Flavor Phenomenology of the QCD Axion

Robert Ziegler (CERN)

La Thuile 2019 - Les Rencontres de Physique de la Vallée d'Aoste

The QCD Axion

The Goldstone Boson of a spontaneously broken, global U(1) symmetry that has a QCD anomaly

Dynamical solution to the Strong CP Problem Viable DM candidate in vast parts of parameter space

[Peccei,Quinn '77; Wilczek'78; Weinberg '78]

[Preskill,Wise,Wilczek; Abbott,Sikivie; Dine,Fischler '83]

Maybe the best motivated BSM particle we have

Axion coupling respects shift symmetry that is broken only by gauge anomalies

Axion coupling respects shift symmetry that is broken only by gauge anomalies

$$\mathcal{L}_{\text{eff}} = N \frac{a(x)}{\Lambda_{\text{PQ}}} \frac{\alpha_s}{4\pi} G_a^{\mu\nu} \tilde{G}_{a,\mu\nu} + E \frac{a(x)}{\Lambda_{\text{PQ}}} \frac{\alpha_{\text{em}}}{4\pi} F^{\mu\nu} \tilde{F}_{\mu\nu} + \frac{\partial_\mu a(x)}{\Lambda_{\text{PQ}}} \overline{f}_i \gamma^\mu \left(C_{ij}^V + C_{ij}^A \gamma_5 \right) f_j$$

The only contribution to axion potential

$$V_{\text{eff}} = -\frac{a(x)}{f_a} \frac{\alpha_s}{8\pi} G_a^{\mu\nu} \tilde{G}_{a,\mu\nu} \xrightarrow[\text{effects}]{\text{non-PT}} V(a) \sim -m_\pi^2 f_\pi^2 |\cos\frac{a(x)}{f_a}|$$

- has trivial minimum: QCD Θ -term dynamically set to zero
- generates tiny axion mass $m_a \propto m_\pi f_\pi / f_a = 5.7 \,\mu \text{eV} \left(\frac{10^{12} \,\text{GeV}}{f_a} \right)$

Axion coupling respects shift symmetry that is broken only by gauge anomalies

$$\mathcal{L}_{\text{eff}} = N \frac{a(x)}{\Lambda_{\text{PQ}}} \frac{\alpha_s}{4\pi} G_a^{\mu\nu} \tilde{G}_{a,\mu\nu} + E \frac{a(x)}{\Lambda_{\text{PQ}}} \frac{\alpha_{\text{em}}}{4\pi} F^{\mu\nu} \tilde{F}_{\mu\nu} + \frac{\partial_{\mu} a(x)}{\Lambda_{\text{PQ}}} \overline{f}_i \gamma^{\mu} \left(C_{ij}^V + C_{ij}^A \gamma_5 \right) f_j$$

Provides axion couplings to photons: most common axion search channel

Haloscopes

$$a \longrightarrow \gamma$$

Helioscopes

 $\longrightarrow a \longrightarrow \gamma$

CAST/IAXO

Axion coupling respects shift symmetry that is broken only by gauge anomalies

3 + 6 couplings in each fermion sector

(diagonal vector couplings unphysical)

flavor-conserving constrained mainly by astrophysics

Constraints from Astrophysics

Axion couplings to matter allow to efficiently radiate off energy in astrophysical objects

Evolution of Horizontal Branch stars: $m_a < \frac{3 \cdot 10^{-1} \text{ eV}}{C_{\gamma}}$ constrains **photon** couplings

Supernova neutrino burst duration: constrains **nucleon** couplings $m_a < \frac{4 \cdot 10^{-3} \,\mathrm{eV}}{|C_N|}$

White Dwarf cooling: constrains **electron** couplings

$$m_a < \frac{3 \cdot 10^{-3} \,\mathrm{eV}}{|C_e|}$$

Constraints from Flavor Physics

Flavor-violating axion couplings allow for rare decays with **invisible & massless final state**

$$\begin{split} K &\to \pi a \qquad m_a < \frac{2 \cdot 10^{-5} \text{ eV}}{|C_{sd}^V|} \qquad \stackrel{\times 1/8}{\longrightarrow} \text{ NA62} \\ (\text{E}_{787}+\text{E}_{949}, \text{'o8}) \qquad m_a < \frac{3 \cdot 10^{-3} \text{ eV}}{|C_{\mu e}|} \qquad \stackrel{?}{\longrightarrow} \text{ MEG, Mu3e} \\ (\text{Crystal Box, '88}) \qquad m_a < \frac{9 \cdot 10^{-2} \text{ eV}}{|C_{bs}^V|} \qquad \stackrel{\times 1/10}{\longrightarrow} \text{ Belle II} \end{split}$$

Present and Future Constraints

(for $C_i = 1$)

