadronic
states faded away. At the same time, in QCD highly excited states were treated as
belonging the the realm of asymptotic freedom which inevitably qualified them as
“dynamically uninteresting objects.”

This attitude changed in recent years with the advent of string–gauge duality
methods, based on the ’t Hooft limit [1] with the number of colors Nc → ∞ while
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1Dipartimento di Fisica e Chimica, Università dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila, Italy
2INFN, Laboratori Nazionali del Gran Sasso, 67010 Assergi, L’Aquila, Italy

3School of Physics and Astronomy and William I. Fine Theoretical Physics Institute,
University of Minnesota, Minneapolis, MN 55455, USA

4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles all
these symmetries are preserved. This includes P reflection in spite of the opposite internal parities
usually ascribed to neutron and antineutron. Explanation, which goes back to the 1937 papers by
E. Majorana and by G. Racah, is based on a definition of parity satisfying P2 = �1, instead of
P2 = 1, and ascribing P = i to both, neutron and antineutron. We apply this to C, P and T
classification of six-quark operators with |�B| = 2. It allows to specify operators contributing to
neutron-antineutron oscillations. Remaining operators contribute to other |�B| = 2 processes and,
in particular, to nuclei instability. We also show that presence of external magnetic field does not
induce any new operator mixing the neutron and antineutron provided that rotational invariance is
not broken.
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1. A phenomenon of neutron-antineutron oscillation
was suggested by Kuzmin [1] in 1970, and the first theo-
retical model – by Mohapatra and Marshak in 1980 [2].
It is now under active discussion (for a review, see [3]).
A discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in

the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external
magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.
Essentially the same issues were addressed in our pre-

vious note [4]. There we emphasize the point that parity
P, defined in such a way that P

2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [4] the issue of parity definition in

the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with
correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more
details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the
same journal issue the parity definition was discussed in
more details by Giulio Racah [9].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
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Six-quarks operators: discrete symmetries
New physics beyond the Standard Model, leading to              
transitions, induces the effective six-quark interaction, 

                    

where coefficients      account for color, flavor and spinor 
structures. 
     In particular, for n-nbar mixing
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So while C parity is preserved, we have P even, Eq. (1), and P odd, Eqs. (3), (4), mass
terms. Thus, we proved for generic case the association of baryon charge breaking with
CP violation.

Note that in terms of remaining 3 parameters the masses of C even and C odd Majorana
fermions are

(21) M2
1 = (m + ✏)2 + (m0

)
2 , M2

2 = (m � ✏)2 + (m0
)
2 ,

what di↵erent from standard expressions when m0 is nonvanishing. In particular, it implies
that the oscillation time ⌧nn̄ in free neutron transition probability, Pnn̄(t) = sin

2
(t/⌧nn̄)

is
p

1 + (m0/m)2/✏ instead of 1/✏.
The CP odd nature of the operator (4) was noted recently in Ref. [4]. However, the

authors of this paper discussed also the CP even operator nT�5Cn which, as we showed,
can be rotated away by field redefinition. These authors also analyzed modifications in-
duced by external magnetic field claiming an existence of a new n� n̄ transition magnetic
moment and also an absence of the usual suppression of n � n̄ oscillation in presence of
magnetic field. We will show below that both claims are invalid.

3. Our consideration above refers to the neutron-antineutron oscillation in vacuum. Now
we show that even in the presence of magnetic field no new |�B| = 2 operator appears.
Similar consideration was done in Ref. [5] in application to magnetic moment of neutrinos.

In the Weyl formalism the field strengths tensor Fµ⌫ is substituted by the symmetric

tensor F↵� and its complex conjugate F̄↵̇�̇. They correspond to ~E ± i ~B combinations of
electric and magnetic fields. Then Lorentz invariance allows only two structures involving
electromagnetic fields,

(22) F↵� 
i↵ k�✏ik , F̄↵̇�̇ ̄

↵̇
i  ̄

�̇
k ✏

ik

Antisymmetry in flavor indices implies that spinors with the opposite baryon charge enter.
So both operators preserve the baryon charge, they describe interactions with the magnetic
and electric dipole moments of the neutron.

The authors of [4] realize that the operator nT�µ⌫CnFµ⌫ is vanishing due to Fermi
statistics. They believe, however, that a composite nature of neutron changes the situation
and a new type of magnetic moment in �B = ±2 transitions may present. In other words
they think that the e↵ective Lagrangian description is broken for composite particles.

To show that is not the case let us consider the process

(23) n(p1) + n(p2) ! �⇤
(k)

in the crossing channel to n � n̄�⇤ transition. The number of invariant amplitudes for
the process (23) which is 1/2+ + 1/2+ ! 1

� transition is equal to one. Only orbital
momentum L = 1 and total spin S = 1 in two neutron system are allowed by angular
momentum conservation and Fermi statistics. The gauge-invariant form of the amplitude
is

(24) uT
(p1)C�

µ�5u(p2) k
⌫Fµ⌫ , Fµ⌫ = kµ✏⌫ � k⌫✏µ,
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where u1,2 are Dirac spinors describing neutrons and ✏µ

refers to the gauge potential. In space representation we
deal with @

⌫
Fµ⌫ the quantity which vanishes outside of

the source of the electromagnetic field, and, in particular,
for the distributed magnetic field. It proves that there is
no place for magnetic moment of n � n̄ transition, and
e↵ective Lagrangian description does work.2

Even in the absence of new n�n̄magnetic moment the
authors of [12] claim that suppression of n�n̄ oscillations
by external magnetic field can be overcome by applying
the magnetic field transversal to quantization axis.

In their first example where the transversal field is time
-independent (after switching) they obtained four di↵er-
ent energy eigenvalues (Eq. (26) in [12]) which depend on
direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!

2
0 + !

