

Searches for heavy resonances at the LHC

Georgios Daskalakis N.C.S.R. "Demokritos"

on behalf of the ATLAS & CMS Collaborations

LaThuile2019

XXXIII Les Rencontres de Physique de la Vallée d'Aoste 10-16 March 2019

... current status ...

the Questions

Hierarchy problem Unification of forces New fundamental forces Origin of flavor Origin of dark matter Gravity, dark energy Neutrino masses

...

the SM extensions

SUSY, Extra-Dimensions, New Gauge Bosons, Contact Interactions, Leptoquarks, Excited fermions, 4th generation, Type III seesaw,...

the Proofs (experiments)

(jets, lepton, $\gamma\gamma$, Z)+ E_T^{miss} , (ee, $\mu\mu$, $\tau\tau$, $\gamma\gamma$, jj, lepton-jet, lepton- γ , γ -jet, VV, tt) resonances, slow-moving or long-lived particles, ...

RUN-2 completed: ~ 140 fb⁻¹ per experiment at 13 TeV

Overview of EXOTIC searches (ATLAS)

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: July 2018

 $\int \mathcal{L} dt = (3.2 - 79.8) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	^{p-1}] Limit			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$	$0 \ e, \mu$ $2 \ \gamma$ $-$ $\geq 1 \ e, \mu$ $-$ $2 \ \gamma$ multi-chann $1 \ e, \mu$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ el $\geq 1 b, \geq 1 J$	Yes /2j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1	M _D M _S Mth Mth Mth G _{KK} mass G _{KK} mass	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 2.3 TeV 3.8 TeV	$n = 2$ $n = 3 \text{ HLZ NLO}$ $n = 6$ $n = 6, M_D = 3 \text{ TeV, rot BH}$ $n = 6, M_D = 3 \text{ TeV, rot BH}$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ $\Gamma/m = 15\%$	1711.03301 1707.04147 1703.09217 1606.02265 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823
Gauge bosons	SSM $Z' \rightarrow \ell\ell$ SSM $Z' \rightarrow \tau\tau$ Leptophobic $Z' \rightarrow bb$ Leptophobic $Z' \rightarrow tt$ SSM $W' \rightarrow \ell\nu$ SSM $W' \rightarrow \tau\nu$ HVT $V' \rightarrow WV \rightarrow qqqq$ model B HVT $V' \rightarrow WH/ZH$ model B LRSM $W'_{P} \rightarrow tb$	$1 e, \mu$ $2 e, \mu$ 2τ $-$ $1 e, \mu$ 1τ $3 0 e, \mu$ multi-chann multi-chann	≥ 2 b, ≥ 3 - 2 b ≥ 1 b, ≥ 1J - 2 J rel rel	/2j Yes /2j Yes Yes Yes –	36.1 36.1 36.1 36.1 79.8 36.1 79.8 36.1 79.8 36.1 36.1	KK mass Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass W' mass	4.5 TeV 4.5 TeV 2.42 TeV 2.1 TeV 3.0 TeV 5.6 TeV 4.15 TeV 2.93 TeV 3.25 TeV	First for (1,1), $\mathcal{B}(\mathcal{A}^{(1,1)} \rightarrow tt) = 1$ $\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1803.09678 1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
CI	CI qqqq CI ℓℓqq CI tttt	_ 2 e,μ ≥1 e,μ	2 j _ ≥1 b, ≥1	– – j Yes	37.0 36.1 36.1	Λ Λ Λ	2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09217 1707.02424 CERN-EP-2018-174
DM	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac D $VV_{\chi\chi}$ EFT (Dirac DM)	0 e, μ Μ) 0 e, μ 0 e, μ	1 - 4 j 1 - 4 j $1 J, \le 1 j$	Yes Yes Yes	36.1 36.1 3.2	m _{med} 1.5 m _{med} 1.4 M _* 700 GeV	5 TeV 67 TeV	g_q =0.25, g_χ =1.0, $m(\chi)$ = 1 GeV g =1.0, $m(\chi)$ = 1 GeV $m(\chi)$ < 150 GeV	1711.03301 1711.03301 1608.02372

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Overview of EXOTIC searches (ATLAS)

