

Measurements of Higgs couplings and properties at the LHC

 $\label{eq:Antonio De Maria} \ensuremath{\mathsf{on}}\xspace$ on the behalf of the ATLAS and CMS collaborations

La Thuile 2019

LHC performance

- LHC Run 2 is just finished in 2018
- Luminosity reached record value of 2.1 \times 10 34 cm $^{-1}\text{s}^{-1}$
- Pileup increased by factor 2-3 with respect to Run 1 conditions
- Available datasets to fulfil LHC physics programme:
 - 25 fb $^{-1}$ collected in 2011/2012 at $\sqrt{s} = 7,8$ TeV (Run 1)
 - 140 fb⁻¹ collected both from 2015 to 2018 at $\sqrt{s} = 13$ TeV (Run 2)

Higgs boson production modes

Largest cross section for gluon fusion and vector boson fusion production modes

Higgs boson decay branching ratios

Higgs decay branching ratios

- Larger branching ratio (BR) for $H \rightarrow b\bar{b}, H \rightarrow WW^*$ and $H \rightarrow \tau\tau$, however poor mass resolution and large background contamination
- *H* → γγ and *H* → *ZZ**(→ 4*I*) have lower BR, but high mass resolution; can be used for precision measurements

Mass measurements

- High precision from the golden channels : $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$
- Precision at per-mille level

A. De Maria

Width measurements

- Standard Model (SM) prediction, Γ_H ≃ 4 MeV, too small to be measured directly
 Best limit from CMS in H → ZZ* : Γ_H < 1.10 GeV at 95% C.L.
- Limits from ratio of *on* and *-off* shell cross section measured in $H \rightarrow ZZ^*/WW^*$:

$$\begin{split} \sigma_{\rm off\text{-shell}} & \propto k_{\rm g,off\text{-shell}}^2 \times k_{\rm V,off\text{-shell}}^2 \\ \sigma_{\rm on\text{-shell}} & \propto \frac{k_{\rm g,on\text{-shell}}^2 \times k_{\rm V,on\text{-shell}}^2}{\Gamma_H/\Gamma_{SM}^H} \end{split}$$

	Γ _H (MeV) at 95 % C.L.
ATLAS	< 14.4
CMS	< 9.16

Assumption: $k_{\text{on-shell}} = k_{\text{off-shell}}$

- Improves on Run-1 ATLAS and CMS expected limits by almost factor 2
- Expected results from ATLAS at HL-LHC (ATL-PHYS-PUB-2015-024):

$$\Gamma_H = 4.2^{+1.5}_{-2.1}$$
 MeV

6 / 23

• High p_T^H region is sensitive to perturbative QCD calculation and to new physics

• Good agreement with the SM predictions

• Sensitive to QCD corrections and composition of the production modes

Good agreement with the SM predictions

- Largest Yukawa coupling \rightarrow sensitive to new physics
- Combination from different decay channels : $\gamma\gamma$, $\tau\tau$, WW*, ZZ*, $b\bar{b}$

Coupling to 3rd quark family : ttH

- Observation by each experiment alone
- Results in agreement with SM expectations

- Measurement driven by VH production, most sensitive mode at LHC
- 3 channels, depending on the number of leptons from W/Z decay

Coupling to $\mathbf{3}^{rd}$ quark family : $H \to b \bar{b}$

- Combination of all production modes leads to direct observation
- Observation by each experiment alone
- Results in agreement with SM expectations

	Signal Strength	Obs/Exp significance
ATLAS (Run1 + Run 2)	1.01 ± 0.20	5.4 σ / 5.5 σ
CMS (Run1 + Run 2)	1.04 ± 0.20	5.6 σ / 5.5 σ

Coupling to $\mathbf{3}^{rd}$ lepton family : $H \rightarrow \tau \tau$

- Considering mainly ggF and VBF production modes
- Results extracted from fit of di-tau mass, $M_{ au au}$
- Observation by each experiment alone
- Agreement with SM expectations

