Measurements Of Top Production And Properties At The LHC

Clement Helsens CERN-EP On behalf of ATLAS and CMS collaborations

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile 2019

Why Is The Top-Quark So Interesting

- <u>Top-guark is 40 times heavier than the b (doublet)</u>
 - Same mass scale as gauge bosons: Connection to EWSB?
 - Top Yukawa is almost exactly 1: coincidence?
 - Meta-stability of SM: valid up to Planck Scale
 - Mass would need to be tested precisely at e^+e^- colliders
- Heaviest SM particle and produced abundantly
 - Cross-section between 0.2 and 0.8 nb
 - Important background to BSM searches
 - May couple to New Physics
- <u>Top decays before hadronisation (lifetime < Λ_{OCD})</u>
 - Study the properties of the pseudo-bare quark
- With the full Run-2 datasets, more than 10⁸ top pairs have been produced. Statistic is often not the limiting factor. Time for precision in the systematics!!!

-HC top physic results

Top Production And Decay

- Top pair production at the LHC governed by strong interaction
 - Gluon-gluon fusion (~90% at 13 TeV)
 - Quark-antiquark annihilation (10% at 13 TeV)
- <u>Single top production via EW interaction:</u>
 - Exchange of a virtual W boson in the s and t channels
 - Production in association with a real W boson
- Decays (electrons and muons only)
 - **Dilepton [4%]** cleanest signature, but lower statistics
 - Lepton+jets [30%] Compromise between statistics and background contamination
 - All hadronic [45%] higher statistics but large uncertainty due to multijet background. Easy kinematic reconstruction; all decay particles measured

Results Presented Today

• ATLAS

- tt+bb <u>1811.12113</u>
- Spin corr. <u>TOP_2018_027</u>
- Top mass comb <u>1810.01772</u>
- tt Wt interf <u>1806.04667</u>
- More details in public page

• <u>CMS</u>

- $\sigma_{tt}, m_{top}, \alpha_s$ <u>1812.10505</u>
- σ_{tt} , m_{top} , α_s , PDF <u>CMS_PAS_TOP_18_004</u>
- Pola, spin corr <u>CMS_PAS_1</u>
 - CMS_PAS_TOP_18_006
- Top mass L+jets CR <u>1805.01428</u>
- Top mass comb <u>1812.10534</u>
- Diff XS, CMDM, AC <u>1811.06625</u>
- Top-yukawa
- CMS_PAS_TOP_17_004
- More details in <u>public page</u>

Combination

V_{tb} <u>1902.07158</u> single top

Top Production

14/03/19

LHC top physic results

Analysis

- Diff. cross sections presented as functions of numerous observables related to tt production and decay
- Significant disagreement between the data and NLO MC simulation is observed for $p_{\tau}(top)$, $p_{\tau}(I)$, $p_{\tau}(b)$, $p_{\tau}(tt)$, $p_{\tau}(II)$, $p_{\tau}(bb)$, m_{tt} , m_{II} , m_{bb}
- Jet multiplicity distribution not very well described by all of the MC predictions (except maybe MG5 aMC@NLO +Pyhtia8 [FxFx])

- Motivations
 - Predictions for *tt*+HF affected by large uncertainties due to non-negligible b-quark mass
 - Very important background for $ttH H \rightarrow bb$ production
- <u>Measure</u>
 - Inclusive cross-sections of the production of top pairs with 3 and 4 b-jets
 - Differential cross-sections as a function of global event and b-jet properties
- <u>Differential cross-sections presented</u>
 - Events with $\geq 3/4$ b-jets
 - Events l+jets or in the eµ channel
 - As a function of H_T , H_{Thad} , p_T of b-jets, b-jet multiplicity, ΔR_{bb} , m_{bb} and $p_{T,bb}$
- No attempt to identify the origin of the *b*-jets