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits ATLA								AS Preliminary
Sta	tus: July 2018					$\int \mathcal{L} dt$	= (3.2 – 79.8) fb ⁻¹	\sqrt{s} = 8, 13 TeV
	Model	ℓ,γ	Jets†	E_{T}^{miss}	∫£ dt[fb	¹] Limit		Reference
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	$ \begin{array}{l} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \ j \end{array} $	– – Yes	3.2 3.2 20.3	LQ mass1.1 TeVLQ mass1.05 TeVLQ mass640 GeV	$egin{array}{llllllllllllllllllllllllllllllllllll$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	multi-channe multi-channe X $2(SS)/\geq 3 e, \mu$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	$ \begin{array}{l} \begin{array}{l} 1\\ 1\\ 1\\ 2 \end{array} \\ \begin{array}{l} \geq 1 \\ 1\\ \end{array} \\ \begin{array}{l} b, \geq 1 \\ 1\\ \end{array} \\ \begin{array}{l} \geq 1 \\ 1\\ \end{array} \\ \begin{array}{l} b, \geq 1 \\ 1\\ \end{array} \\ \begin{array}{l} \geq 4 \\ j \end{array} $	Yes Yes Yes Yes	36.1 36.1 36.1 3.2 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV Y mass 1.44 TeV B mass 1.21 TeV Q mass 690 GeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c(YWb) = 1/\sqrt{2}$ $\kappa_B = 0.5$	ATLAS-CONF-2018-XXX ATLAS-CONF-2018-XXX CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2018-XXX 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -		37.0 36.7 36.1 20.3 20.3	q* mass 6.0 TeV q* mass 5.3 TeV b* mass 2.6 TeV t* mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$1 e, \mu 2 e, \mu 2,3,4 e, \mu (SS 3 e, \mu, \tau 1 e, \mu - - \sqrt{s} = 8 \text{ TeV}$	$\ge 2j$ 2j - 1b - - $\sqrt{s} = 13$	Yes Yes 	79.8 20.3 36.1 20.3 20.3 20.3 7.0	N ⁰ mass 560 GeV N ⁰ mass 2.0 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	$m(W_R) = 2.4$ TeV, no mixing DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell\tau) = 1$ $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1506.06020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059
Mass scale [TeV]								

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Overview of EXOTIC searches (CMS)

Overview of CMS EXO results

			CMS		36 fb ⁻¹ (13 TeV)	
	SSM 7'(1)	м	1803 06292 (24)	45		
	SSM Z'(aā)	M	1805.00232 (21)	27		
	IEV 7' BB(eu) = 10%	M	1802 01122 (eu)	44		
	SSM(W(h))	M	1803 11133 (/ + E ^{mina})	52		
	SSM W(<i>aā</i>)	POW M	1805 00843 (2)	33		
	SSM W(144)	M	$1807 \cdot 11421 (\mathbf{r} + \mathbf{E}^{mins})$	4		
e	LRSM $W_{e}(IN_{e}), M_{N_{e}} = 0.5M_{N_{e}}$	M	1803 11116 (2 / + 2 i)	44		
	LRSM $W_{e}(\tau N_{e}), M_{N_{e}} = 0.5M_{W_{e}}$	M.,	1811 00806 (2 7 + 2 i)	35		
	Axialuan, Coloron, $cat\theta = 1$	M	1806 00843 (2i)	61		
		PAC	2000.00040 (2);			
	scalar LO (pair prod.), coupling to 1^{st} gen, fermions, $\beta = 1$	м	1811 01197 (2e+ 2i)	1.44		
	scalar LO (pair prod.), coupling to 1^{st} gen. fermions, $\beta = 0.5$	M.	1811 01197 (2e+ 2i; e + 2i + E ^{mins})	127		
	scalar LO (pair prod.), coupling to 2^{nd} gen. fermions, $\beta = 1$	M.	$1808.05082 (2 \mu + 2i)$	153		
•	scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta = 0.5$	M.	1808.05082 (2u + 2i; u + 2i + E ^{mins})	129		
	scalar LO (pair prod.), coupling to 3^{rd} gen, fermions, $\beta = 1$	M.a	1811.00806 (2 τ + 2 i) 10	2		
	scalar LQ (single prod.), coup. to 3^{rd} gen. ferm., $\beta = 1, \lambda = 1$	M.	1806.03472 (2T + b) 0.74			
		1-4LQ				
	excited light quark $(q\bar{q}), \Lambda = m_a^*$	Mai	1806.00843 (2 j)	6		
2	excited light quark $(q\gamma)$, $f_5 = f = f' = 1$, $\Lambda = m_q^*$	Ma	1711.04652 (y + j)	5.5		
	excited b quark, $f_s = f = f' = 1$, $\Lambda = m_a^*$	м	1711.04652 (y + j)	1.8		
	excited electron, $f_5 = f = f' = 1$, $\Lambda = m_e^*$	M	1811.03052 (y + 2e)	3.9		
-	excited muon, $f_s = f = f' = 1$, $\Lambda = m_{\mu}^*$	Mu	1811.03052 (y + 2µ)	3.8		
		P				
2	quark compositeness ($q\bar{q}$), $\eta_{LL/RR} = 1$	Λ+,	1803.08030 (2 j)	12.8		
	quark compositeness (ll), $\eta_{LL/RR} = 1$	Λ+,	1812.10443 (21)	20		
E	quark compositeness ($q\bar{q}$), $\eta_{LURR} = -1$	Λ ⁻ _{1,m}	1803.08030 (2 j)	17.5		
	quark compositeness (ll), $\eta_{LL/RR} = -1$	A-	1812.10443 (2 <i>t</i>)		31	
			0.1	1.0 10.0		
	mass scale [TeV]					
Se	election of observed exclusion limits at 95% C.L. (theory uncertainties are not included). January 2019					

