Recontres de Physique, La Thuile 2019/03/15

Searches for SUSY at the LHC

Tommaso Lari INFN Milano On behalf of the ATLAS and CMS Collaborations

WHY SUSY IS COOL

2

- Electroweak symmetry breaking predicted and natural
- Dark Matter candidate
- Unification of forces

- Rich variety of signatures for the experiment to measure
- No SUSY particles has been observed yet 🔅

Only works if stop not much heavier than top and Higgs !

- Requires R-parity conservation
- Constraints from relic density and direct detection limits

LOTS OF SUSY RESULTS

- * SUSY searches at experiments pursued vigorously : 22 new ATLAS or CMS papers submitted since La Thuile last year
 - Only papers from SUSY working group, not including those with relevant SUSY interpretations from other working groups.
- Here I will give a broad overview and more details on some recent results (since November)
- * For everything else, check the experiments pages :
 - * https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

STRONG PRODUCTION

- High cross section => probing high masses
- R-parity conservation => lightest particle (LSP) stable, missing momentum
- High-p_T jets
- Depending on decay chain, possibly leptons and photons
- * "Easy" but strong limits from previous searches!
- Example : CMS Razor search [1812.06302]

CMS RAZOR : STRATEGY AND SELECTION

- Several event categories *
- Visible momenta clustered in two mega jets and used to compute Razor * variables

- M_R peaking at new particle mass *
- R sensitive to weakly interacting particles momenta **

$$\begin{split} M_{\rm R} &\equiv \sqrt{(|\vec{p}^{j_1}| + |\vec{p}^{j_2}|)^2 - (p_z^{j_1} + p_z^{j_2})^2}, \\ M_{\rm T}^{\rm R} &\equiv \sqrt{\frac{p_{\rm T}^{\rm miss}(p_{\rm T}^{j_1} + p_{\rm T}^{j_2}) - \vec{p}_{\rm T}^{\rm miss} \cdot (\vec{p}_{\rm T}^{j_1} + \vec{p}_{\rm T}^{j_2})}{2}}, \\ {\rm R} &\equiv \frac{M_{\rm T}^{\rm R}}{M_{\rm R}} \end{split}$$

	Category	Preselection	Additional	Trigger
	Category	resciection	requirements	requirement
	Lepton multijet	$M_{\rm R} > 550 {\rm GeV} \ \& \ {\rm R}^2 > 0.20$	$m_{\rm T} > 120 {\rm GeV}$	Single lepton
	Lepton seven-jet	$M_{\rm R} > 550 {\rm GeV} \ \& \ {\rm R}^2 > 0.20$	$m_{\rm T} > 120 {\rm GeV}$	Single lepton
	Boosted W 4–5 jet	$M_{\rm R} > 800 { m GeV} \ \& \ { m R}^2 > 0.08$	$\Delta \phi_{ m R} < 2.8$	$H_{\rm T}$, jet $p_{\rm T}$
	Boosted W 6 jet	$M_{\rm R} > 800 { m GeV} \ \& \ { m R}^2 > 0.08$	$\Delta \phi_{ m R} < 2.8$	$H_{\rm T}$, jet $p_{\rm T}$
lepton	Boosted top	$M_{\rm R} > 800 { m GeV} \ \& \ { m R}^2 > 0.08$	$\Delta \phi_{ m R} < 2.8$	$H_{\rm T}$, jet $p_{\rm T}$
veto	Dijet	$M_{\rm R} > 650 {\rm GeV} \ \& \ {\rm R}^2 > 0.30$	$\Delta \phi_{ m R} < 2.8$	Hadronic razor
	Multijet	$M_{\rm R} > 650 {\rm GeV} \ \& \ {\rm R}^2 > 0.30$	$\Delta \phi_{ m R} < 2.8$	Hadronic razor
	Seven-jet	$M_{\rm R} > 650 { m GeV} \ \& \ { m R}^2 > 0.30$	$\Delta \phi_{ m R} < 2.8$	Hadronic razor

signal region (SR) binned in M_R and R

BACKGROUND ESTIMATE AND RESULTS

Background estimate :

- W(lv), tt, Z(vv) : MC with corrections to M_R and R² derived in control samples (1L0b, 1L, γ+jets)
- Validation and systematics in additional control samples
- * QCD multijet control samples inverting $\Delta \phi_R$

Results for one of the eight categories :

arXiv:1812.06302

RAZOR INTERPRETATIONS

Stealth stop region, see next slide

STEALTH STOP SEARCHES

Near decay threshold, kinematics very similar to tt events !