ATLAS tt+bb Production 2/2

1811.12113

- al particle level measurement in fiducial phase space Precision limited by stat, generator, jet energy scale and reso. uncert. rightarrow constraints respectively.
- Comparisons with NLO+PS predictions employing 4 and 5-flavor schemes, produced using the *tt* and *ttbb* matrix elements
- Higher cross section measured than predictions
- Predictions where additional *b*-jets are produced by PS predicts too few events with more *b*-jets than those produced in top decays

ATLAS Interference Wt And tt 1806.04667

• <u>tW diagrams beyond the leading order interfere with tt</u>

- Size of the interference dependent on the phase space
- Both process are factorized in standard calculations (NWA)
- Very important for searches
- Different methods to handle the interference at NLO
 - Diagram Removal (DR) and Diagram subtraction (DS)
 - WbWb -> lvblvb in PowHeg Res bb4l: interference automatically handled
- <u>Analysis/results</u>
 - $m_{lb}^{minimax}$ sensitive to the tt/tWb interference
 - The bulk well described by all the predictions
 - Good agreement for **bb4l** in the full range
 - Mis-modelling in the tails by MG5_aMC+Pythia8 predictions with opposite behavior
 - PowHeg+Pythia8 DS and DR diverge in tails

Top Quark Pair Cross Section Summary

- Large variety of measurements by ATLAS and CMS in different decay channels
- Good agreement of all inclusive measurements with SM predictions
- Not the same story differentially
- Experimental uncertainties already comparable with theoretical ones
- Measurements in eµ and lepton+jets channels are the most precise
- Overall comparable precision between the two experiments
- All summary plots <u>here</u>

Top Properties

[12]

Spin Correlations

- Top quark lifetime 3 10⁻²⁵ sec decays as a bare quark, does not hadronise
 - Top spin information transferred to decay products, not 'corrupted' by QCD
 - Expect negligible pola. in SM, but correlation between top/anti-top spins
 - Charged leptons from W decays carry almost the full available information

- 'Classical' spin observable: azimuthal $\Delta \phi$ (II) in di-leptonic top-pair events
 - Already used at Run-1 to establish spin correlations at level predicted by SM
 - With Run-2 data sample, can start to look differentially in bins of m_{tt} system (ATLAS) and spin density matrix (CMS, also ATLAS 8 TeV)
 - Both implies reconstruction of the top-pair kinematics

SATLAS EXPERIMENT Spin Correlations Results

<u>2018-027</u>

Statlas Spin Correlations Interpretation 2018-027

0.85(0.84)

1.00(0.91)

1.43(1.37)

0.41(0.40)

3.70(3.20)

- Fit the inclusive $\Delta \phi$ distribution to templates
 - MC with SM-like spin correlation ON/OFF
 - Steeper distribution with OFF (C=0)

$$n_i = f_{\rm SM} \cdot n_{\rm spin} + (1 - f_{\rm SM}) \cdot n_{\rm nospin}$$

- f_{SM} =1 for 'SM-like' spin correlation, 0 for none
- Obtain f_{SM} =1.250 ±0.026 (stat) ±0.063 (syst)

Region

 $m_{t\bar{t}} < 450 \text{ GeV}$

 $450 < m_{t\bar{t}} < 550 {
m ~GeV}$

 $550 < m_{t\bar{t}} < 800 \text{ GeV}$

 $m_{t\bar{t}} > 800 \,\,{\rm GeV}$

inclusive

- f_{SM} is 3.2 σ above 1, when including QCD scale and PDF uncertainties on templates
- f_{SM} also above 1 in m_{tt} bins, lower significance

 $f_{\rm SM}$

 $1.11 \pm 0.04 \pm 0.13$

 $1.17 \pm 0.09 \pm 0.14$

 $1.60 \pm 0.24 \pm 0.35$

 $2.2 \pm 1.8 \pm 2.3$

 $1.250 \pm 0.026 \pm 0.063$

Spin Correlation results

- Slightly smaller discrepancy observed as ATLAS
- <u>Too much spin correlation wrt. Prediction?</u>
 - Robust against variation of generator for templates
 - Inclusion of NLO top decays
 - Recent work <u>1901.05407</u> (Behring et al) suggests NNLO corrections are important