Leptoquarks

Excited

Contact teractions

15 March 2019, LaThuile

G. Daskalakis

5

Overview of EXOTIC searches (CMS)

Overview of CMS EXO results

... today's menu ...

some recent results from RUN-2

> excited leptons $e^* \rightarrow e\gamma$, $\mu^* \rightarrow \mu\gamma$

Vector-Like Quarks $B \rightarrow Hb$, Z' $\rightarrow tT$ (T $\rightarrow Ht$, Zt, Wb)

 3^{rd} generation scalar LQ LQ^u₃ \rightarrow tv, bt & LQ^d₃ \rightarrow bv, tv

type-III seesaw heavy leptons $qq \rightarrow W^{\pm} \rightarrow N^{0}L^{\pm} \rightarrow (\ell^{\pm}W)(W^{\pm}v)$

> dark matter and long-lived particles at the LHC from Alex Kastanas (next talk)

More material:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO/index.html http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G/index.html http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G/index.html

... how we do it ...

Search for **deviations** from SM background; Use an **optimal observable** with maximum signal – background separation

- Bump hunting
- Excess in tails of distributions
- Special structures (peaks/dips) due to *interference*

CMS-PAS-EXO-18-006 ATLAS-CONF-2019-001

$Z' \rightarrow e^+e^-$, $\mu^+\mu^-$

77/139 fb⁻¹

- High signal selection efficiencies
- $\sigma(Z')/\sigma(Z)$ ratio limits
- No dependence on luminosity
- suppress correlated experimental uncertainties
- Limits for narrow Z'

- Upper (lower) limits on σ·B (mass)
 for various Z' models
- limits on couplings (HVT models)
- model-independent limits on $A \cdot \sigma \cdot B$ by applying fiducial cuts (lepton $p_T > 30$ GeV, and lepton $|\eta| < 2.5$)
- results for various resonance width hypotheses

JHEP 06 (2018) 128 ATLAS-CONF-2018-017

W' ightarrow ev , μu

36/80 fb⁻¹

search : separately in ev & $\mu\nu$ final states; then combine results

interference : The W' boson is assumed not to couple to the SM W and Z.

backgrounds : from simulation except multijets (data-driven)

uncertainties : lepton & E_T^{miss} reconstruction, background modelling, PDFs , luminosity

The results are interpreted in the context of the SSM (ATLAS/CMS), split UED & RPV stau (CMS)

CMS-EXO-17-008 Phys. Rev. Lett. 120 (2018) 161802

₩'→τν

W'→ tb searches: Phys. Lett. B 788 (2019) 347, Phys. Lett. B 777 (2017) 39

Emery Nibigira

ee*, $\mu\mu^* \rightarrow$ eey, $\mu\mu\gamma$

New strong force with characteristic energy scale Λ (compositeness scale)

36 fb⁻¹

Compositeness models predict **excited** leptons $: e^* (\mu^*) \rightarrow e\gamma (\mu\gamma)$ Production through **Contact Interactions (CI)**, decay via **SM gauge interactions**

final state: same-flavor lepton pair \rightarrow low bkgd but **ambiguity** in the **e***/**µ*** reconstruction. thresholds: eeq , µµq [e,µ,q p_T>35 GeV and $\Delta R(\ell,q)>0.7$]. Both pairings are used. **Bkgd rejection :** 2D cut on (m_{ℓv}^{max}, m_{ℓv}^{min}) plane.