2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [12] is also in-
correct – after a change of variables indicated in [12] the
consideration is similar to the first example with time-
independent field.
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Let us also remark that n�n̄�⇤

transition with a virtual photon

connected to the proton, as well as nn ! �⇤
annihilation, would

destabilise the nuclei even in the absence of n� n̄ mass mixing.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [12] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.3

5. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.
Such operators were analyzed in Ref. [15] for putting

limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator n

T
C�

5
�
2
n as an

example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.
Note, however, that besides breaking of Lorentz

invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

6. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.4 The violation of B by
two units can originate only from new physics beyond SM
which would induce the e↵ective six-quark interaction
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where coe�cients T
i account for di↵erent flavor, color

and spinor structures and the large mass scale M com-
ing from new physics leads to the smallness of baryon
violation.
In particular, the nn̄ mixing term (5) emerges as a

matrix element between n and n̄ states of the operator
(29), see diagram in Fig. 1,

hn̄| L (�B = �2) |ni = �
1

2
✏ v

T
n̄C un , (30)

where un, vn̄ are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧nn̄, is

✏ =
1

⌧nn̄
⇠

⇤
6
QCD

M5
. (31)
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The situation is di↵erent if one considers oscillation n � n0

where n0
is a mirror neutron, twin of the neutron from hidden

mirror sector [14]. In this case, operators n�µ⌫n0Fµ⌫ and/or

nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0
and/or n�n̄0

tran-

sition probabilities may not depend on the value of magnetic field

provided that it is large enough, with possible implications for

the experimental search of neutron�mirror neutron oscillations.
4
Nonperturbative breaking of B and L, preserving B � L, is

extremely small.
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independent field.
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where un, vn̄ are Dirac spinors for n, n̄. Generically, it
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where n0
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and/or n�n̄0
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provided that it is large enough, with possible implications for

the experimental search of neutron�mirror neutron oscillations.
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extremely small.

This implies that                       

Neutron–Antineutron Oscillations: Discrete Symmetries and Quark Operators

Zurab Berezhiani1, 2 and Arkady Vainshtein3, 4
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We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles all
these symmetries are preserved. This includes P reflection in spite of the opposite internal parities
usually ascribed to neutron and antineutron. Explanation, which goes back to the 1937 papers by
E. Majorana and by G. Racah, is based on a definition of parity satisfying P2 = �1, instead of
P2 = 1, and ascribing P = i to both, neutron and antineutron. We apply this to C, P and T
classification of six-quark operators with |�B| = 2. It allows to specify operators contributing to
neutron-antineutron oscillations. Remaining operators contribute to other |�B| = 2 processes and,
in particular, to nuclei instability. We also show that presence of external magnetic field does not
induce any new operator mixing the neutron and antineutron provided that rotational invariance is
not broken.

M > 10
3
TeV

1. A phenomenon of neutron-antineutron oscillation was
suggested by Kuzmin [1] in 1970, and the first theoretical
model – by Mohapatra and Marshak in 1980 [2]. It is
now under active discussion (for a review, see [3]). A
discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in
the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external
magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.

Essentially the same issues were addressed in our pre-
vious note [4]. There we emphasize the point that parity
P, defined in such a way that P

2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [4] the issue of parity definition in

the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with
correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more
details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the

same journal issue the parity definition was discussed in
more details by Giulio Racah [9].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation
is associated with the continuous U(1)B symmetry

n ! e
i↵
n, n! e

�i↵
n (2)

of Lagrangian (1). Correspondingly, at each spatial
momentum there are four degenerate states, the spin
doublet of the neutron states with the baryon charge
B = 1, and the spin doublet of the antineutron states
with B = �1, i.e., two spin doublets which di↵er by the
baryon charge B.
Note that another bilinear mass term,

�ifm n�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !

e
i⌘�5n .
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass terms. Generically, there are four such Lorentz in-
variant bilinear terms:

n
T
Cn , n

T
C�5n , nCn

T
, nC�5n̄

T
. (4)

Here C = i�
2
�
0 is the charge conjugation matrix in the

Dirac (standard) representation of gamma matrices. It
has the same form in the Weyl (chiral) representation.
In the Majorana representation C = ��
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M > 10
3
TeV
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= u
iT
�1

Cu
j
�1

d
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O2
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O3
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ijm✏kln+

✏ijn✏klm

⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations
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���0 = 3O3
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(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even
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ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O
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. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations
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of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�
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to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators
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Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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9. In summary, we show that the Lorentz and CPT

invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K
0 � K

0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄

oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of

|�B| = 2 operators coming from new physics, par-
ticularly in association with Sakharov conditions for
baryogenesis which involves both, non-conservation of
baryon charge and CP-violation.

We thank Susan Gardner, Yuri Kamyshkov, Kirill Mel-
nikov, Rabi Mohapatra, Adam Ritz and Misha Voloshin
for helpful discussions. A.V. appreciates hospitality of
the Kavli Institute for Theoretical Physics where his re-
search was supported in part by the National Science
Foundation under Grant No. NSF PHY11-25915. The
work of Z.B. was supported in part by the MIUR tri-
ennal grant for Research Projects of National Interest
PRIN No. 2012CPPYP7 “Astroparticle Physics”, and in
part by Rustaveli National Science Foundation grant No.
DI/8/6-100/12.

[1] V.A. Kuzmin, Pisma Zh. Eksp. Teor. Fiz. 12, 335 (1970);
R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett.
44, 1316 (1980).

[2] D. G. Phillips, II et al., Phys. Rept. 612, 1 (2016)
[arXiv:1410.1100 [hep-ex]].

[3] Z. Berezhiani and A.Vainshtein,
Neutron-Antineutron Oscillation as a Signal of CP Vio-

lation, arXiv:1506.05096 [hep-ph].
[4] K. Fujikawa and A. Tureanu,

Neutron-antineutron oscillation and parity and CP sym-

metries, arXiv:1510.00868 [hep-ph];
D. McKeen and A.E. Nelson, Phys. Rev. D 94, no. 7,
076002 (2016) [arXiv:1512.05359 [hep-ph]];
S. Gardner and X. Yan, Phys. Rev. D 93, no. 9, 096008
(2016) [arXiv:1602.00693 [hep-ph]];
K. Fujikawa and A. Tureanu, Phys. Rev. D 94, no. 11,
115009 (2016) [arXiv:1609.03203 [hep-ph]].

[5] V. B. Berestetskii, Zh. Eksp. Teor. Fiz. 10 21, 1321 (1951)
[6] V.B. Berestetsky, E.M. Lifshitz and L. P. Pitaevsky,

Quantum Electrodynamics, Oxford, UK: Pergamon
(1982) (Course Of Theoretical Physics, 4)

[7] M. E. Peskin and D. V. Schroeder, An Introduction to

quantum field theory, Reading, USA: Addison-Wesley
(1995)

[8] L. Wolfenstein, Phys. Lett. 107B, 77 (1981).
[9] P. Ramond, Journeys Beyond the Standard Model,

Reading, Mass., Perseus Books, 1999
[10] M. B. Voloshin, Sov. J. Nucl. Phys. 48, 512 (1988) [Yad.