CMS_PAS_TOP_18_006

Spin Density Matrix

- Measures all 15 coefficients of the spin density matrix
 - First time done at 13 TeV
 - Compatible with SM

 $\frac{1}{\sigma} \frac{\mathrm{d}^2 \sigma}{\mathrm{d} \cos \theta^a_+ \mathrm{d} \cos \theta^b_-} = \frac{1}{4} (1 + B^a_+ \cos \theta^a_+ + B^b_- \cos \theta^b_- - C(a, b) \cos \theta^a_+ \cos \theta^b_-),$

CMS_PAS_TOP_18_006

Additional Measurements

- <u>Constraining Chromomagnetic dipole moment (CMDM) of the top</u>
 - Strongest direct constraint to date
 - Factor 2 improvement w.r.t best result to date
 - More interpretations and Rivet data on release of the paper

CMS_PAS_TOP_18_006

- Additional measurements form dilepton XS analysis:
 - The tt and leptonic charge asymmetries are measured at 13 TeV for the first time
 - Particle-level diff. cross section as a function of Δφ(I,I) is used to constrain the top quark chromo-magnetic dipole moment at NLO using an EFT
 - Very sensitive to new physics
 - Found to be in agreement with SM predictions

19

1811.06625

 $-0.06 < C_{tc}/\Lambda^2 < 0.41 \text{TeV}^2$

SATLAS EXPERIMENT TOP Mass Combination

<u>1810.01772</u>

- Combine I+jets, dilepton all-jets at 8 and 7 TeV
- Analyses optimised to maximise combination gain

	$m_{\rm top} \; [{\rm GeV}]$	
Results	172.69	
Statistics	0.25	
Method	0.06	
Signal Monte Carlo generator	0.12	
Hadronization	0.00	σ
Initial- and final-state QCD radiation	0.07	71
Underlying event	0.03	Ö
Colour reconnection	0.08	14
Parton distribution function	0.05	
Background normalization	0.02	4
W/Z+jets shape	0.06	
Fake leptons shape	0.03	L L
Data-driven all-jets background	0.03	, i
Jet energy scale	0.22	Ę
Relative b -to-light-jet energy scale	0.17	2
Jet energy resolution	0.09	Ę
Jet reconstruction efficiency	0.03	E
Jet vertex fraction	0.05	-
b-tagging	0.17	
Leptons	0.08	
Missing transverse momentum	0.04	
Pile-up	0.06	2
Trigger	0.01	
Fast vs. full simulation	0.01	
Total systematic uncertainty	0.41 ± 0.03	
Total	0.48 ± 0.03	

Top Mass L+jets CR Models

- <u>New color reconnection models all with "early resonance decays" (ERD)</u>
 - Default setup
 - String formation beyond leading color ("QCD inspired") [JHEP **1508** (2015) 003]
 - Gluons can be moved to another string ("gluon move") [JHEP 1411 (2014) 043]

• <u>Results</u>

- No significant discrepancy observed in any differential measurement
- More data might help to exclude models
- Dedicated CR studies needed to reduce the uncertainty associated to CR
- Theory input necessary to judge which models are meaningful

Madal	χ^2 probability							
Model	$p_{\mathrm{T}}^{\mathrm{t,had}}$	$m_{t\bar{t}}$	$p_{\mathrm{T}}^{\mathrm{t}ar{\mathrm{t}}}$	Njets	$p_{\mathrm{T}}^{\mathrm{b,had}}$	$ \eta^{ ext{b,had}} $	$\Delta R_{b\overline{b}}$	$\Delta R_{q\overline{q}'}$
POWHEG P8 M2T4	0.68	0.93	0.90	0.71	0.98	0.61	0.59	0.68
MG5 p8 [FxFx] M2T4	0.93	0.80	0.85	0.90	0.72	0.26	0.66	0.97
MG5 p8 [MLM] M1	0.49	0.79	0.99	0.39	0.97	0.16	0.68	0.57
powheg h++ EE5C	0.07	5×10^{-14}	0.53	0.73	2×10^{-4}	0.55	0.36	8×10^{-6}
POWHEG P8 ERD on	0.75	0.99	0.83	0.53	0.95	0.64	0.37	0.96
POWHEG P8 QCD inspired	0.80	0.93	0.94	0.66	0.99	0.71	0.48	0.89
POWHEG P8 gluon move	0.87	0.93	0.93	0.71	0.93	0.51	0.57	0.92