- High m_{LSP} : neutralinos carry a significant fraction of stop boost : extra MET.
- Low m_{LSP} : soft neutralinos but extra cross section and weaker spin correlation effects (stop are scalars!)
- New CMS search : use M_{T2} shape and normalization to achieve sensitivity across different masses

Selection : eµ, 2 jets, 1 b-jet (in SM 98% pure top)

CMS STEALTH STOP

 M_{T2} (used in exclusion fit) : good agreement with SM.

 $m(\tilde{t}) < 210$ GeV excluded for ΔM at threshold Results for smaller (3-body decay) and larger ΔM in backup The ΔM =175 GeV "stealth stop" corridor is under pressure... my summary from the published plots :

	225-525	ATLAS 1L 1711.11520
	235-590	ATLAS 0L 1709.04183
.75-191		ATLAS spin cor. 1412.4742
175-210		CMS M _{T2} 1901.01288
	275-520	CMS razor 1812.06302

STOP - MORE COMPLEX DECAYS

- Naturalness (need light higgsinos) and relic density consideration make an 100% stop decay to the LSP not very likely. With more complex decay patterns, limits are weaker
- * For 300 GeV LSP mass, any stop mass is likely viable for some decay modes

SUSY with photons - signatures

- * If gravitino LSP, the neutralino is no longer stable.
- A new CMS paper [arXiv:1901.06726] targets gluino and stop production with a photon+(b)-jets+MET final state
- * An other [arXiv:1812.04066] targets photon+lepton+MET final states

	γ+jets+MET	γ+lep+MET
triggers	γ and γ+jet	2γ (eγ channel) γμ (μγ channel)
selection	p_T^{γ} , $H_T^{\gamma} > 100,800$ or 190,500 GeV 2 jets $p_T^{miss} > 100$ GeV	$m_T > 100 \text{ GeV}$ $p_T^{miss} > 120 \text{ GeV}$
SR binning	pT ^{miss} , N _{jets} , N _{bjets}	p_T^{γ} , p_T^{miss} , H_T

SUSY with photons - results

- * Reducible background estimated with control selection and transfer factors/fake rates
- Irreducible background with simulation normalized to control selections
- * Good agreement between data and estimated background everywhere

SUSY with photons - interpretations

 Limits between 1.35 and 2.1 TeV on gluinos, and 930 GeV on directly produced chargino NLSP, for the simplified models considered [other interpretations in backup]

 Real models likely to have different (generally lower) σ x BRs in each final state. Cross section limits are provided for each mass for easy reinterpretation 13

Electroweak production

- Lower cross sections => we probe lower masses => potentially large backgrounds
- Electroweak states might be much lighter than strongly interacting ones. Higgsinos most directly linked to naturalness
- A new ATLAS paper [arXiv:1812.09432] addresses the WH+MET final state in four different channels
 - multilepton (2LSS/3L) +MET
 - diphoton (H(γγ)+MET)
 - 1 lepton (1Lbb+MET)
 - Fully hadronic (qqbb+MET) [never done in previous papers, best sensitivity at high masses!]

1Lbb and had channels

- 1Lbb : Single lepton trigger, 2 or 3 jets, 2 btagged jets, large pT^{miss}, (co)transverse mass cuts, mbb in Higgs widow
- Three orthogonal selections (SR) optimized for increasing mass, combined for exclusion
- Largest background from top and W+jets; normalized in dedicated CRs, CR=>SR from simulation

- Had : pT^{miss} trigger, 4-5 jets, 2 b-jets, large m_{eff} = HT+pT^{miss}, (co)transverse mass cuts, m_{bb} in Higgs window
- Two selections (SR) optimized for medium / high mass
- Largest background from top and Z+jets; normalized in dedicated CRs, CR=>SR from simulation

1Lyy AND MULTI-LEPTON CHANNELS

- * 1Lγγ: Di-photon trigger, one lepton, b-jets veto, p_T^{miss}, (co)transverse mass, and angular cuts, m_{gg} in Higgs widow
- Two orthogonal selections (SR), combined for exclusion
- Non-peaking background from sideband fits;
 H(γγ) background (mostly WH) from MC