Fiz. 48, 804 (1988)].

[11] See e.g. in P. Ramond, “Journeys Beyond the Standard
Model,” Reading, Mass., Perseus Books, 1999, where the
Weyl formalism is gracefully applied to description of
massive neutrinos.

[12] S. Gardner and E. Jafari, Phys. Rev. D 91, no. 9, 096010
(2015) [arXiv:1408.2264 [hep-ph]].

[13] M.B. Voloshin, Sov. J. Nucl. Phys. 48, 512 (1988) [Yad.
Fiz. 48, 804 (1988)].

[14] Z. Berezhiani and L. Bento, Phys. Rev. Lett. 96, 081801
(2006) [hep-ph/0507031]; Z. Berezhiani, Eur. Phys. J. C
64, 421 (2009) [arXiv:0804.2088 [hep-ph]].

[15] K. S. Babu and R.N. Mohapatra, Phys. Rev. D 91, no.
9, 096009 (2015) [arXiv:1504.01176 [hep-ph]].

[16] S. Rao and R. Shrock, Phys. Lett. 116B, 238 (1982).
[17] W. E. Caswell, J. Milutinovic and G. Senjanovic, Phys.

Lett. 122B, 373 (1983).
[18] X.W. Kang, H.B. Li and G.R. Lu, Phys. Rev. D 81,

051901 (2010) [arXiv:0906.0230 [hep-ph]].
[19] V.A. Kuzmin, In *Oak Ridge 1996, Future prospects of

baryon instability search* 89-91 [hep-ph/9609253].
[20] Ya. B. Zeldovich, Dokl. Akad. Nauk SSSR 86, 505 (1952);

E. J. Konopinski and H.M. Mahmoud, Phys. Rev. 92,
1045 (1953).

C.N. Yang ’50
V.B. Berestetsky ’51

�
0
=

✓
0 �2

�2 0

◆

6

9. In summary, we show that the Lorentz and CPT

invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K
0 � K

0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄

oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of

|�B| = 2 operators coming from new physics, par-
ticularly in association with Sakharov conditions for
baryogenesis which involves both, non-conservation of
baryon charge and CP-violation.

We thank Susan Gardner, Yuri Kamyshkov, Kirill Mel-
nikov, Rabi Mohapatra, Adam Ritz and Misha Voloshin
for helpful discussions. A.V. appreciates hospitality of
the Kavli Institute for Theoretical Physics where his re-
search was supported in part by the National Science
Foundation under Grant No. NSF PHY11-25915. The
work of Z.B. was supported in part by the MIUR tri-
ennal grant for Research Projects of National Interest
PRIN No. 2012CPPYP7 “Astroparticle Physics”, and in
part by Rustaveli National Science Foundation grant No.
DI/8/6-100/12.

[1] V.A. Kuzmin, Pisma Zh. Eksp. Teor. Fiz. 12, 335 (1970);
R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett.
44, 1316 (1980).

[2] D. G. Phillips, II et al., Phys. Rept. 612, 1 (2016)
[arXiv:1410.1100 [hep-ex]].

[3] Z. Berezhiani and A.Vainshtein,
Neutron-Antineutron Oscillation as a Signal of CP Vio-

lation, arXiv:1506.05096 [hep-ph].
[4] K. Fujikawa and A. Tureanu,

Neutron-antineutron oscillation and parity and CP sym-

metries, arXiv:1510.00868 [hep-ph];
D. McKeen and A.E. Nelson, Phys. Rev. D 94, no. 7,
076002 (2016) [arXiv:1512.05359 [hep-ph]];
S. Gardner and X. Yan, Phys. Rev. D 93, no. 9, 096008
(2016) [arXiv:1602.00693 [hep-ph]];
K. Fujikawa and A. Tureanu, Phys. Rev. D 94, no. 11,
115009 (2016) [arXiv:1609.03203 [hep-ph]].

[5] V. B. Berestetskii, Zh. Eksp. Teor. Fiz. 10 21, 1321 (1951)
[6] V.B. Berestetsky, E.M. Lifshitz and L. P. Pitaevsky,

Quantum Electrodynamics, Oxford, UK: Pergamon
(1982) (Course Of Theoretical Physics, 4)

[7] M. E. Peskin and D. V. Schroeder, An Introduction to

quantum field theory, Reading, USA: Addison-Wesley
(1995)

[8] L. Wolfenstein, Phys. Lett. 107B, 77 (1981).
[9] P. Ramond, Journeys Beyond the Standard Model,

Reading, Mass., Perseus Books, 1999
[10] M. B. Voloshin, Sov. J. Nucl. Phys. 48, 512 (1988) [Yad.

Fiz. 48, 804 (1988)].

[11] See e.g. in P. Ramond, “Journeys Beyond the Standard
Model,” Reading, Mass., Perseus Books, 1999, where the
Weyl formalism is gracefully applied to description of
massive neutrinos.

[12] S. Gardner and E. Jafari, Phys. Rev. D 91, no. 9, 096010
(2015) [arXiv:1408.2264 [hep-ph]].

[13] M.B. Voloshin, Sov. J. Nucl. Phys. 48, 512 (1988) [Yad.
Fiz. 48, 804 (1988)].

[14] Z. Berezhiani and L. Bento, Phys. Rev. Lett. 96, 081801
(2006) [hep-ph/0507031]; Z. Berezhiani, Eur. Phys. J. C
64, 421 (2009) [arXiv:0804.2088 [hep-ph]].

[15] K. S. Babu and R.N. Mohapatra, Phys. Rev. D 91, no.
9, 096009 (2015) [arXiv:1504.01176 [hep-ph]].

[16] S. Rao and R. Shrock, Phys. Lett. 116B, 238 (1982).
[17] W. E. Caswell, J. Milutinovic and G. Senjanovic, Phys.