Top Mass L+jets all had comb

	δm_t^{hyb} [GeV]		
	all-jets	ℓ+jets	combination
Experimental uncertainties			
Method calibration	0.06	0.05	0.03
JEC (quad. sum)	0.15	0.18	0.17
- Intercalibration	-0.04	+0.04	+0.04
– MPFInSitu	+0.08	+0.07	+0.07
 Uncorrelated 	+0.12	+0.16	+0.15
Jet energy resolution	-0.04	-0.12	-0.10
b tagging	0.02	0.03	0.02
Pileup	-0.04	-0.05	-0.05
All-jets background	0.07	_	0.01
All-jets trigger	+0.02	_	+0.01
ℓ +jets background	_	+0.02	-0.01
Modeling uncertainties			
JEC flavor (linear sum)	-0.34	-0.39	-0.37
– light quarks (uds)	+0.07	+0.06	+0.07
– charm	+0.02	+0.01	+0.02
– bottom	-0.29	-0.32	-0.31
– gluon	-0.13	-0.15	-0.15
b jet modeling (quad. sum)	0.09	0.12	0.06
– b frag. Bowler–Lund	-0.07	-0.05	-0.05
– b frag. Peterson	-0.05	+0.04	-0.02
- semileptonic b hadron decays	-0.03	+0.10	-0.04
PDF	0.01	0.02	0.01
Ren. and fact. scales	0.04	0.01	0.01
ME/PS matching	+0.24	-0.07	+0.07
ME generator	—	+0.20	+0.21
ISR PS scale	+0.14	+0.07	+0.07
FSR PS scale	+0.18	+0.13	+0.12
Top quark $p_{\rm T}$	+0.03	-0.01	-0.01
Underlying event	+0.17	-0.07	-0.06
Early resonance decays	+0.24	-0.07	-0.07
CR modeling (max. shift)	-0.36	+0.31	+0.33
 – "gluon move" (ERD on) 	+0.32	+0.31	+0.33
 "QCD inspired" (ERD on) 	-0.36	-0.13	-0.14
Total systematic	0.70	0.62	0.61
Statistical (expected)	0.20	0.08	0.07
Total (expected)	0.72	0.63	0.61

CMS/

1812.10534

Top Mass Summary

- Measurements in all decay channel at 13TeV
- <u>Also various indirect measurements with</u> <u>tighter relation to theory (not 'MC mass') from</u>
 - Total top-pair cross-section
 - Top-pair + jet
 - Lepton differential distributions
- Typically fitted to dedicated theory predictions at NLO or NNLO
- Compatible results, but insufficient precision to compete with direct measurements
- Active theoretical development

Simultaneous determination of m_{top} , α_s , PDFs

- <u>Calculations of tt production depend on:</u>
 - Strong coupling α_s
 - Top quark mass
 - Gluon (quark) PDF in the proton
- Measurements of σ_{tt} can be used to constrain these parameters
 - m_t provides a hard scale \Rightarrow ultimate probe of pQCD (NLO, aNNLO, NNLO)
 - Produced mainly via $gg \Rightarrow$ constrain gluon PDF at high x
 - Production sensitive to α_s and m_t (pole)
 - May provide insight into possible new physics
 - Need to go 3D to constraint m_{top} , α_s and PDFs

- α_s and m_t cannot be determined simultaneously
- \Rightarrow m_t fixed to native value of PDF
- <u>Uncertainties</u>
 - Experimental: from σ_{tt} measurement
 - PDF: from eigenvectors
 - Independent μ_r , μ_f variations by factor 2
- <u>Results</u>
 - Dependence of extracted α_s vs m_t investigated \rightarrow linear
 - Somehow flatter in case of ABMP16
 - α_s and m_t correlated, need to go 3D