Channal	Observed (expected) limit	Observed (expected) limit
Channel	on m_{ℓ^*} for $m_{\ell^*} = \Lambda$, TeV	on Λ for $m_{\ell^*} \approx 1$ TeV, TeV
$ee\gamma$	3.9 (3.8)	25 (23)
$\mu\mu\gamma$	3.8 (3.9)	25 (23)

dijet resonances – high mass region

search: high mass dijet resonances using wide PF-jets

 $(\Delta R < 1.1$, reduced sensitivity to gluon radiation from the final-state partons)

QCD background : t-channel production

- a) fitting an empirical functional form
- b) data-driven method via a $|\Delta\eta|$ sideband.

models : s-channel dijet resonances

widths and line shapes depend on the parton content of the resonance (qq, qg, or gg).

ATLAS [37 fb⁻¹, Phys. Rev. D 96, 052004 (2017)]

		Observed (expecte	d) mass limit [TeV]
Model	Final	$36 {\rm fb}^{-1}$	$77.8 { m fb}^{-1}$
	State	13 TeV	13 TeV
String	qg	7.7 (7.7)	7.6 (7.9)
Scalar diquark	qq	7.2 (7.4)	7.3 (7.5)
Axigluon/coloron	$q\overline{q}$	6.1 (6.0)	6.2 (6.3)
Excited quark	qg	6.0 (5.8)	6.0 (6.0)
Color-octet scalar ($k_s^2 = 1/2$)	gg	3.4 (3.6)	3.7 (3.8)
W′	$q\overline{q}$	3.3 (3.6)	3.6 (3.8)
Ζ'	$q\overline{q}$	2.7 (2.9)	2.9 (3.1)
RS graviton ($k/M_{\rm PL} = 0.1$)	q q , gg	1.8 (2.3)	2.4 (2.4)
DM mediator ($m_{\rm DM} = 1 {\rm GeV}$)	$q\overline{q}$	2.6 (2.5)	2.5 (2.8)

CMS-PAS-EXO-17-026

G. Daskalakis

 $\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\rm ij}} = \frac{P_0(1-x)^{P_1}}{x^{P_2+P_3\ln{(x)}}}$

78 fb⁻¹

CERN-EP-2018-347

dijet resonances – low mass region

search: dijet resonance produced in association with a high E_T photon. variants: jet flavor inclusive & 2 b-tags

the problem : low mass dijet searches suffer from high multi-jet bkgd \Rightarrow high P_T^{trig} jet trigger thresholds \Rightarrow low sensitivity bound at $M_{jj} \sim 2 \times P_T^{trig}$

 $\label{eq:solutions: - record partial event information [PLB769(2017)520 , Phys.Rev.Lett.121(2018)081801] \\ - resonance produced in association with <math display="inline">\gamma$ or jet , dedicated b-jet triggers

leptophobic Z' resonance

acceptances

- axial-vector couplings to quarks (g_q) universal in quark flavour.
- negligible mixing with the SM Z

generic Gaussian-shape signal

- upper limits on fiducial cross section

80 fb⁻¹

resonant tt production

2

35.9 fb⁻¹ (13 TeV)

5

M_{g_{kk}} [TeV]

Observed

±1 s.d. exp.

±2 s.d. exp.

g. $(LO \times 1.3)$

Combination

----- Expected

3

strategy: optimized for top-quarks with high Lorentz boosts; requires non-isolated leptons and jet substructure techniques. simult. measurement of the bkgds and t-tagging efficiency from data.

6000

35.9 fb⁻¹ (13 TeV

Data

QCD multijet

------ Z' 4.0 TeV, 1% width (1 pb)

4000

ATLAS : probe also low top-quark boosts (resolved decay topology) [36 fb⁻¹ , CERN-EP-2018-350 , Eur. Phys. J. C 78 (2018) 565]

m_# [GeV] **search** : spin-1 resonance $X \rightarrow t\bar{t}$, no interference with SM $t\bar{t}$ production assumed.