Lett. 122B, 373 (1983).
[18] X.W. Kang, H.B. Li and G.R. Lu, Phys. Rev. D 81,

051901 (2010) [arXiv:0906.0230 [hep-ph]].
[19] V.A. Kuzmin, In *Oak Ridge 1996, Future prospects of

baryon instability search* 89-91 [hep-ph/9609253].
[20] Ya. B. Zeldovich, Dokl. Akad. Nauk SSSR 86, 505 (1952);

E. J. Konopinski and H.M. Mahmoud, Phys. Rev. 92,
1045 (1953).

C.N. Yang ’50
V.B. Berestetsky ’51

�
0
=

✓
0 �2

�2 0

◆

5

!

!

"

!

!

"! !! "!

FIG. 1. Diagram for generating n � n̄ mixing terms

!!
!

"

"

!!
!

"

"

"
!#$

"
!

#$

FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
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. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
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(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
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(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations
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we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations
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of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�
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? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
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]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators
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Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
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For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= u
iT
�1

Cu
j
�1

d
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O2
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O3
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ijm✏kln+

✏ijn✏klm

⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.

5

!

!

"

!

!

"! !! "!

FIG. 1. Diagram for generating n � n̄ mixing terms

!!
!

"

"

!!
!

"

"

"
!#$

"
!

#$

FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.



The     reflection interchanges    and     chiralities      in the 
operators           .  Thus, we can divide operators into        
even and      odd ones,

    

5

!

!

"

!

!

"! !! "!

FIG. 1. Diagram for generating n � n̄ mixing terms

!!
!

"

"

!!
!

"

"

"
!#$

"
!

#$

FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;
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⇤
�H.c., Pz= + , C = � , CPz = � ;
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⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
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�1�2�3
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⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
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i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
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⇤
+H.c., Pz= + , C = + , CPz = + ;
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�H.c., Pz= + , C = � , CPz = � ;
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+H.c., Pz= �, C = + , CPz = � ;

⇥
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i
�1�2�3
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⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O
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+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;
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⇤
�H.c., Pz= + , C = � , CPz = � ;
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+H.c., Pz= �, C = + , CPz = � ;

⇥
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�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
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⇤
+H.c., Pz= + , C = + , CPz = + ;
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+H.c., Pz= �, C = + , CPz = � ;
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�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(38)

Refs. [15, 16],
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(41)

Here �i stands for L or R quark chirality. Accounting
for relations

O
1
�LR= O

1
�RL , O

2,3
LR�= O

2,3
RL� ,

O
2
���0 � O

1
���0 = 3O

3
���0 ,

(42)

we deal with 14 operators for �B = �2 transitions and
14 Hermitian conjugated ones for �B = +2.
The Pz reflection interchanges L and R chirality �i

in the operators O
i
�1�2�3

. Note, that the Pz reflection
for u and d quarks is defined similar to the neutron by
Eq. (13). This is consistent with the udd wave function
of neutron. Thus, we can divide operators into Pz even
and Pz odd ones,

O
i
�1�2�3

± L $ R . (43)

The charge conjugation C transforms operators
O

i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, combinations

O
i
�1�2�3

± H.c. (44)

representC even andC odd operators. In total, we break
all 28 operators into four groups with di↵erent Pz, C and

CPz features, each group contains seven operators,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(45)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations. It is, of course, up to
small corrections due to electroweak interactions where
the discrete symmetries are broken.

What about the remaining 21 combinations which are
odd either under Pz or C transformations? Although
they do not contribute to the n � n̄ transition, their
e↵ect show up in instability of nuclei. This source of
instability in this case is not due to neutron-antineutron
oscillations but due to processes of annihilation of two
nucleons inside nucleus like N + N ! ⇡ + ⇡, and,
in particular, two proton annihilation, p p ! ⇡

+
⇡

+,
shown on Fig. 2. This could be particularly interesting
in case of suppressed nn̄ oscillations.

The operators of the type of (38) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K

+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [17]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [18].

7. Our above consideration refers to the neutron-anti-
neutron oscillation in vacuum. Now we show that even in
the presence of magnetic field no new |�B| = 2 operator
appears. A similar consideration was done in Ref. [19] in
application to a possible magnetic moment of neutrino.

In the Weyl formalism the field strengths tensor Fµ⌫

is substituted by the symmetric tensor F↵� and its com-

plex conjugate F↵̇�̇ . They correspond to ~E ± i ~B com-
binations of electric and magnetic fields. Then Lorentz
invariance allows only two structures involving electro-
magnetic fields,

F↵� 
i↵
 

k�
✏ik , F↵̇�̇ ̄

↵̇
i  ̄

�̇
k ✏

ik (46)

Antisymmetry in flavor indices implies that spinors with
the opposite baryon charges enter. So both operators

     The charge conjugation    transforms operators           
into Hermitian conjugated              . So, we have 14       
C-even operators,                    ,  and 14 C-odd ones,
                  
      In total, we break all 28 operators in four sevens with 
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
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⇤
+H.c., Pz= + , C = + , CPz = + ;
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�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
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i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
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⇤
+H.c., Pz= + , C = + , CPz = + ;
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+H.c., Pz= �, C = + , CPz = � ;
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⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.

2

It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�

µ
@µn + n

c
�
µ
@µn

c
⇤
�

m

2

⇥
n̄n + n

c
n

c
⇤
,

�LB6 = �
1

2
✏
⇥
n

c
n + n̄ n

c
⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = Pe
iB↵

: n ! e
i↵
�
0
n , n

c ! �e
�i↵

�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n ! i�
0
n , n

c ! i�
0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 
i↵

, i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( 

i↵
)
⇤
, i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n

these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 

2
)
⇤

 
1

◆
. (16)

1
See, e.g., the book [11] where it is graciously applied to descrip-

tion of massive neutrinos.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= u
iT
�1

Cu
j
�1

d
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O2
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O3
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ijm✏kln+

✏ijn✏klm

⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= u
iT
�1

Cu
j
�1

d
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O2
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O3
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ijm✏kln+

✏ijn✏klm

⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= u
iT
�1

Cu
j
�1

d
kT
�2

Cd
l
�2

d
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�3

Cd
n
�3

⇥
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⇤
,
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= u
iT
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Cd
j
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u
kT
�2
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l
�2

d
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�3
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n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,
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= u
iT
�1

Cd
j
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u
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l
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d
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n
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⇥
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.