1812.10505

CMS_PAS_TOP_18_004

400<M(t

<500GeV

2

35.9 fb⁻¹ (13 TeV)

500<M(tf)

 $N_{int} > 0$

2

<1500GeV

Data, dof=23

m^{pole}=172.5 GeV $-\alpha_{c}=0.118, \chi^{2}=61$ $-\alpha_{c}=0.113, \chi^{2}=56$ - α_s=0.123, χ²=87

19

14/03

NLO CT14

$m_{top}, \alpha_{s}, PDFs$ from diff $\sigma_{\scriptscriptstyle ft}\,1/2$

<u>In 3D @NLO (N_{iet}, m_{tt}, y_{tt})</u>

CMS

- Different trends of α_s and m_t
- <u>Simultaneous fit of PDFs</u>, α_s and m_t^{pole} :
 - \rightarrow fully consistent extraction of α_s , m_t^{pole} and PDFs, but using also HERA data
- $\alpha_{\rm s}(M_{\rm Z}) = 0.1135^{+0.0021}_{-0.0017}$ (total), $m_{\rm t}^{\rm pole} = 170.5 \pm 0.8$ (total) GeV.

CMS Preliminary

400<M(tt)

<500GeV

1 2

N_{int}=0

500<M(tt)

N_{int}=0

÷.

2

1 2

<1500GeV

300<M(tt)

<400GeV

 $N_{int} > 0$

. 300<M(tt)

<400GeV

N ...=0

(11) 0.2 φα/qλ(μ) 0.15 0.2

0.05

0.8

0.6

1 2

Ratio 1.4

CMS_PAS_TOP_18_004

 m_{top} , α_s , PDFs from diff σ_{tt} 2/2

<u>Constraining the PDF</u>

CMS

- followed standard approach:
 - using HERA DIS data only
 - HERA + tt data to demonstrate added value from tt on PDF and α_s determination
- reduced g uncertainty at high x
- smaller impact on other distributions via corr.

Top Yukawa from diff XS 1/2

Analysis principle

CMS

- EW corrections enter XS at loop-induced order $\alpha^2 \alpha_{weak}$ and make a small contribution to the total cross section
- Calculate EW correction factors for different values of Y_t and apply them at parton level of tt simulated samples
- From modified templates, obtain distributions at detector level that can be directly compared to the data

- Analysis strategy
 - Yukawa coupling extracted from $M_{\rm H}$ and $\Delta y_{\rm H}$ for different jet multiplicities
 - Low M_{tt} and small $|\Delta y_{tt}|$ regions are the most sensitive to Y_{tt}
 - Analysis phase space $M_{\rm H}$ 0.2 to 2TeV and from 0 to 6 in $|\Delta y_{\rm H}|$

29

LHC top physic results 14/03/19

New

Top Yukawa from diff XS $\frac{CMS_PAS_Top_2017_004}{2/2}$

• <u>Results</u>

CMS

- Top-Yukawa coupling extracted by comparing data with the expected tt signal for different values of Y_t in a total of 57 bins in M_{tt} , Δy_{tt} , and N_{iets}
- The value of the top quark Yukawa coupling is constrained to be less than 1.67 at the 95% confidence level
- New way of extracting the top-Yukawa competitive with other methods

	/	
Channel	Expected 95% CL	Observed 95% CL
3 jets	$Y_{\rm t} < 2.17$	$Y_{\rm t} < 2.59$
4 jets	$Y_{\rm t} < 1.88$	$Y_{\rm t} < 1.77$
5 jets	$Y_{t} < 2.03$	$Y_{\rm t} < 2.23$
Combined	$Y_{\rm t} < 1.62$	$Y_{\rm t} < 1.67$