Coupling to 2^{nd} lepton family : $H \rightarrow \mu\mu$

- Low branching ratio due to coupling proportional to lepton mass
- Results from fit to di-muon mass in each category
- Results close to the SM sensitivity

• Limits on the signal strength:

	Obs./Exp. μ at 95 % C.L.
ATLAS (Run 2 at 80 fb $^{-1}$)	< 2.1 / < 2.0
CMS (Run1 + Run 2)	< 2.9 / < 2.2

Production modes measurement

	Global signal strength
ATLAS	$1.13 \ ^{+0.09}_{-0.08}$
CMS	1.17 ± 0.10

- Combination from most sensitive decay modes assuming SM value for the BR
- All main production modes have been observed

0.5 1 1.5 2 2.5 3

Results in agreement with SM expectations ۰

Syst.

0.92

1.23 + 0.68

0.89 - 0.47 - 0.42

0.65

1.40 - 0.40 - 0.34

0.76

1.38 - 0.64

1.13

2

Total Stat. Syst.)

+ 0.23

+ 0.50 + 0.43

+ 0.85 + 0.70

- 0.76

+ 0.56

+ 0.47 + 0.36

+ 0.50 + 0.45

- 0.49 -0.43

+ 0.71

3

SM

- 0.68

+ 0.65

= 0.59 + 0.44 + 0.37

4

(±0.47

+ 0.16

5 (σ x B) / (σ x B)_{SM}

ATLAS Preliminary

 $H{\rightarrow}\gamma\gamma,\,|y_{_{\rm H}}|<2.5$

ggF, 1j, 0<pH<60 GeV

ggF, 1j, 60<p_+<120 GeV

ggF, 1j, 120<p_+<200 GeV

qq→Hqq, 0<pⁱ<200 GeV

ggF + qq→Hqq, BSM–like H

-1

0

aaF. Oi

ggF, >= 2j

VH, leptonic

Top

-2

√s = 13 TeV, 79.8 fb⁻¹

H Total Stat.

1

- Measure the cross-section times BR in exclusive phase space regions (Bins) ۲
- Bins chosen to maximise measurement precision and sensitivity to BSM
- Allow combination of different decay modes

Results in the *k*-framework

• k-framework expresses Higgs boson interactions through multiplicative modifiers so SM cross-section and width:

$$(\sigma \times B)_{if} = k_i^2 \sigma_i^{SM} \frac{k_f^2 \Gamma_f^{SM}}{k_H^2 \Gamma_f^{SM}}$$

- Assuming common coupling modifiers for bosons and fermions
- Not considering BSM contribution to Higgs total width
- Results in agreement with prediction in the 95 % C.L.

$\textbf{H} \rightarrow \textbf{invisible decays}$

- Considering system recoiling against $H \rightarrow$ invisible
- Most sensitivity from VBF production mode
- Results from combination with other production modes

• Limits on the branching ratio:

	Obs./Exp. $BR(H \rightarrow inv)$ at 95 % C.L.
ATLAS (Run $1 + Run 2$)	< 0.26 / < 0.17
CMS (Run 2 at 36 fb $^{-1}$)	< 0.26 / < 0.20

Di-Higgs production

- Expected results near to 10 imes SM prediction
- Goal is to reach SM sensitivity at the end of HL-LHC (\simeq 3000 fb⁻¹)

• Limits on the signal strength:

	Obs./Exp. μ at 95 % C.L.
ATLAS	< 6.7 / < 10.4
CMS	< 22 / < 13.0

- Lots of analyses are ongoing using Run 2 dataset
- So far, results led to:
 - Precision measurement in the bosonic decay channels
 - Observation of all main production and decay modes
 - Observation of direct coupling to the third-generation fermions
- All measurements are in good agreement with SM prediction
 - still no sign of new physics unfortunately ...
- However, still long list of measurements to do/improve waiting for HL-LHC

Thanks For Your Attention

Backup

Charge-Parity conjugation measurement

- In all investigated scenarios, data are compatible with $J^{CP} = 0^+$ hypothesis
- Need to improve precision to exclude CP-odd mixing