2

It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�

µ
@µn + n

c
�
µ
@µn

c
⇤
�

m

2

⇥
n̄n + n

c
n

c
⇤
,

�LB6 = �
1

2
✏
⇥
n

c
n + n̄ n

c
⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = Pe
iB↵

: n ! e
i↵
�
0
n , n

c ! �e
�i↵

�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n ! i�
0
n , n

c ! i�
0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 
i↵

, i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( 

i↵
)
⇤
, i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n

these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 

2
)
⇤

 
1

◆
. (16)

1
See, e.g., the book [11] where it is graciously applied to descrip-

tion of massive neutrinos.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= u
iT
�1

Cu
j
�1

d
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O2
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O3
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ijm✏kln+

✏ijn✏klm

⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.

Only the first seven operators which are both      and 
even contributes to n-nbar mixing.  What about remaining 
21 operators which are odd under     or     ? Although they 
do not contribute to nnbar oscillations they show up in 
instability of nuclei.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= u
iT
�1

Cu
j
�1

d
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O2
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O3
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ijm✏kln+

✏ijn✏klm

⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.

2

It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�

µ
@µn + n

c
�
µ
@µn

c
⇤
�

m

2

⇥
n̄n + n

c
n

c
⇤
,

�LB6 = �
1

2
✏
⇥
n

c
n + n̄ n

c
⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = Pe
iB↵

: n ! e
i↵
�
0
n , n

c ! �e
�i↵

�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n ! i�
0
n , n

c ! i�
0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 
i↵

, i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( 

i↵
)
⇤
, i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n

these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 

2
)
⇤

 
1

◆
. (16)

1
See, e.g., the book [11] where it is graciously applied to descrip-

tion of massive neutrinos.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= u
iT
�1

Cu
j
�1

d
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O2
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O3
�1�2�3

= u
iT
�1

Cd
j
�1

u
kT
�2

Cd
l
�2

d
mT
�3

Cd
n
�3

⇥
✏ijm✏kln+

✏ijn✏klm

⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators O

i
�1�2�3

. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [O
i
�1�2�3

]
†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

� H.c.
�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C

even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡

+ by K
+). In fact,

nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.

2

It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�

µ
@µn + n

c
�
µ
@µn

c
⇤
�

m

2

⇥
n̄n + n

c
n

c
⇤
,

�LB6 = �
1

2
✏
⇥
n

c
n + n̄ n

c
⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± n

c

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �
0
n , n

c ! ��0
n

c
, (11)

where �0
C�

0
= �C is used. The opposite signs in

transformations for n and n
c reflect the well-known the-

orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P

2
= 1, so the eigenvalues of P are ±1 and opposite for

fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = Pe
iB↵

: n ! e
i↵
�
0
n , n

c ! �e
�i↵

�
0
n

c
.

(12)
Of course, then P

2
↵ = e

2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2

= 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = Pe
iB⇡/2

: n ! i�
0
n , n

c ! i�
0
n

c (13)

with P
2
z = �1. Now Pz parities of n and n

c states are
the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c
)]

⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c
) = �1. One

more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P

2
z = �1 instead of

(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 
i↵

, i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( 

i↵
)
⇤
, i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n

these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 

2
)
⇤

 
1

◆
. (16)

1
See, e.g., the book [11] where it is graciously applied to descrip-

tion of massive neutrinos.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators (29)

For u and d quarks of the first generation the full list
of �B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= u
iT
�1
Cu

j
�1
d
kT
�2

Cd
l
�2
d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O2
�1�2�3

= u
iT
�1
Cd

j
�1
u

kT
�2

Cd
l
�2
d
mT
�3

Cd
n
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm

⇤
,

O3
�1�2�3

= u
iT
�1
Cd

j
�1
u

kT
�2

Cd
l
�2
d
mT
�3

Cd
n
�3

⇥
✏ijm✏kln+

✏ijn✏klm

⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 �O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix element
(30). It is, of course, up to small corrections due to elec-
troweak interactions where the discrete symmetries are
broken. The Pz reflection interchanges L and R chirality
�i in the operators Oi

�1�2�3
. Note, that the Pz reflection

for u and d quarks is defined similar to the neutron by
Eq. (13). This is consistent with the udd wave function
of neutron. Thus, only 7 combinations

O
i
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

O
i
�1�2�3

�L $ R
�
? Although they do not contribute to

the n� n̄ transition, their e↵ect show up in instability of

nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N +N ! ⇡ + ⇡

shown on Fig. 2.
The charge conjugation C transforms operators

O
i
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
O

i
�1�2�3

+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
O

i
�1�2�3

�H.c.
�
. In total, we break all 28 op-

erators into four sevens with di↵erent Pz, C and CPz

features,
⇥
O

i
�1�2�3

+L $ R
⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
O

i
�1�2�3

+L $ R
⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
O

i
�1�2�3

�L $ R
⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and
C even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤� ⇤̄ mixing. However,
such operators would also lead to nuclear instability via
nucleon annihilation into kaons N + N ! K + K, see
the diagram in Fig. 2 where in upper lines d quark is
substituted by s quark (and ⇡

+ by K
+). In fact, nuclear

instability bounds on ⇤ � ⇤̄ mixing are only mildly,
within an order of magnitude, weaker than with respect
to n � n̄ mixing which makes hopeless the possibility to
detect ⇤ � ⇤̄ oscillation in the hyperon beam. (Instead,
it can be of interest to search for the nuclear decays
into kaons in the large volume detectors.) The nuclear
instability limits on ⇤� ⇤̄ mixing are about 15 orders of
magnitude stronger than the sensitivity �⇤⇤̄ ⇠ 10�6 eV
which can be achieved in the laboratory conditions
[18]. The nuclear stability limits make hopeless also the
laboratory search of bus-like baryon oscillation due to
operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le � Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.

9. In summary, we show that the Lorentz and CPT

Diagram shows
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M > 10
3
TeV

p + p ! ⇡
+
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�

1. A phenomenon of neutron-antineutron oscillation was
suggested by Kuzmin [1] in 1970, and the first theoretical
model – by Mohapatra and Marshak in 1980 [2]. It is
now under active discussion (for a review, see [3]). A
discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in
the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external
magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.