V_{th} Combination

14/03/19

LHC top physic results

- In SM $f_{iv} = 1$
- Wtb vertex is a good probe for NP
- **Direct measurements**
 - assumes V_{td}, V_{ts} << V_{th}
 - is independent on number of g generations
 - is independent of CKM unitarity
- Summary for the $|f_{\downarrow\downarrow}V_{tb}|$ combinations from the Run I cross-section measurements:
 - As expected, *t*-channel provides the largest contribution
- Total uncertainty: 4.3%
 - 30% improvement wrt the Tevatron combination PRL 115, 152003 (2015)

31

Outlook

- LHC experiments are doing very well with the top quark
- Top quark measurements have provided stringent tests of SM
- With the increasing luminosity new measurements can be made for the first time (see next talk by Danny)
- Top mass now known to 0.3% (0.5 GeV)
- More data to come, but 'straining' the theory
 - what are we actually measuring?
- Precise spin correlations measurements
 - a hint of a something?
- Much more beautiful results to come

Additional material

- ttγ probes the top EM coupling
 - Photons also emitted from ISR and decay products
 - Hard to disentangle, but angular information and isolation reduces ISR and FSR
- Analysis in single-lepton and di-lepton channels
 - Standard selection, plus isolated photon p_T>20 GeV
 - Di-lepton channel cleaner, but single lepton can reach higher photon p_T due to higher statistics
 - Main backgrounds from hadronic jets or electrons mis-identified as photon, or real γ +W/Z events
 - Photon ID and event-level MVAs to suppress bkgs

 11750 ± 710

 $11\,662$

Total Data 33

 863 ± 78

ATLAS tt+photon 2/2 1812.01697

- <u>Results:</u>
 - Inclusive cross-section in fiducial region agrees with NLO predictions for $tt\gamma$
 - Normalised photon p_T spectrum agrees with LO tt γ ME calculations
 - Powheg+Pythia8 inclusive tt sample (photons from parton shower) is too soft
 - Dilepton $\Delta \phi$ is slightly less steep than prediction modeling of spin-correlations?

ATLAS EXPERIMENT tt+jets Differential Cross-Section 1/3

- The effect of gluon radiation on the tt kinematics is checked by measuring differential cross-sections for a given number of jets in the event $(4, 5, \ge 6)$
- <u>Analysis strategy</u>
 - Events selected in the lepton+jets channel
 - *tt* kinematic variables corrected for the limited detector resolution via unfolding methods and extrapolated to the *fiducial* phase space
 - Measured the absolute and normalized differential cross section as a function of tt kinematic variables
 - p_T(tt), p_T(top-had)

•
$$\left| p_{\text{out}}^{t\bar{t}} \right| = \left| \vec{p}^{t,\text{had}} \cdot \frac{\vec{p}^{t,\text{lep}} \times \hat{z}}{\left| \vec{p}^{t,\text{lep}} \times \hat{z} \right|} \right|$$

out-of-plane transverse momentum, sensitive to radiation and used in MC tuning

ATLAS EXPERIMENT tt+jets Differential Cross-Section 2/3

p_T(top, had)

Mis-modelling enhanced in the intermediate jet multiplicity region

SATLAS EXPERIMENT tt+jets Differential Cross-Section 3/3

|p_{out}(tt)|

Significant mis-modelling for aMC@NLO+Pythia8 in the 4 and 5-jet multiplicity regions

XPERIMENT Interference Wt And tt 1806.04667

- *tW* diagrams beyond the leading order interfere with *tt*
 - Size of the interference dependent on the phase space
 - Can be important for searches
 - Both process are factorized in standard calculations (NWA)
- Different methods to handle the interference at NLO
 - Diagram removal:
 - removes all the *tt* diagram contributions (DR)
 - Removes the LO *tt* term but keep the interference (DR2)
 - Diagram subtraction: cancels the resonant *tt* contribution with a local subtraction term (DS)
 - *WbWb lvblvb* in PowHeg: interference automatically handled
- Analysis/results
 - $m_{lb}^{minimax}$ sensitive to the tt/tWb interference
 - The bulk well described by all the predictions
 - Good agreement for *lvlvbb* in the full range
 - Mismodelling in the tails by MG5 aMC+Pythia8 predictions (with opposite behavior)
 - PowHeg+Pythia8 DS and DR diverge in tails

