

Measurement of Initial State Radiation @ CDF

Geumbong Yu for CDF Collaboration Seoul National University

La Thuile 2019 - Les Rencontres de Physique de la Vallée d'Aoste, 11-16 MAR 2019

QCD in hadron collider

- Hadron is a complex bound state of quarks and gluons, and their dynamics (QCD) is a non-abelian gauge group theory, SU(3)
- Hadron collisions at high energy bring a variety of gluon radiation before and after the hard scattering
 - Initial state radiation (ISR): space-like shower, radiation from the incoming quarks
 - Final state radiation (FSR): time-like shower, radiation from the outgoing partons
 - QCD evolves depending on which direction you look at:
 - Focus on the QCD evolution with Q² via the DGLAP equation: MC generators employ this evolution

 $\frac{dq(x,Q^2)}{d\log Q^2} = \frac{\alpha_S(Q^2)}{2\pi} \int_x^1 \frac{dy}{y} q(y,Q^2) P(\frac{x}{y})$

Parton density

Splitting function

ISR measurement using Drell-Yan

- QCD Initial State Radiation (ISR) has been a well-known but least-studied subject ever since the HERA experiments
 - Analyses deal with the inevitable uncertainty from ISR
- This measurement quantifies the effect of ISR as a function of collision energy and gives an idea of estimating the ISR for any physics processes at high energy collision
- Drell-Yan $Z/\gamma^* \rightarrow l^+l^-$ process restricts the gluon radiation being originated from incoming quarks
 - The transverse momentum of the process is a good observable to quantify the ISR

Strategy of the Measurement

$$\frac{dq(x,Q^2)}{d\log Q^2} = \frac{\alpha_S(Q^2)}{2\pi} \int_x^1 \frac{dy}{y} q(y,Q^2) P(\frac{x}{y}) \to \frac{\langle p_T^{\ell\ell} \rangle}{\log \langle m_{\ell\ell}^2 \rangle}$$

Normalized

10

- The Drell-Yan mass square (m_{\parallel}^2) corresponds to the Q²
- The amount of ISR is quantified by $p_T \gg p_T$
- Assumption is that the $p_T \gg p_T$ grows as the m_{ll} goes higher in the DY sample
- For simplifying the relation
 - Use 5 DY mass bins (GeV) for $<_{PT}$: [40,60,80,100,200,350]
 - Too hard ISR removed: $p_T^{\parallel} < 100 \text{ GeV}$

Collider Detector at Fermilab @ Tevatron

Run2 operation 1/3/2001—30/9/2011

Tevatron delivered ~12 fb⁻¹ to each experiment, ~10 fb⁻¹ recorded

The CDF II detector

https://doi.org/10.1016/j.nima.2013.07.015

DiLepton Event Selection

CDF Run II data (9.4 fb-1) with proton-antiproton collisions at 1.96 TeV

	$\mu\mu$ channel	ee channel	
Trigger	Single Muon	Single Electron double e/ γ	
Lepton	Opposite signed μμ - pτ(μ1)>20 GeV - pτ(μ2)>12 GeV - [η]<1.5	 Central-Central Opposite signed pτ(e1,e2)>25,15 GeV, 0.05< η <1.05 Central-Plug Central: pτ>20 GeV, 0.05< η <1.05 Plug: pτ>20 GeV, 1.2< η <2.8 Plug-Plug pτ(e1,e2)>25 GeV, 1.2< η <2.8 Require electron pair from same side 	
Event Cut	рт(<i>µµ</i>)<100 GeV	$p_T(ee) < 100 \text{ GeV}$, Missing $E_T < 40 \text{ GeV}$, FSR cut*	
Background	CDF simulation (PYTHIA6): $Z \rightarrow \tau \tau$, W, W γ , dibosons, tt Data-driven: multi-jet QCD		
Additional corrections	Number of vertex / Vertex position / Lepton energy/momentum / Z boson pT*		

DiLepton Mass

$\mu\mu$ channel

ee channel

Dilepton pt

Correction: reconstruction → generator

- Correction derived from Drell-Yan MonteCarlo sample:
 - Multiplicative correction factor
 - Reconstruction→generator level

- The correction includes:
 - Removing the effect from detector resolution and efficiency
 - Restoring the missing momentum due to QED FSR
 - Acceptance