Essentially the same issues were addressed in our pre-
vious note [4]. There we emphasize the point that parity
P, defined in such a way that P

2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [4] the issue of parity definition in

the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with
correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more

details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the
same journal issue the parity definition was discussed in
more details by Giulio Racah [9].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation
is associated with the continuous U(1)B symmetry

n ! e
i↵
n, n! e

�i↵
n (2)

of Lagrangian (1). Correspondingly, at each spatial
momentum there are four degenerate states, the spin
doublet of the neutron states with the baryon charge
B = 1, and the spin doublet of the antineutron states
with B = �1, i.e., two spin doublets which di↵er by the
baryon charge B.
Note that another bilinear mass term,

�ifm n�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !

e
i⌘�5n .
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass terms. Generically, there are four such Lorentz in-
variant bilinear terms:

n
T
Cn , n

T
C�5n , nCn

T
, nC�5n̄

T
. (4)

Here C = i�
2
�
0 is the charge conjugation matrix in the

Dirac (standard) representation of gamma matrices. It



Relation between nnbar oscillations and nuclear 
instability:

Here                is the width associated with the nuclei 
instability (per one neutron),  and      is the width, 
associated with absorption of antineutron in nucleus. 
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M > 10
3
TeV

p + p ! ⇡
+

+ ⇡
�

�A = 4
�m

2

�n̄

�A = 1/TA

1. A phenomenon of neutron-antineutron oscillation
was suggested by Kuzmin [1] in 1970, and the first theo-
retical model – by Mohapatra and Marshak in 1980 [2].
It is now under active discussion (for a review, see [3]).
A discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in
the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external
magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.

Essentially the same issues were addressed in our pre-
vious note [4]. There we emphasize the point that parity
P, defined in such a way that P

2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [4] the issue of parity definition in

the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with

correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more
details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the
same journal issue the parity definition was discussed in
more details by Giulio Racah [9].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation
is associated with the continuous U(1)B symmetry

n ! e
i↵
n, n! e

�i↵
n (2)

of Lagrangian (1). Correspondingly, at each spatial
momentum there are four degenerate states, the spin
doublet of the neutron states with the baryon charge
B = 1, and the spin doublet of the antineutron states
with B = �1, i.e., two spin doublets which di↵er by the
baryon charge B.
Note that another bilinear mass term,

�ifm n�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !

e
i⌘�5n .
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
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+
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�A = 4
�m
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�n̄

�A = 1/TA

�m = 1/⌧nn̄

1. A phenomenon of neutron-antineutron oscillation
was suggested by Kuzmin [1] in 1970, and the first theo-
retical model – by Mohapatra and Marshak in 1980 [2].
It is now under active discussion (for a review, see [3]).
A discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in
the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external
magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.

Essentially the same issues were addressed in our pre-
vious note [4]. There we emphasize the point that parity
P, defined in such a way that P

2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.

Following our note [4] the issue of parity definition in
the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with
correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more
details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the
same journal issue the parity definition was discussed in
more details by Giulio Racah [9].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation
is associated with the continuous U(1)B symmetry

n ! e
i↵
n, n! e

�i↵
n (2)

of Lagrangian (1). Correspondingly, at each spatial
momentum there are four degenerate states, the spin
doublet of the neutron states with the baryon charge
B = 1, and the spin doublet of the antineutron states
with B = �1, i.e., two spin doublets which di↵er by the
baryon charge B.
Note that another bilinear mass term,

�ifm n�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !

e
i⌘�5n .

     Friedman and Gal in their 2008 paper made more 
refined calculations relating the lower bound 
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1. A phenomenon of neutron-antineutron oscillation
was suggested by Kuzmin [1] in 1970, and the first theo-
retical model – by Mohapatra and Marshak in 1980 [2].
It is now under active discussion (for a review, see [3]).
A discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in
the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external
magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.

Essentially the same issues were addressed in our pre-
vious note [4]. There we emphasize the point that parity
P, defined in such a way that P

2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the

problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [4] the issue of parity definition in

the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with
correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more
details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the
same journal issue the parity definition was discussed in
more details by Giulio Racah [9].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation
is associated with the continuous U(1)B symmetry

n ! e
i↵
n, n! e

�i↵
n (2)

of Lagrangian (1). Correspondingly, at each spatial
momentum there are four degenerate states, the spin
doublet of the neutron states with the baryon charge
B = 1, and the spin doublet of the antineutron states
with B = �1, i.e., two spin doublets which di↵er by the
baryon charge B.
Note that another bilinear mass term,

�ifm n�5n , (3)

from the oxygen lifetime measured in Super-Kamiokande 
to get the lower bound for the oscillation time  

Neutron–Antineutron Oscillations: Discrete Symmetries and Quark Operators

Zurab Berezhiani1, 2 and Arkady Vainshtein3, 4
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1. A phenomenon of neutron-antineutron oscillation
was suggested by Kuzmin [1] in 1970, and the first theo-
retical model – by Mohapatra and Marshak in 1980 [2].
It is now under active discussion (for a review, see [3]).
A discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in
the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external
magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.

Essentially the same issues were addressed in our pre-
vious note [4]. There we emphasize the point that parity
P, defined in such a way that P

2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it

does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [4] the issue of parity definition in

the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with
correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more
details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the
same journal issue the parity definition was discussed in
more details by Giulio Racah [9].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation
is associated with the continuous U(1)B symmetry

n ! e
i↵
n, n! e

�i↵
n (2)

of Lagrangian (1). Correspondingly, at each spatial
momentum there are four degenerate states, the spin
doublet of the neutron states with the baryon charge
B = 1, and the spin doublet of the antineutron states
with B = �1, i.e., two spin doublets which di↵er by the
baryon charge B.
Note that another bilinear mass term,

�ifm n�5n , (3)
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1. A phenomenon of neutron-antineutron oscillation was
suggested by Kuzmin [1] in 1970, and the first theoretical
model – by Mohapatra and Marshak in 1980 [2]. It is
now under active discussion (for a review, see [3]). A
discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in
the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external
magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.

Essentially the same issues were addressed in our pre-
vious note [4]. There we emphasize the point that parity
P, defined in such a way that P

2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.

Following our note [4] the issue of parity definition in
the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with
correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more
details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the
same journal issue the parity definition was discussed in



Their consideration does not account for annihilation 
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|�B| = 2

1. A phenomenon of neutron-antineutron oscillation
was suggested by Kuzmin [? ] in 1970, and the first the-
oretical model – by Mohapatra and Marshak in 1980 [?
]. It is now under active discussion (for a review, see [?
]). A discovery of this oscillations would be a clear evi-
dence of baryon charge nonconservation, |�B| = 2. In
this note we discuss the issue of C, P and T symmetries
in the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external
magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.