- Multileptons : 2 same sign or 3 leptons, selections on p_T^{miss}, N(jets), mass combinations and angles.
- * 8 orthogonal selections (SR) combined
- Largest background from fake leptons (data driven) and WZ (from MC, normalized to data for 3L)

INTERPRETATION

- * Nice complementarity between channels
- * BIG improvement over run1 results [270 GeV exclusion for massless LSP] and best limit to date for this simplified model
- * Read the fine print : at deepest point the excluded cross section is 60% of nominal
 - * The $\tilde{\chi}_{2}^{0}$ might decay into $\tilde{\chi}_{1}^{0}Z$ and $\tilde{\chi}_{1}^{0}h$ with comparable BRs
 - chargino-neutralino production cross section is lower for higgsino-like NLSP

OTHER SUSY EWK

- Direct production with compressed spectrum (higgsino LSP) : well motivated by naturalness, first limit beyond LEP
- Higgsino decaying to gravitino LSP well covered
- Direct sleptons : ∆m gap in sensitivity. Motivated by Dark Matter and g-2
- No sensitivity to direct stau production yet !

RPV SUSY

CMS search for resonant smuon/ sneutrino production in 2μ +2jets

CONCLUSIONS

- SUSY searches being pursued vigorously by both experiments
- Pushing limits outwards, but also covering holes (difficult scenarios) at low mass, like the stop stealth window
- We haven't giving up hope to find supersymmetric particles, and we will continue doing this for a long time to come - see M. Goblirsch talk for the high luminosity LHC prospects

BACKUP

gluino limits

Source	Range (%)
$\mu_{\rm F}$ and $\mu_{\rm R}$ scales	0.3–1.0
PDF	≈ 0.6
Initial-state radiation	0.5–1.0
Final-state radiation	0.6–1.2
ME/PS matching (h_d	amp) 0.3–2.0
Underlying event	≈0.8
Colour reconnection	≈1.5
Top quark $p_{\rm T}$ reweight	hting 0.1–0.5
Top quark mass (acce	eptance) ≈ 1.0
Source	Range for tt and signal (%)
Muon efficiencies	≈ 1.4
Electron efficiencies	≈1.5

Electron efficiencies	≈1.5
Trigger efficiency	≈0.6
Lepton energy scale	0.5–2.0
Jet energy scale	1.5–3.0
Jet energy resolution	0.3–3.5
btagging efficiency	1.2–2.0
Mistag efficiency	0.2–0.6
Unclustered energy	0.5–1.5
Pileup	0.5–3.5

CMS stop limits

photon+jets+MET background estimate

- Lost lepton (Wγ, ttγ) from eγ and μγ control regions, 1=>0 lepton ratio from simulation
- W(ev)+jets, e=>γ, electron control region weighted by misID rate
- Z(vv)+jets, simulation with normalization from Z(ll)+jets
- γ+jets, low Δφ(jets, MET) control region, ratio R= high Δφ/low Δφ measured at low MET, and extrapolated at high MET with simulation

MC closure for lost lepton background

photon+jets+MET other interpretations

γ+lepton+MET

- Reducible backgrounds (e => γ, jet => γ, fake leptons) with data driven methods (control selection weighted by fake rates)
- Irreducible backgrounds (Wγ, Zγ) from MC, normalized to data in control selection

ATLAS WH fully hadronic

Variable	SRHad-High	SRHad-Low	
$N_{ m lepton}$	= 0	= 0	
$N_{\rm jet} \ (p_{\rm T} > 30 \ GeV)$	$\in [4, 5]$	$\in [4, 5]$	
$N_{b ext{-jet}}$	= 2	=2	
$\Delta \phi_{ m min}^{4j}$	> 0.4	> 0.4	
$E_{\rm T}^{\rm miss}$ [GeV]	> 250	> 200	
$m_{\rm eff}$ [GeV]	> 900	> 700	
$m_{b\bar{b}} [\text{GeV}]$	$\in [105, 135]$	$\in [105, 135]$	
$m_{q\bar{q}}$ [GeV]	$\in [75, 90]$	$\in [75, 90]$	
$m_{\rm CT}$ [GeV]	> 140	> 190	
$m_{\rm T}^{b,\min}$ [GeV]	> 160	> 180	

Control regions :

