Impact on $|V_{us}|$ from τ decays: New BABAR results on $\tau^- \rightarrow K^- n\pi^0 v_{\tau}$ (n=0,1,2,3) and $\tau^- \rightarrow \pi^- n\pi^0 v_{\tau}$ (n=3,4)

Alessandra Filippi

INFN Torino

On behalf of the BABAR Collaboration

XXXIII Recontres de Physique de la Vallée d'Aoste, La Thuile, March 10-16, 2019

Outline

- Introduction and motivations: $|V_{us}|$ from τ decays
- Measurements of branching fractions in channels with and without strangeness at BABAR
 - Final states with net strangeness
 - $\tau \rightarrow K^{-} \nu_{\tau}$
 - $\tau \rightarrow K^{-} \pi^{0} \nu_{\tau}$
 - $\tau \rightarrow K^{-} \pi^{0} \pi^{0} \nu_{\tau}$
 - $\tau \rightarrow K^{-} \pi^{0} \pi^{0} \pi^{0} \nu_{\tau}$
 - Final states without strangeness
 - $\tau \rightarrow \pi^{-} \pi^{0} \pi^{0} \pi^{0} \nu_{\tau}$
 - $\tau \rightarrow \pi^- \pi^0 \pi^0 \pi^0 \pi^0 \nu_{\tau}$
- |V_{us}| updated evaluations with new measurements
- Conclusions

|V_{us}**| determination**

- Three ways to determine |V_{us}|:
 - Kaon decays
 - $K_{\ell 3}$: $K \to \pi \ell \nu$
 - $K_{\ell 2}$: $K \to \ell v, \pi \to \ell v$

- CKM unitarity
- τ lepton decays:
 - Inclusive $\tau \rightarrow s$ decays
 - $\tau \rightarrow K \nu_{\tau} / \tau \rightarrow \pi \nu_{\tau}$

Y. Amhis et al., HFLAV Group, Eur. Phys. J C77 (2017), 895

Up 3 σ tension (from inclusive $\tau \rightarrow$ s decays) compared to the derivation based on CKM unitarity

Uncertainty budget in $|V_{us}|$ determination from $\tau \rightarrow s$

Relative uncertainty \times hadronic decay branching fraction

• Experimental uncertainty dominating in channels with neutral hadrons

$$\frac{R(\tau \to X_{S} \nu_{\tau})}{|V_{us}|^{2}} = \frac{R(\tau \to X_{NS} \nu_{\tau})}{|V_{ud}|^{2}} - \delta R_{\tau,SU(3)}^{theory}$$
$$R(\tau \to X \nu_{\tau}) = \frac{B(\tau \to X \nu_{\tau})}{B(\tau \to \ell \nu_{\ell} \nu_{\tau})}$$

E. Gamiz et al., JHEP 01 (2003), 060; PRL 94 (2005), 011803

The BABAR experiment at PEP-II, SLAC

$\tau^- \rightarrow h^- n \pi^0 v_{\tau}$ event selection

 $e^+e^- \rightarrow B^0 B^0$

 $e^+e^- \rightarrow \tau^+\tau$

- Only two oppositely charged high quality tracks from IP:
 - $\ell^{\pm}(tag)$, K^{\pm}(signal), $\pi^{\pm}(control+signal)$, $\mu^{\pm}(control)$
 - 1-prong decays in each hemisphere
- Reconstruction of up to $4\pi^0$ in their $\gamma\gamma$ decay
 - Rejection of additional photons
- Topology consistent with a τ⁺τ⁻ event
 - Jet-like: two hemispheres determined by thrust axis
- Track momentum cut at 3.5 GeV/c

Signal selection

 Several selections applied to suppress background reactions:

- Two photon events: cut on transverse momentum/missing energy

- Bhabha/dilepton events: cut on event missing mass
- $K^0_{\ S} \rightarrow 2\pi^0$ and $\eta \rightarrow 3\pi^0$ signals subtracted (using simulations)

7

Efficiency corrections

- Dedicated control samples used to reduce uncertainties on selection efficiencies of neutral and charged particles: correction weights
- π^0 reconstruction efficiency
 - $-\pi^0$ momentum dependent weight
 - From $\tau^- \rightarrow t^- \nu_{\tau}$ and $\tau^- \rightarrow t^- \nu_{\tau} \pi^0$ control samples (t: no e⁻)