Essentially the same issues were addressed in our pre-
vious note [? ]. There we emphasize the point that par-
ity P, defined in such a way that P

2
=1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of

neutron and antineutron when P
2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [? ] the issue of parity definition

in the |�B| = 2 transitions was addressed in a number
of related publications [? ? ? ]. Unfortunately, together
with correct statements some of these analyses are clearly
erroneous. For instance, McKeen and Nelson in their in-
teresting paper [? ] about CP violation due to baryon
oscillations wrongly insisted that one can keep P

2
= 1

for the parity definition. It shows that the subject de-
serves a further discussion. Actually, the issue of parity
definition for fermions was resolved long ago. Below we
present more details of parity definition story which has
been started in 1937 by Ettore Majorana in his famous
paper [? ] where he introduced a notion of Majorana
fermions. In the same journal issue the parity definition
was discussed in more details by Giulio Racah [? ].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation
is associated with the continuous U(1)B symmetry

n ! e
i↵
n, n! e

�i↵
n (2)

of Lagrangian (??). Correspondingly, at each spatial
momentum there are four degenerate states, the spin
doublet of the neutron states with the baryon charge
B = 1, and the spin doublet of the antineutron states
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1. A phenomenon of neutron-antineutron oscillation
was suggested by Kuzmin [1] in 1970, and the first theo-
retical model – by Mohapatra and Marshak in 1980 [2].
It is now under active discussion (for a review, see [3]).
A discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in
the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external
magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.

Essentially the same issues were addressed in our pre-
vious note [4]. There we emphasize the point that parity

P, defined in such a way that P
2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [4] the issue of parity definition in

the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with
correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more
details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the
same journal issue the parity definition was discussed in
more details by Giulio Racah [9].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation
is associated with the continuous U(1)B symmetry

n ! e
i↵
n, n! e

�i↵
n (2)

of Lagrangian (1). Correspondingly, at each spatial
momentum there are four degenerate states, the spin

we discussed above. 
      These two-particle contributions are suppressed as 
compared to the one-particle nnbar part due to 
smallness of ratio of the nucleon size over distance 
between  nucleons in in the nucleus. 
       However, the two-particle part grows with nucleon 
number    as     while nnbar part is linear in   .Thus, the 
nucleus lifetime is more sensitive to             transitions 
and its relation to the oscillation time        should be 
reconsidered.
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1. A phenomenon of neutron-antineutron oscillation
was suggested by Kuzmin [1] in 1970, and the first theo-
retical model – by Mohapatra and Marshak in 1980 [2].
It is now under active discussion (for a review, see [3]).
A discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in
the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external

magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.
Essentially the same issues were addressed in our pre-

vious note [4]. There we emphasize the point that parity
P, defined in such a way that P

2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [4] the issue of parity definition in

the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with
correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more
details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the
same journal issue the parity definition was discussed in
more details by Giulio Racah [9].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation
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induce any new operator mixing the neutron and antineutron provided that rotational invariance is
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1. A phenomenon of neutron-antineutron oscillation
was suggested by Kuzmin [1] in 1970, and the first theo-
retical model – by Mohapatra and Marshak in 1980 [2].
It is now under active discussion (for a review, see [3]).
A discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in
the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external

magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.
Essentially the same issues were addressed in our pre-

vious note [4]. There we emphasize the point that parity
P, defined in such a way that P

2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [4] the issue of parity definition in

the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with
correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more
details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the
same journal issue the parity definition was discussed in
more details by Giulio Racah [9].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation
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1. A phenomenon of neutron-antineutron oscillation
was suggested by Kuzmin [? ] in 1970, and the first the-
oretical model – by Mohapatra and Marshak in 1980 [?
]. It is now under active discussion (for a review, see [?
]). A discovery of this oscillations would be a clear evi-
dence of baryon charge nonconservation, |�B| = 2. In
this note we discuss the issue of C, P and T symmetries
in the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external
magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.

Essentially the same issues were addressed in our pre-
vious note [? ]. There we emphasize the point that par-
ity P, defined in such a way that P

2
=1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of

neutron and antineutron when P
2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [? ] the issue of parity definition

in the |�B| = 2 transitions was addressed in a number
of related publications [? ? ? ]. Unfortunately, together
with correct statements some of these analyses are clearly
erroneous. For instance, McKeen and Nelson in their in-
teresting paper [? ] about CP violation due to baryon
oscillations wrongly insisted that one can keep P

2
= 1

for the parity definition. It shows that the subject de-
serves a further discussion. Actually, the issue of parity
definition for fermions was resolved long ago. Below we
present more details of parity definition story which has
been started in 1937 by Ettore Majorana in his famous
paper [? ] where he introduced a notion of Majorana
fermions. In the same journal issue the parity definition
was discussed in more details by Giulio Racah [? ].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation
is associated with the continuous U(1)B symmetry

n ! e
i↵
n, n! e

�i↵
n (2)

of Lagrangian (??). Correspondingly, at each spatial
momentum there are four degenerate states, the spin
doublet of the neutron states with the baryon charge
B = 1, and the spin doublet of the antineutron states
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1. A phenomenon of neutron-antineutron oscillation
was suggested by Kuzmin [1] in 1970, and the first theo-
retical model – by Mohapatra and Marshak in 1980 [2].
It is now under active discussion (for a review, see [3]).
A discovery of this oscillations would be a clear evidence
of baryon charge nonconservation, |�B| = 2. In this
note we discuss the issue of C, P and T symmetries in
the |�B| = 2 transitions, applying this to analysis of
six-quark operators. We also analyze e↵ects of external

magnetic field and show that it does not add any new
|�B| = 2 operator if the rotational invariance is not
broken.
Essentially the same issues were addressed in our pre-

vious note [4]. There we emphasize the point that parity
P, defined in such a way that P

2
= 1, is broken, as

well as CP, in the neutron-antineutron transition. This
is an immediate consequence of the opposite parities of
neutron and antineutron when P