Origin of Axion-Fermion Couplings

Axion couples to PQ current: in fermion mass basis given by PQ charges folded with unitary rotations

$$C_{u_{i}u_{j}}^{V,A} = \left(V_{UL}^{\dagger} PQ_{q}V_{UL}\right)_{ij} \pm \left(V_{UR}^{\dagger} PQ_{u}V_{UR}\right)_{ij}$$

diagonal PQ charge
matrix of LH quarks unitary rotations that
diagonalize Yukawas
 $V_{UL}^{\dagger}M_{u}V_{UR} = M_{u}^{\text{diag}}$

Induce flavor-violating couplings whenever SM fermions carry non-universal PQ charges

- e.g. non-universal DFSZ models; size given by (free) rotation angles Celis, Fuentes-Martin, Serodio '14; di Luzio, Mescia, Nardi, Panci, RZ '17, ...
- very predictive framework: PQ = FN ("axiflavon"/"flaxion") Calibbi, Goertz, Redigolo, RZ, Zupan '16 / Ema et al. '16 Wilczek '82

Model-Independent Bounds

$$\mathcal{L}_{\text{eff}} = \frac{\partial_{\mu}a}{F_{ij}^{V}}\overline{f}_{i}\gamma^{\mu}f_{j} + \frac{\partial_{\mu}a}{F_{ij}^{A}}\overline{f}_{i}\gamma^{\mu}\gamma_{5}f_{j}$$

Feng, Moroi, Murayama, Schnapka '97

> Björkeroth, Chun, King '18

 $\begin{array}{ll} \mbox{Meson decays to PS + axion} \\ \mbox{E787 + E949 '07} & \mbox{BR}(K^+ \rightarrow \pi^+ a) < 7.3 \cdot 10^{-11} \\ \mbox{no dedicated search } & \mbox{BR}(D^+ \rightarrow \pi^+ a) < 1 \\ \mbox{CLEO '01} & \mbox{BR}(B^+ \rightarrow K^+ / \pi^+ a) < 4.9 \cdot 10^{-5} \end{array}$

Neutral Meson Mixing

$$\Delta M_K \approx \frac{f_K^2 M_K}{\left(F_{sd}^A\right)^2}$$

Plenty of Room for Improvement

• recast
$$D \to \tau \nu, \tau \to \pi \nu$$
 CLEO '08
BR $(D^+ \to \pi^+ a) < 1.3 \cdot 10^{-4} F_{cu}^V \times 100$

• recast
$$B \to K/K^* \nu \overline{\nu}$$
 BaBar '13

$$BR(B \to Ka) < 1.6 \cdot 10^{-5}$$

 $BR(B \to K^*a) < 1.0 \cdot 10^{-4} \quad F_{bs}^A \times 1000$

(Belle cuts away $q^2=0$ signal region)

Camalich, Vuong, RZ, Zupan, in progress

see also Kamenik, Smith '11

• Many interesting channels for Belle II $B \to Ka, B \to K^*a, B \to \pi a, B \to \rho a, \dots$ $F_{bs,bd} \times (10 \div 50)$

Summary

- Precision flavor experiments allow to look for QCD axion complementarily to usual axion searches
- Flavor-violating axion couplings are generic and sizable whenever SM fermions have non-universal PQ charges
- NA62 will test PQ breaking scales up to 10¹² GeV!
- Interesting prospects also for Belle II using 2-body phase space region in $B \to (K/\pi/K^*/\rho) \nu \overline{\nu}$ samples

Backup

Axion Models

Specify **anomalous** breaking of PQ (**fermion sector**) & **spontaneous** breaking of PQ (**scalar sector**)

Flavor Constraints

The Axiflavon 10¹⁰ 10¹⁴ 10⁸ **10**¹³ 10¹¹ 10⁹ 10¹² 10⁷ 10⁶ NA62 sd10⁻¹⁰ -HB /CAST↑ ALPS-I MADMAX ADMX 10⁻¹¹ IAXO Natural axion DM window testable at IAXO+ 10⁻¹² *|g_{ayy}*| [GeV⁻¹] NA62 (and ADMX-II) **AXIFLAVON** 10⁻¹⁴ Present bound from E787+E949 10⁻¹⁵ Expected future HDM ADMXbound from NA62 \Rightarrow 10⁻¹⁶ 10⁻⁸ 10⁻⁶ 10⁻⁵ 10⁻³ 10^{-2} 10⁻¹ 10⁰ -4 10¹ 10^{-1} m_a[eV]

Axions as Dark Matter

[axion essentially stable for $m_a \lesssim 20 \,\mathrm{eV}$]

When PQ breaking before inflation axion can be dark matter through "misalignment mechanism"

At QCD phase transition axion starts oscillating around minimum: energy stored in oscillations contributes to DM energy density

$$\Omega_{\rm DM} h^2 \approx 0.1 \left(\frac{10^{-5} {\rm eV}}{m_a}\right)^{1.18} \beta^2$$

Correct abundance for $10^{-7} \,\mathrm{eV} \lesssim m_a \lesssim 10^{-4} \,\mathrm{eV}$