- * **tt** : low m_{CT} , $m_{T}^{b,min}$, $m_{bb} > 135 \text{ GeV}$
- Wt: 1 lepton, m_{CT}, m_T^{b,min} above the top mass, m_{bb} > 195 GeV
- **Z+jets** : ee,μμ events in Z peak, leptons treated as invisible

Validation regions :

- TT : top dominated, low m_{CT}, mbb > 135 GeV, m_T^{b,min} as in SR
- SB : sideband in m_{bb} and m_{qq}
- high : m_{bb} > 135 GeV, m_{qq} in W window

$0\ell b\bar{b}$ channel					
Uncertainty of region	SRHad-High	SRHad-Low			
Total background expectation	2.5	8			
Total background uncertainty	±1.3	±4			
Systematic, experimental	±0.9	±1.2			
Systematic, theoretical	±0.7	±3			
Statistical, MC samples	±0.5	±0.8			
Statistical, $\mu_{TT,ST,Zj}$ scale-factors	±0.25	±0.5			

ATLAS WH 1 lepton

Variable	SR1Lbb-Low	$\mathbf{SR1Lbb} ext{-Medium}$	SR1Lbb-High
$N_{ m lepton}$		=1	
p_{T}^{ℓ} [GeV]		> 27	
$N_{\rm jet} \ (p_{\rm T} > 25 \ GeV)$		= 2 or 3	
$N_{b ext{-jet}}$		=2	
$E_{\rm T}^{\rm miss}$ [GeV]		> 200	
$m_{\rm CT} \ [{ m GeV}]$		> 160	
$m_{\rm T} [{\rm GeV}]$	$\in [100, 140]$	$\in [140, 200]$	> 200
$m_{b\bar{b}} [{\rm GeV}]$		$\in [105, 135]$	

* Control regions :

- * tt : low m_{CT}, Higgs mass veto
- * $Wt: m_{bb} > 195 GeV$
- W+jets: 40 < m_T < 100 GeV, m_{bb} < 80 GeV
- Validation regions :
 - on peak : Higgs mass window, low M_{CT}
 - * **off peak** : m_{bb} < 95 or 145-195 GeV

1ℓbb̄ channel					
Uncertainty of region	SR1Lbb-Low	SR1Lbb-Medium	SR1Lbb-High		
Total background expectation	5.7	2.8	4.6		
Total background uncertainty	±2.3	±1.0	±1.2		
Systematic, experimental	±1.3	±0.7	±0.6		
Systematic, theoretical	±2.2	±0.9	±0.7		
Statistical, MC samples	±1.1	±0.5	±0.6		
Statistical, $\mu_{TT,ST,Wj}$ scale-factors	±0.8	±0.6	±1.3		

ATLAS WH 1Lyy

Variable	$ $ SR1L $\gamma\gamma$ -a		$\mathrm{SR1L}\gamma\gamma\text{-}\mathrm{b}$
N_{γ}		= 2	
$p_{\mathrm{T}}^{\gamma'} \mathrm{[GeV]}$		> (40, 31)	
$N_{ m lepton}$		= 1	
$p_{\mathrm{T}}^{\ell} \; [\mathrm{GeV}]$		> 25	
$E_{\rm T}^{\rm miss}$ [GeV]		> 40	
$\Delta \phi_{W,h}$		> 2.25	
$m_{\gamma\gamma}$ [GeV]		$\in [120, 130]$	
$N_{b\text{-jet}} \ (p_{\mathrm{T}} > 30 \ GeV)$		= 0	
$m_{\rm T}^{W\gamma_1}$ [GeV]		≥ 150	
$m_{\mathrm{T}}^{W\gamma_2}$ [GeV]	> 140		$\in [80, 140]$
$m_{\rm T} ~[{\rm GeV}]$	> 110		< 110

$1\ell\gamma\gamma$ channel

Uncertainty of region	SR1Lyy-a	SR1Lγγ-b
Total background expectation	0.36	5.3
Total background uncertainty	±0.22	±1.0
Systematic, experimental	±0.018	±0.27
Systematic, theoretical	± 0.008	±0.11
Statistical, MC samples	± 0.006	± 0.024
Statistical, non-peaking	±0.22	±0.9