2
=1. Indeed, we deal

then with mixing of the states with di↵erent parities. Al-
though we also noted that in the absence of interaction it
does not automatically imply an existence of CP break-
ing physics we did not present a detailed analysis of the
problem. We have corrected this at the INT workshop in
September 2015, defining Pz such that P 2

z = �1.
Following our note [4] the issue of parity definition in

the |�B| = 2 transitions was addressed in a number of
related publications [5–7]. Unfortunately, together with
correct statements some of these analyses are clearly er-
roneous. For instance, McKeen and Nelson in their inter-
esting paper [6] about CP violation due to baryon oscil-
lations wrongly insisted that one can keep P

2
=1 for the

parity definition. It shows that the subject deserves a fur-
ther discussion. Actually, the issue of parity definition for
fermions was resolved long ago. Below we present more
details of parity definition story which has been started in
1937 by Ettore Majorana in his famous paper [8] where
he introduced a notion of Majorana fermions. In the
same journal issue the parity definition was discussed in
more details by Giulio Racah [9].
2. Let us start with the Dirac Lagrangian

LD = in�
µ
@µn � mnn (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n. Its conservation



Conclusions

Our classification of              operators coming from new 
physics could be useful in association with Sakharov 
conditions for theory of baryogenisis. 
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operators

(25) O =
1

M5
uddudd

involving u and d quarks of di↵erent families in di↵erent color and Lorentz invariant
combinations (all possible convolutions of spinor indices are omitted). The smallness of
baryon violation is related to the large mass scale M related to new physics.

In fact, the B breaking mass term (4) emerges by taking matrix element between n and
n̄ states of the operator structures (25), see diagram in Fig. 1,

(26) �
1

2
✏ hn̄|nTCn|ni = hn̄|O|ni .

It gives an estimate of order ⇤6
QCD/M5 for the parameter ✏ which describes the oscillation

time.
Our consideration shows that only operators which are C even and P odd contribute to

the above matrix element (up to small corrections due to electroweak interactions where
the discrete symmetries are broken). In general, operators coming from physics beyond
SM do not respect any of discrete symmetries C, P and CP. If, however, a new physics
model produces B violating operators which do not satisfy the selection rules of n �
n̄ transition, their e↵ect will show up in instability of nuclei but not in free neutron-
antineutron oscillations. Indeed, such operators would induce processes of annihilation of
two nucleons like N + N ! ⇡ + ⇡ inside nucleus, as shown on Fig. 2.

The operators of the type of (25) involving strange quark, udsuds, could induce ⇤� ⇤̄

mixing. However, such operators would also lead to nuclear instability via nucleon annihi-
lation into kaons N+N ! K+K, see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact, nuclear instability bounds on ⇤� ⇤̄

mixing are only mildly, within an order of magnitude, weaker than with respect to n� n̄
mixing which makes hopeless the possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the nuclear decays into kaons in the large
volume detectors.) The nuclear instability limits on ⇤ � ⇤̄ mixing are about 15 orders
of magnitude stronger than the sensitivity �⇤⇤̄ ⇠ 10

�6 eV which can be achieved in the
laboratory conditions [8]. The nuclear stability limits make hopeless also the laboratory
search of bus-like baryon oscillation due to operator usbusb suggested in Ref. [9].

6. The construction we used for neutron-antineutron transition could be applied to mixing
of massive neutrinos. As an example, let us take the system of left-handed ⌫e and ⌫µ
and their conjugated partners, right-handed ⌫̄e and ⌫̄µ. One can ascribe them [10] a flavor
charge F = Le�Lµ (analog of B), to be (+1) for ⌫e and (-1) for ⌫µ. Then, C conjugation
is interchange of ⌫e and ⌫µ. Again, F breaking mass term would be C even and P odd.

A similar scenario can be played in case of Dirac massive neutrino.

7. In summary, we show that the Lorentz and CPT invariance lead to the unique |�B| =
2 operator in the neutron-antineutron mixing. This operator is CP odd. Switching on
external magnetic field influences the level splitting what suppresses n � n̄ oscillations
but does not add any new |�B| = 2 operator in contradistinction with recent claims in
literature.

Interesting to note that observation of neutron-antineutron transition would show that
two of three Sakharov conditions for baryogenesis are satisfied, violations of B � L and

Relation between the nucleus instability and nnbar 
oscillations could be more subtle due to             two-
particle annihilation processes. It calls for additional 
studies.
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search of bus-like baryon oscillation due to operator usbusb suggested in Ref. [9].

6. The construction we used for neutron-antineutron transition could be applied to mixing
of massive neutrinos. As an example, let us take the system of left-handed ⌫e and ⌫µ
and their conjugated partners, right-handed ⌫̄e and ⌫̄µ. One can ascribe them [10] a flavor
charge F = Le�Lµ (analog of B), to be (+1) for ⌫e and (-1) for ⌫µ. Then, C conjugation
is interchange of ⌫e and ⌫µ. Again, F breaking mass term would be C even and P odd.

A similar scenario can be played in case of Dirac massive neutrino.

7. In summary, we show that the Lorentz and CPT invariance lead to the unique |�B| =
2 operator in the neutron-antineutron mixing. This operator is CP odd. Switching on
external magnetic field influences the level splitting what suppresses n � n̄ oscillations
but does not add any new |�B| = 2 operator in contradistinction with recent claims in
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Interesting to note that observation of neutron-antineutron transition would show that
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Conclusions
We demonstrate that the free neutron oscillation preserves 
all discrete symmetries, C, P and T.  The subtlety is that P 
should be defined as     with            .   Then, parities of 
both, neutron and and antineutron, are the same   , and 
their mixing is consistent with conservation of parity. 
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! e

i��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! e

i��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T

+h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc
= Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = Pe
iB⇡/2

: n ! i�0n , nc ! i�0n .

(7) P↵ = Pe
iB↵

: n ! e
�i↵�0n , nc ! �e

i↵�0n .

(8) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0
= �C. The breaking of

parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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VIOLATION
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Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

M± = m ± ✏

P
2
= 1

P :

P
2
↵ = e

2iB↵ 6= 1

P
2
z = �1

↵ = ⇡/2

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! e
i↵n, n̄ ! e

�i↵n̄
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! e

i��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! e

i��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T

+h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc
= Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = Pe
iB⇡/2

: n ! i�0n , nc ! i�0nc .

(7) P↵ = Pe
iB↵

: n ! e
�i↵�0n , nc ! �e

i↵�0nc .

(8) n ! �0n , nc ! ��0nc .

This substitution changes �LB6 to ��LB6 because �0C�0
= �C. The breaking of

parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently


