

BSM hints from rare decays

Javier Fuentes-Martín

University of Zurich (UZH)

Based on Cornella, JFM, Isidori, coming soon Baker, JFM, Isidori, König, arXiv:1901.10480 Bordone, Cornella, JFM, Isidori JHEP 1810 (2018) 148 Bordone, Cornella, JFM, Isidori Phys. Lett. B 779 (2018) 317

La Thuile 2019 - Les Rencontres de Physique de le Vallée d'Aoste

The B-physics anomalies

Hints of Lepton Flavour Universality Violation in semileptonic B decays

From data to simplified models

Towards a combined explanation of the anomalies

Taken together, these are a very significant set of deviations from the SM

---> It is worth looking for a **combined explanation** in terms of NP!

~25% of a SM loop effect

~20% of a SM tree-level effect

The only source of lepton flavor universality violation in the SM (Yukawas) follows a similar trend: $y_e \ll y_\mu \ll y_\tau$ Are the anomalies connected to them?

What are the anomalies telling us?

A combined explanation calls for NP: (*)

- ★ Coupled dominantly to the 3rd generation
- $\star \Lambda_{\rm NP} \sim \mathcal{O}(1 \text{ TeV})$

^(*) N.B.: conclusions driven (mostly) by $R(D^{(*)})$

Hierarchical couplings

Anarchical couplings

Severe constraints on generic new (BSM) flavor breaking sources (mis)interpreted as indication of a high flavor scale

A NP hint to the SM flavor puzzle?

The SM Yukawa sector is characterized by 13 parameters [3 lepton masses + 6 quark masses + 3+1 CKM parameters]

... whose values do not look at all accidental

- ✓ The flavor anomalies seem to suggest a similar trend: large NP effects in 3rd generation, gradually smaller effects in the light generations
- Recent theoretical progress connecting the anomalies to the SM flavor hierarchies
 [Bordone, Cornella, JFM, Isidori 1712.01368; Greljo, Stefanek 1802.04274; Allanach, Davighi 1809.01158]

Which mediator?

Only few possibilities are available

- ★ Charged Higgs solutions ($R(D^{(*)})$ only) are excluded by measurements of τ_{B_c} [Contributions to $\mathscr{B}(B_c \to \tau \nu)$ are scalar enhanced and huge] [Alonso et al. 1611.06676]
- ★ Minimal W'/Z' models in tension with high- p_T data ($pp \rightarrow \tau \tau$ tails) [Faroughy et al. 1609.07138]

W' + light ν_R in better shape but still in tension with $p p \rightarrow \tau \nu$ tails [Greljo et al. 1811.07920]

Leptoquarks (scalars or vectors) are the best candidates so far

✓ no 4-lepton (LFV, LFUV) and 4-quark processes ($\Delta F = 2$) at tree level

The main suspects

Faroughi @ CKM18

	Model	<i>R</i> _{<i>K</i>(*)}	R _{D(*)}	$R_{K^{(*)}} \& R_{D^{(*)}}$
Vector Scalars	$S_1 = (3, 1)_{-1/3}$	×	✓	×
	$R_2 = (3, 2)_{7/6}$	×	\checkmark	×
	$\widetilde{R}_2 = (3, 2)_{1/6}$	×	×	×
	$S_3 = (3, 3)_{-1/3}$	\checkmark	×	×
	$U_1 = (3, 1)_{2/3}$	\checkmark	\checkmark	\checkmark
	$U_3 = (3, 3)_{2/3}$	\checkmark	×	×

Angelescu, Becirevic, DAF, Sumensari [1808.08179]

Three viable options in the market:

\star U₁ + UV completion

[di Luzio, Greljo, Nardecchia 1708.08450; Calibbi, Crivellin, Li 1709.00692; Bordone, Cornella, JF, Isidori 1712.01368; Barbieri, Tesi, 1712.06844...]

$\star S_1 + S_3$

[Crivellin, Muller, Ota 1703.09226; Buttazzo et al. 1706.07808; Marzocca 1803.10972]

 $\star S_3 + R_2$

[Bečirević et al., 1806.05689]

The vector leptoquark (U_1) brings some interesting theoretical features into the game

Low-scale bottom-tau unification. Possible link to Pati-Salam unification

✓ Connections to the SM flavor puzzle

Revisiting the U_1 solution

The U_1 leptoquark: the pure LH case

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_\mu \mathcal{C}_L^\alpha) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \mathrm{h.c} \,.$$

Pure LH U_1 (i.e. $\beta_{i\alpha}^R = 0$) extensively analyzed in the recent literature...

The U_1 leptoquark: all in

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \mathrm{h.c} \,.$$

Pure LH U_1 (i.e. $\beta_{i\alpha}^R = 0$) extensively analyzed in the recent literature...

... RH U_1 coupling usually ignored. Important pheno implications!

$$\beta^{L} = \begin{pmatrix} 0 & 0 & \beta_{d\tau}^{L} \\ 0 & \beta_{s\mu}^{L} & \beta_{s\tau}^{L} \\ 0 & \beta_{b\mu}^{L} & \beta_{b\tau}^{L} \end{pmatrix} \qquad \beta_{R} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \beta_{b\tau}^{R} \end{pmatrix}$$
$$C_{V_{L}} = (\bar{c}_{L}\gamma_{\mu}b_{L})(\bar{\ell}_{L}\gamma^{\mu}\nu_{L}) \qquad C_{S_{R}} = (\bar{c}_{L}b_{R})(\bar{\ell}_{R}\nu_{L})$$

(RGE enhanced)

The U_1 leptoquark: flavor structure

12

constrained by low-energy flavor data

Which value of $\beta_{b\tau}^R$? $R(D^{(*)})$ projections

Differential distributions, polarizations,... could also be different from the SM [Essential to test at future facilities like Belle II]

Low-energy implications of the U_1 leptoquark

Non-zero values of $\beta_{b\tau}^{R}$ have a huge impact on the low energy phenomenology:

- ✓ Different NP contribution for R(D) & $R(D^*)$
- ✓ Chiral-enhanced NP effects (hence very large) in some decays
- \checkmark Larger NP scale possible, i.e. larger values for M_U available

Low-energy fit results

For both extreme cases, the low-energy fit (in particular to the anomalies) is very good!

NP scale naturally higher (thanks to the C_{S_R} contribution)

[Cornella, JFM, Isidori, in preparation]

[Buttazzo et al. 1706.07808]

 $\mathscr{B}(B_{s} \to \tau\tau) \quad (\beta_{b\tau}^{R} = 1)$

The NP enhancement in $\mathscr{B}(B_s \rightarrow \tau \tau)$ is huge, about one order of magnitude above the chiral (pure LH) case:

$$\mathscr{B}(B_s \to \tau \tau) \sim \text{few} \cdot 10^{-3}$$

$$\mathscr{B}(B_s \to \tau \tau)_{\rm SM} = (7.73 \pm 0.49) \cdot 10^{-7}$$

[Bobeth et al. 1311.0903]

-> Exp. limit around the corner

[Cornella, JFM, Isidori, in preparation]

LFV in $\tau \rightarrow \mu$ transitions $(\beta_{b\tau}^{R} = 1)$

The explanation of $R_{K^{(*)}}$ implies a large $\tau\mu$ LFV

$$\Rightarrow \text{ strong enhancement of } \\ B_s \to \tau \mu , B \to K \tau \mu , \tau \to \mu \gamma$$

$$\mathcal{B}(\tau \to \mu \gamma) \sim 10^{-8}$$
$$\mathcal{B}(B \to K \tau \mu) \sim 10^{-5}$$
$$\mathcal{B}(B_s \to \tau \mu) \sim 10^{-4}$$

Great experimental perspectives at LHCb and Belle II

[Cornella, JFM, Isidori, in preparation]

Hunting the U_1 at high-pT

The U_1 is a clear target for the high-pT program at LHC!

... however many of the current searches are not optimized to look for it

NP effects do not show up as bumps but rather as modifications in the tails of some kinematical distribution (e.g. dilepton transverse mass)

A recast of the high-pT data is needed! [Baker, JFM, Isidori, König, 1901.10480]

High-pT + Low energy

LH + RH

LH only

[Cornella, JFM, Isidori, in preparation]

19

Beyond the simplified picture

The need for a UV completion

The simplified model analysis captures many relevant aspects of the low and high-energy phenomenology

X Radiative effects are relevant!

Some can be estimated already at the level of the simplified model...

...but this is not possible for others!