ATLAS WH multilepton

Variable	SRSS-j1	SRSS-j23
$\Delta \eta_{\ell\ell}$	< 1.5	-
$N_{\rm jet} \ (p_{\rm T} > 20 \ GeV)$	=1	= 2 or 3
N_{b-jet}	= 0	= 0
$E_{\rm T}^{\rm miss}$ [GeV]	> 100	> 100
$m_{\rm T} ~[{\rm GeV}]$	> 140	> 120
$m_{\rm eff} [{\rm GeV}]$	> 260	> 240
$m_{\ell j(j)} [{\rm GeV}]$	< 180	< 130
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	> 80	> 70

$\ell^{\pm}\ell^{\pm}$ channel				
Uncertainty of region		SRSS-j1		SRSS-j23
Total background expectation		6.7		5.3
Total background uncertainty		±2.2		±1.6
Systematic, experimental Systematic, theoretical Statistical, MC samples Statistical, μ_{WZ} scale-factors		±2.1 ±0.21 ±0.4		±1.6. ±0.28 ±0.34
3 <i>ℓ</i> channel				
Uncertainty of region	SR3L-DFOS-0J	SR3L-DFOS-1Ja (b)	SR3L-SFOS-0Ja (b)	SR3L-SFOS-1J
Total background expectation	2.05	8(1.7)	3.8(2.37)	11.4
Total background uncertainty	±0.98	±4 (±0.7)	±1.7 (±0.96)	±2.6
Systematic, experimental Systematic, theoretical Statistical, MC samples Statistical, μ_{WZ} scale-factors	± 0.8 ± 0.11 ± 0.6 ± 0.022	$\begin{array}{c} \pm 4 \ (\pm 0.5) \\ \pm 0.25 \ (\pm 0.16) \\ \pm 1.2 \ (\pm 0.4) \\ \pm 0.12 (\pm 0.06) \end{array}$	$\begin{array}{c} \pm 1.7 \ (\pm 0.8) \\ \pm 0.15 \ (\pm 0.22) \\ \pm 0.6 \ (\pm 0.4) \\ \pm 0.30 (\pm 0.24) \end{array}$	± 2.0 ± 1.5 ± 0.9 ± 0.9

Variable		SR3L-DFOS-0	J SR3L-DFOS-1Ja	SR3L-DFOS-1Jb			
$N_{\rm jet} \ (p_{\rm T} > 20 \ G$	(eV)	= 0	> 0	> 0			
$N_{b- m jet}$		= 0	= 0	= 0			
$E_{\rm T}^{\rm miss}$ [GeV]		> 60	$\in [30, 100]$	> 100			
$m_{\ell_{\rm DFOS}+\ell_{\rm near}}$ [Ge	eV]	< 90	< 60	< 70			
$\Delta R_{ m OS,near}$		-	< 1.4	< 1.4			
$\Delta \phi_{\rm SS}$		-	-	< 2.8			
Variable		R3L-SFOS-0Ja	SR3L-SFOS-0Jb	SR3L-SFOS-1J			
$N_{\rm jet}~(p_{\rm T}>20~GeV)$	= 0		= 0	> 0			
$N_{b ext{-jet}}$		= 0	= 0	= 0			
$E_{\rm T}^{\rm miss}$ [GeV]	$\in [80, 120]$		> 120	> 110			
$m_{\rm T}^{\rm min}$ [GeV]	> 110		> 110	> 110			
$m_{ m SFOS}^{ m min}$	> 20	$GeV, \notin [81.2, 101.2]$	$> 20 \ GeV, \notin [81.2, 101.2]$	$> 20 \ GeV, \notin [81.2, 101.2]$			

OTHER "WH" LIMITS

"WH" vs "WZ"

SUSY EWK cross sections

ATLAS RJR EWK SEARCH

Targeted by two papers :

- "conventional" discriminating variables [EPJ C78 (2018) 995, arXiv:1803.02762]
- Recursive Jigsaw Reconstruction [PRD 98 (2018) 092012, arXiv:1806.02293]

Complementary (similar sensitivity to target simplified model, but selecting different events / phase space)

What is Recursive Jigsaw Reconstruction ?

- * Assume a specific decay chain
- Perform a series of Lorentz boosts between frames
- Determine unknowns (like pzmiss) with Jigsaw rules
- Provides 4-vector of each particle in the assumed decay chain

References :

Jackson, Rogan, Santini, PRD 95 (2017) 035031 http://restframes.com