Systematic Uncertainties

µ channel	Mass bin (GeV)	[40,60]	[60,80]	[80,100]	[100,200]	[200,350]
	Statistical Unc.(%)	0.96	0.73	0.22	0.95	3.79
	Systematic Unc.(%)	1.31	1.33	0.26	0.91	2.84
	ISR model	0.93	0.93	0.24	0.52	2.38
	QED FSR model	0.87	0.93	0.03	0.18	0.41
	Momentum scale	0.11	0.13	0.04	0.20	0.85
	Momentum resolution	0.07	0.06	0.08	0.68	1.20
	Background norm.	0.28	0.10	0.03	0.16	0.25

e channel	Mass bin (GeV)	[40,60]	[60,80]	[80,100]	[100,200]	[200,350]
	Statistical Unc.(%)	1.38	0.70	0.16	0.72	3.44
	Systematic Unc.(%)	1.96	0.91	0.17	0.63	1.67
	ISR model	1.26	0.51	0.13	0.15	1.07
	QED FSR model	1.39	0.72	0.05	0.22	0.67
	Energy scale	0.11	0.07	0.02	0.08	0.21
	Energy resolution	0.02	0.02	0.08	0.10	0.15
	Background norm.	0.57	0.21	0.03	0.56	1.06

Dominant Sources:

- ISR model: variation of Z boson p_T correction
- QED FSR model: comparison between PYTHIA6 and PHOTOS++

Results

$\mu\mu$ channel

(GeV)

Mass bin	<m<sub>DY>±stat.±syst.</m<sub>	<p<sub>T>±stat.±syst.</p<sub>
[40,60]	47.72±0.05±0.04	9.12±0.09±0.12
[60,80]	70.66±0.04±0.07	10.81±0.08±0.14
[80,100]	90.99±0.01±0.08	11.84±0.03±0.03
[100,200]	115.29±0.18±0.14	13.17±0.12±0.12
[200,350]	243.33±1.63±0.41	16.18±0.61±0.46

ee channel (GeV) Mass bin <m_{DY}>±stat.±syst. <p_T>±stat.±syst. [40,60] 47.83±0.05±0.07 9.10±0.13±0.18 [60,80] 70.76±0.04±0.04 10.84±0.08±0.10 [80,100] 90.98±0.01±0.07 $11.79 \pm 0.02 \pm 0.02$ [100,200] 115.11±0.13±0.14 12.93±0.09±0.08 [200,350] 245.46±1.29±0.36 16.41±0.56±0.27

Universality

Physics processes lie on the ISR slope in $\langle p_T \rangle$ vs. $\langle Q^2 \rangle$

ISR activities projection

 Expected ISR activities does show slope changes by the collision energy

Summary

- QCD ISR is a process that is well-known but hard to study in hadron colliders although it is one of major systematic uncertainties in precision measurement
- Using Drell-Yan events in 9.4 fb⁻¹ of CDF data, we measure the amount of ISR as p_T^{DY} depending on the Q², m_{DY^2} , and obtain a linear relation:

• $p_T^{DY} = (-7.6 \pm 0.7) + (2.2 \mp 0.8) \times \log(m_{DY^2})$

- This measurement gives an idea of estimating the p_T shifts induced by the ISR at high energy
- In preparation of paper submission

The measurement sensitive to α_s

 $m_{DY}^2 [GeV^2/c^4]$

Dilepton pt

FSR-suppression cut

$\Delta p_T(e1,e2) \equiv |p_T(e1)-p_T(e2)|, \ \Delta \varphi(e1,e2) \equiv |\varphi(e1)-\varphi(e2)|$

For m_{ee}<80 GeV: • $|\Delta \varphi(el,e2) \cdot \pi| < 0.25 \&\& \Delta p_T(el,e2) > 15 GeV \&\& MET < 15 GeV$ • $|\Delta \varphi(el,e2) \cdot \pi| < 0.25 \&\& \Delta p_T(el,e2) > 10 GeV \&\& MET > 15 GeV$

Boson pt correction

- No reason that the pT correction differs by the lepton flavor
- We fully correct the detector acceptance to the generator level
 - Different acceptance in each channel
 - Correction differs by the boson rapidity
- Extracted the boson p_T correction iteratively from MC to data comparison using both lepton channels in 2D
 - weight(p_T, y) = $f_1(p_T) + y \times f_2(p_T)$

Phys. Rev. D 86, 052010

CDF detector details