→tī) [pb]

⁻⁴⁴B)₂ ⁻⁴⁴B)₂ ¹

່ອື້10⁻

 10^{-2}

 10^{-3}

 10^{-4}

10³

10⁴ CMS

CMS-B2G-17-017

10⁴

10³

10²

10

1

10-

Pull

CMS

2 b tag

 $|\Delta y| > 1.0$

2000

Events

10%	30%
0.50 - 5.25	0.50 - 6.65
	10% 0.50 - 5.25

1 ^{rst} Kaluza-Klein excitation of the gluon						
in the RS scenario (g _{κκ})						
Exclusion (TeV)	0.5 - 4.55					

Phys. Rev. D 98 (2018) 092001

Heavy resonances in yy

35.9 fb⁻¹ (13 TeV)

Data

Fit model

± 1 std dev

2000

2500

 $m_{\gamma\gamma}$ (GeV)

search : resonant new physics signatures with high-mass diphoton events

advantages :

lower SM backgrounds / better mass resolution w.r.t. dijets larger branching fraction w.r.t. dileptons

background estimation : $m_{\gamma\gamma}$ fit to a parametrized functional form \to fully data-driven description of the shape

limits : on heavy spin-0/spin-2 resonances

ATLAS [36 fb⁻¹, Phys. Lett. B 775 (2017) 105]

RS graviton							
$\widetilde{\kappa}$	0.01	0.1	0.2				
Г/M	1.4×10 ⁻⁴	1.4×10 ⁻²	5.6×10 ⁻²				
Exclusion (TeV)	2.3	4.1	4.6				

Also, model independent limits on cross sections in the fiducial volume (P_T^{γ} >75 GeV) for **resonant** pp $\rightarrow \gamma\gamma$ processes.

G. Daskalakis

36 fb⁻¹

X→WW,WZ,ZZ

Search : narrow diboson resonances decaying to fully hadronic final states

models :

spin-1 Heavy Vector Triplet Model (HVT) , X \rightarrow WZ , WW spin-2 graviton $G_{KK} \rightarrow$ WW, ZZ (bulk RS)

diboson system : pairs of high transverse momentum, **large-radius** (R=1.0) jets tagged as compatible with the hadronic decay of a boosted W or Z boson, using **jet mass** and **substructure** properties.

background : from multijet production suppressed by the characteristic jet substructure of W/Z bosons

Model	Signal Region	Excluded mass range [TeV]
	WW	1.30 - 2.80
HVT model A, $g_V = 1$	WZ	1.20 - 3.10
	WW + WZ	1.20 - 3.40
	WW	1.30 - 3.10
HVT model B, $g_V = 3$	WZ	1.20 - 3.30
	WW + WZ	1.20 - 4.15
	WW	1.30 - 1.60
Bulk RS, $k/\overline{M}_{\rm Pl} = 1$	ZZ	None
·	WW + ZZ	1.20 - 1.90, 2.10 - 2.30

3rd - generation scalar LQ

assumption : LQs decay only to fermions of the same family (minimal Buchmüller–Rückl–Wyler model Phys. Lett. B **191** (1987) 442)

Exchange of LQs might explain the potential violation (if confirmed) of lepton universality in measurements of B-meson decays [arXiv:1706.07808]

- HH→bbττ
- pair production of top/bottom squarks

CMS [36 fb⁻¹] LQ₃^u, LQ₃^d (B=0), Phys. Rev. D 98 (2018) 032005 LQ₃^u (B=1), 1811.00806 LQ₃^d (B=1), Eur. Phys. J. C 78 (2018) 707

Vector Like B→Hb

t-channel production of the signal

search : single-production of VLQ B that couples exclusively to third-generation SM quarks via the flavor-changing neutral current interaction $B \rightarrow Hb \rightarrow (\gamma \gamma)b$.