[1/GeV]

Model/Data

Underlying events in tt

- <u>Universality in UE at an higher energy scale</u>
 - UE model tested up to a scale of twice m_t
 - Measurements in dilepton invariant mass indicate that it should be alid at even higher scales
 - Can be used to improve systematic uncertainties in future top quark analyses
 - Results obtained show that a value of $\alpha_s^{FSR}(M_z) = 0.120 \pm 0.006$ is consistent with the data
 - The corresponding uncertainties translate to a variation of the renormalization scale of √2

<u>1807.02810</u>

TOP 18 04

smaller impact on other distributions via corr.

m_{top}, α_s , PDFs from diff σ_{tt} 3/3

Interpreting the data

CMS

- followed standard approach: using HERA DIS data only, or HERA + tt data to demonstrate added value from tt on PDF and α_s determination reduced q uncertainty at high x
- settings follow HERAPDF2.0, use xFitter-2.0.0
- input data: combined HERA DIS [1506.06042] + tt

CMS Preliminary **CMS** Preliminary **CMS** Preliminary **CMS** Preliminary)²л ×/1.2 5 × 1.2 $\tilde{\xi}$ 1.2 xg(x) μ_{f}^{2} = 30000 GeV² NLO $\frac{1}{2}$ 1.2 - x Σ (x) μ_{e}^{2} = 30000 GeV² NLO $xu_v(x) \quad \mu_t^2 = 30000 \text{ GeV}^2 \text{ NLO}$ $xd_v(x) \ \mu_t^2 = 30000 \text{ GeV}^2 \text{ NLO}$ PDFs (α_s in HERA HERA HERA HERA HERA HERA + tŤ HERA + tī 🛛 HERA + tť HERA + tř only fit set to α_{c} = $0.1135 \pm 0.0016)$ g 0.8 0.8 10^{-2} 10⁻¹ 10^{-3} 10^{-2} 10⁻¹ 10^{-3} 10-2 10-1 10-3 10-2 10⁻¹ CMS Preliminary **CMS** Preliminary **CMS** Preliminary **CMS** Preliminary ×_1.2 ₽ $\frac{x}{x}$ 1.2 - xg(x) μ_f^2 = 30000 GeV² NLO $\stackrel{\times}{\mapsto}$ 1.2 – x Σ (x) μ_{f}^{2} = 30000 GeV² NLO $xd_v(x) \quad \mu_t^2 = 30000 \text{ GeV}^2 \text{ NLO}$ $xu_v(x) \ \mu_e^2 = 30000 \text{ GeV}^2 \text{ NLO}$ **Relative PDF** HERA HERA HERA HERA HERA + tt HERA + tī HERA + tt 🖾 HERA + tī uncertainties 0.8 10-4 10 10 10^{-2} 10⁻¹ 10^{-3} 10

EXPERIMENT Interference Wt And tt 1806.04667

- *tW* diagrams beyond the leading order interfere with *tt*
 - Size of the interference dependent on the phase space
 - Important for searches
 - Both process are factorized in standard calculations (NWA)
- Different methods to handle the interference at NLO
 - Diagram removal:
 - removes all the *tt* diagram contributions (DR)
 - Removes the LO *tt* term but keep the interference (DR2)
 - Diagram subtraction: cancels the resonant *tt* contribution with a local subtraction term (DS)
 - $WbWb \rightarrow lvblvb$ in PowHeg Res bb4l: interference automatically handled
- Analysis/results
 - $m_{lb}^{minimax}$ sensitive to the tt/tWb interference
 - The bulk well described by all the predictions
 - Good agreement for *lvlvbb* in the full range
 - Mismodelling in the tails by MG5_aMC+Pythia8 predictions (with opposite behavior)
 - PowHeg+Pythia8 DS and DR diverge in tails

[1/GeV]

σ -10

Model/Data