VV completion needed! (gauge model)

"Flavored" 4321

High-pT interplay among the new vectors

[Baker, JFM, Isidori, König, 1901.10480]

In particular models the U_1 , G' and Z' masses are related

$$M_{G'} = M_U \frac{g_U}{\sqrt{g_U^2 - g_c^2}} \sqrt{\frac{2\omega_3^2}{\omega_1^2 + \omega_3^3}}$$

 ω_i : scalar vevs

G' searches are very important for the LH leptoquark ($\beta_R = 0$)... but not so much for $\beta_R = 1$

Z' searches typically less relevant

Exotic multi-jet plus multi-lepton signatures

Rather generically, vector-like fermions are needed to make U_1 loops finite. Similar to the SM case with the W and the prediction of the charm quark

Vector-like fermions are expected to be the lightest states in the theory!

 $M_L \sim 1 {
m TeV}$ $M_Q \sim 2 {
m TeV}$

Exotic multi-jet plus multi-lepton signatures within the reach of the LHC are predicted [rich signal with b-tags and τ -tags]

Similar existing SUSY searches by ATLAS (1706.03731) but a dedicated analysis is needed

[Di Luzio, JFM, Greljo, Nardecchia, Renner, 1808.00942]

Conclusions

Current data is still inconclusive and the overall picture might change but...

... it is possible to find solutions to the flavor anomalies while remaining consistent with all the other data

Interesting connections to the SM Yukawa structure (hinting to a possible solution of the SM flavor puzzle)

Going beyond simplified dynamical models is important

Very interesting interplay between low-energy and high-pT data

the anomalies are really pointing to NP, **new experimental indications** (both in high-pT and at low energies) should show up soon in several observables

... However this conclusion is strongly driven by $R(D^{(*)})$

Thank you!

Backup slides

Recast of the high-pT data

[Baker, JFM, Isidori, König, 1901.10480]

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} (\bar{Q}_3 \gamma_{\mu} L_3 - \beta_R \bar{b}_R \gamma_{\mu} \tau_R)$$

 $pp \rightarrow \tau \tau$ limit considerably stronger when $|\beta_R| = 1$

 $M_U \gtrsim 3.8 \text{ TeV}$ [LH + RH] $M_U \gtrsim 2 \text{ TeV}$ [LH only]

[For a benchmark of $g_U = 3.0$]

Pair production limits quite similar in both cases

Flavor physics across the scales: $pp \rightarrow \tau \mu$

[Baker, JFM, Isidori, König, 1901.10480]

 $\mathscr{L} \supset \frac{3}{\sqrt{2}} U_{\mu} \left(\beta_L^{32} \bar{Q}_3 \gamma^{\mu} L_2 + \bar{Q}_3 \gamma^{\mu} L_3 - \beta_R \bar{b}_R \gamma^{\mu} \tau_R\right)$

Present data not very constraining ($\beta_L^{32} \sim 0.2$ preferred) but future prospects are very interesting

High-pT already provides better bounds than low-energy flavor data

$$\Upsilon \to \tau \mu \quad \ll \quad pp \to \tau \mu$$

The 4321 model(s)

The "original" 4321

The "flavored" 4321

	Field	SU(4)	SU(3)'	$SU(2)_L$	U(1)'
	$q_L^{\prime i}$	1	3	2	1/6
	$u_R^{\prime i}$	1	3	1	2/3
$n_{\rm cont} = 3$	$d_R'^i$	1	3	1	-1/3
$m_{\rm SM-like} = 3$	$\ell_L'^i$	1	1	2	-1/2
	$e_R^{\prime i}$	1	1	1	-1
2	χ^i_L	4	1	2	0
$n_{\rm VL} = 3$	χ^i_R	4	1	2	0
	Н	1	1	2	1/2
	Ω_1	$\overline{4}$	1	1	-1/2
	Ω_3	$\overline{4}$	3	1	1/6
	Ω_{15}	15	1	1	0

Field	SU(4)	SU(3)'	$SU(2)_L$	U(1)'
$q_L^{\prime i}$	1	3	2	1/6
$u_R^{\prime i}$	1	3	1	2/3
$d_R^{\prime i}$	1	3	1	-1/3
$\ell_L'^i$	1	1	2	-1/2
$e_R^{\prime i}$	1	1	1	-1
ψ_L^3	4	1	2	0
$\psi^3_{R_{u,d}}$	4	1	1	$\pm 1/2$
χ^i_L	4	1	2	0
χ^i_R	4	1	2	0
$H_{1,15}$	1 , 15	1	2	1/2
Ω_1	$\overline{4}$	1	1	-1/2
Ω_3	$\overline{4}$	3	1	1/6
Ω_{15}	15	1	1	0

1st & 2nd families

3rd family

 $n_{\rm VL} = 2$

 U_1 LH only

 U_1 LH + RH