 \bullet cross section explicitly depends on the coupling, κ_B , of the VLQ to SM quarks

model : assume a generalized coupling κ_B =0.5 and doublet branching ratios of 50% for B→Hb and B → Zb M_B < **1210 GeV** excluded at 95% CL **final state** : two photons from the Higgs boson decay, a bquark, and an additional light-flavor forward quark.

main background : non-resonant diphoton production estimated from the data sidebands in $m_{\gamma\gamma}$

CMS [36 fb⁻¹, JHEP 06 (2018) 031] B \rightarrow Hb \rightarrow (bb)b singlet/doublet representation various B widths ($\Gamma/M = 1,10,20,30\%$)

M_{G*} excluded in [1.5,2.3] TeV & [2.0,2.4] TeV

for M_{τ} of 1.2 and 1.5 TeV.

arXiv:1110.6058

Z'→tT (T→Ht,Zt,Wb)

search : heavy spin-1 resonance $Z' \rightarrow t T$ (vector-like top-quark partner) dominant decay mode if $M_t + M_T < M_{Z'} < 2M_T$.

final state:

CMS-B2G-17-015

optimized for $Z' \rightarrow tHt$, $tZt \rightarrow monolepton + jets$ (leptonic decay of **one** top quark)

Use of **resolved** (R=0.4) and **merged** (R=0.8) top quark hadronic decay products. **Highly boosted** H, Z and W bosons identified using **jet substructure** techniques.

ATLAS-CONF-2018-020

type-III seesaw heavy leptons

Assumptions:

- N⁰ and L[±] are considered mass-degenerate.

- BR to all lepton flavors are assumed to be equal (1/3)

type-III model : new charged and neutral heavy leptons could be produced in EW processes LHC

final state: six channels defined by the lepton pairs (ee,µµ,eµ × SS,OS)

observable: the sum of the E_T^{miss} + H_T (scalar sum of the transverse momenta)

main systematics:

<u>experimental</u> (uncertainty in the simulation of physics object efficiencies) <u>theoretical</u> (uncertainty in the physics model used for simulation e.g. cross sections), <u>yields</u> (uncertainty arising from fitting the yield of top and diboson backgrounds)

CMS [36 fb⁻¹, Phys. Rev. Lett. 119, 221802]

80 fb⁻¹

Epilogue

- Many beautiful results from ATLAS and CMS. More to come soon including the full RUN-2 luminosity.
- Observations are in agreement with standard model expectations.
- Upper limits on production cross section of new heavy resonances calculated in a model-independent manner.
- Limits are interpreted as constraints on model parameters (masses, couplings ...).

Necessary to continue the broad search program for New Physics

Up to now the EXOTICA papers have (almost) the same sentence in the abstract:

... No significant excess above the background expectation is observed, and upper limits on

Lets **hope** that in the near future, at least one (or more) EXOTICA abstract(s) will contain the magic sentence:

... An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near

BACKUP

Overview of EXOTIC searches (CMS-heavy SM particles)

15 March 2019, LaThuile

G. Daskalakis

$Z' \rightarrow e^+e^-$, $\mu^+\mu^-$

CMS-PAS-EXO-18-006 ATLAS-CONF-2019-001

15 March 2019, LaThuile

77/139 fb⁻¹

JHEP 06 (2018) 128 ATLAS-CONF-2018-017

W' ightarrow ev , μv

36/80 fb⁻¹

	ATLAS (SSM model)						
	$m_{W'}$ lower limit ['						
Decay	Expected	Observed					
$W' \to e\nu$	5.4	5.7					
$W' \to \mu \nu$	4.9	4.8					
$W' \to \ell \nu$	5.5	5.6					

JHEP 06 (2018) 128

W' ightarrow ev , μv

RPV SUSY:

scalar stau ($\tilde{\tau}$) could act as a **mediator** with couplings λ_{231} (λ_{132}) for the electron (muon) final states.

R-parity and lepton flavor violating decay to a charged lepton and a neutrino [Phys. Rev. D 86 (2012) 055010, Phys. Lett. B 76 (1978) 575]

 λ'_{3ij} : hadronic-leptonic RPV coupling to the $3^{rd}\,$ generation

Signal samples : MadGraph 5 (v1.5.14) at LO M_{stau} in the range 400-6000 GeV

G. Daskalakis

Phys. Lett. B 788 (2019) 347 Phys. Lett. B 777 (2017) 39

W'→tb

limits on the production of a right-handed W'_R boson

Phys. Rev. D 96, 052004 (2017) dijet resonances – high mass region

• jets : anti- k_T , R = 0.4 *High-level trigger* : at least one jet with p_T > 380 GeV *Offline* : p_T >440 (60) GeV for the leading (subleading) jet. *rapidity difference* : $y^* = (y_{iet1} - y_{iet2})/2$

- background estimate : sliding-window fitting method
- Model-independent limits on signals with a Gaussian shape

Model	$95\%~{\rm CL}$ exclusion limit		
	Observed	Expected	
Quantum black hole	$8.9~{\rm TeV}$	$8.9~{\rm TeV}$	
W'	$3.6~{ m TeV}$	$3.7~{\rm TeV}$	
W^*	$\begin{array}{c} 3.4 {\rm TeV} \\ 3.77 {\rm TeV} - 3.85 {\rm TeV} \end{array}$	$3.6~{ m TeV}$	
Excited quark	$6.0 { m TeV}$	$5.8~{\rm TeV}$	
$Z' \ (g_q = 0.1)$	$2.1 { m ~TeV}$	$2.1~{\rm TeV}$	
$Z' \ (g_q = 0.2)$	$2.9~{\rm TeV}$	$3.3~{\rm TeV}$	
Contact interaction $(\eta_{\rm LL} = -1)$	$21.8~{\rm TeV}$	$28.3~{\rm TeV}$	
Contact interaction $(\eta_{LL} = +1)$	$\begin{array}{c} 13.1 {\rm TeV} \\ 17.4 {\rm TeV} - 29.5 {\rm TeV} \end{array}$	$15.0 { m TeV}$	

37 fb⁻¹

resonant tt production

Signal		Expected excluded mass [TeV]	Observed excluded mass [TeV]
$Z'_{ m TC2}$	$(\Gamma = 1\%) \\ (\Gamma = 3\%)$	$[0.57, 2.8] \ [0.51, 3.6]$	$[0.58, 3.1] \ [0.53, 3.6]$
$Z'_{ m med}$	(vector) (axial-vector)	$\begin{matrix} [0.75, 1.07] \cup [2.0, 2.1] \\ [1.99, 2.04] \end{matrix}$	$[0.74, 0.97] \cup [2.0, 2.2]$ $[0.80, 0.92] \cup [2.0, 2.2]$
<i>9</i> KK	$(\Gamma = 10\%)$ $(\Gamma = 20\%)$ $(\Gamma = 30\%)$ $(\Gamma = 40\%)$	< 3.5 < 3.4 < 3.3 < 3.2	< 3.4 < 3.4 < 3.4 < 3.4

lepton-plus-jets final state

Summary of 95 % Confidence Level mass exclusion ranges on benchmark models		
Model	Observed excluded mass [TeV]	Expected excluded mass [TeV]
$Z'_{\rm TC2}$ (1% width)	< 3.0	< 2.6
$Z'_{ m DM,ax}$	< 1.2	< 1.4
$Z'_{\rm DM,vec}$	< 1.4	< 1.6
$G_{ m KK}$	[0.45, 0.65]	[0.45, 0.65]
$g_{\rm KK} \ (15\% \ {\rm width})$	< 3.8	< 3.5
$g_{\rm KK}$ (30% width)	< 3.7	< 3.2

15 March 2019, LaThuile

CERN-EP-2018-350

Eur. Phys. J. C 78 (2018) 565

G. Daskalakis

Phys. Lett. B 775 (2017) 105

Heavy resonances in yy

(predicted by theories with an extended Higgs sector)

(a warped extra-dimension Model is used as benchmark)

spin-0 resonance : $E_T > 0.4 m_{vv}$ (leading photon) , $E_T > 0.3 m_{vv}$ (subleading photon) spin-2 resonance : $E_T > 55$ GeV for each photon

JHEP 07 (2018) 075 Phys. Rev. D 97, 072006

(qJ) (ZM ↑ 10²

α(M') B(W')

10⁻¹

→ ZZ) (fb)

σ(G) B(G

10²

10

10⁻¹

1500

 $X \rightarrow VZ \rightarrow qqvv$

35.9 fb⁻¹ (13 TeV)

X→WW,WZ,ZZ

15 March 2019, LaThuile

1500

15 March 2019, LaThuile

G. Daskalakis

Vector Like B→Hb →(bb)b

 $H \rightarrow bb$: highly boosted pair reconstructed as a single collimated jet

assumptions : B quark belongs to a singlet or doublet representation. It decays exclusively to SM particles.

singlet BRs of $B \rightarrow Hb$, Zb, Wt are 25%, 25%, 50%, doublet BRs of $B \rightarrow Hb$, Zb, Wt are 50%, 50%, 0%

BRs depend on the VLQ mass m_B

Phys. Rev. Lett. 119, 221802

type-III seesaw heavy leptons

36 fb⁻¹