PID efficiency for charged tracks

- Custom π -as- π , K-as-K, π -as-K (mis-)identification efficiencies obtained from the 3-prong control samples: $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$ and $\tau^- \rightarrow \pi^- K^+ K^- \nu_{\tau}$
- PID selectors applied in hierarchical sequence, to assign each event to just one of the signal channels candidates

$$\eta = \frac{N^{data} \left(d < 40 \text{ cm}\right) - N^{MC} \left(d < 40 \text{ cm}\right)}{N^{data}}$$

w = 1 - η = 0.972 \pm 0.014

- Neutron from hadronic showers in EMC can produce signals which can be taken as fake photons
- Correction needed as not well modeled in MC
- Use $\tau \rightarrow \pi v_{\tau}$ as control sample
 - Data exceeds MC at small distances

Branching fractions calculation

$$\boldsymbol{\mathcal{B}} = \boldsymbol{1} - \sqrt{\boldsymbol{1} - \frac{N^{prod}}{\mathcal{L}\sigma}}$$

- N^{prod} : produced τ pairs , containing one or two signal decays
- Obtained from the solution of the system of linear equations through the migration matrix M

$$\mathbf{N}^{prod} = \mathbf{M}^{-1} \left(\mathbf{N}^{sel} - \sum_{k} \mathbf{N}^{sel}_{bck}(k) \right)$$

- M: takes into account the probability of reconstructing a signal event in a different channel
 - Evaluated via Monte Carlo

Background contributions and cross-feeds

Momentum spectra for tracks in the signal hemisphere, for real data and simulated MC contributions, after all corrections

Decay mode	Κ⁻ν _τ (×10⁻³)	Κ⁻ π ⁰ ν _τ (×10⁻³)	Κ⁻ 2π ⁰ ν _τ (×10 ⁻⁴)	Κ⁻ 3π ⁰ ν _τ (×10⁻⁴)	π⁻ 3π ⁰ ν _τ (×10²)	π⁻ 4π ⁰ ν _τ (×10⁻⁴)
Branching fraction	7.174	5.054	6.151	1.246	1.168	9.020
Stat. Uncertainty	0.033	0.021	0.117	0.164	0.006	0.400
Syst. uncertainty	0.213	0.148	0.338	0.238	0.038	0.652
Total uncertainty	0.216	0.149	0.357	0.289	0.038	0.765
				SAD.		
Stat. uncertainty [%]	0.46	0.41	1.91	13.13	0.52	4.44
Syst. uncertainty [%] 🗸	2.97	2.93	5.49	19.12	3.23	7.23
ε _{signal} [%]	0.27	0.27	0.87	3.99	0.27	1.50
ε _{вск} [%]	0.15	0.15	0.87	6.32	0.11	1.67
Background ${\mathcal B}$ [%]	0.18	0.30	1.44	11.52	0.21	3.49
BABAR PID [%]	0.15	0.11	0.18	0.71	0.08	0.20
Custom PID [%]	1.83	1.55	1.78	2.56	0.20	0.26
Muon mis-id [%]	1.48	0.01	0.00	0.00	0.00	0.00
# (τ ⁺ τ ⁻) pairs [%]	0.79	0.93	1.40	2.61	0.71	0.98
Track efficiency [%]	0.43	0.50	0.76	1.42	0.38	0.53
Split-off corrections [%]	1.52	1.84	2.77	5.17	1.40	1.94
π^0 Correction [%]	0.03	1.20	3.63	10.56	2.76	5.36
$\pi 5\pi^0 \rightarrow \pi 4\pi^0$ migr. [%]	0.00	0.00	0.00	0.02	0.04	1.08
$K4\pi^0 \rightarrow K3\pi^0$ migr. [%]	0.00	0.00	0.13	4.78	0.00	0.00

THE & Difference

Branching fractions: results

New results (ICHEP18) vs HFLAV averages vs previous measurements

(A. Lusiani, CKM2018 based on ICHEP18 results)

V_{us} update

• Slight increase of |V_{us}| value

- Reduced uncertainty
- A ~3 σ discrepancy still persists in the derivation from $\tau \rightarrow s$ inclusive branching fractions

Large improvement to the absolute precision of |V_{us}| from the studied channels

Conclusions and outlook

- New measurements by *BABAR* of branching fractions of final states with and without strangeness
 - − τ^{-} → K⁻ n π^{0} ν_τ (n=0, 1, 2, 3)
 - $-\tau \rightarrow \pi n\pi^{-} n\pi^{0} v_{\tau} (n=3,4)$
- Except for $\tau \rightarrow K^- \nu_{\tau}$, these are the most precise measurements to date
- Sizeable improvement of the $|V_{us}|$ determination through hadronic τ decays
 - Still a discrepancy at the level of ~3σ with respect to CKM unitarity and derivations from semileptonic K decays
- New BABAR results (first presented @ICHEP18) to be published soon

backup slides

Control samples: $\tau \rightarrow \mu \nu_{\tau} \overline{\nu}_{\mu}$ and $\tau \rightarrow \pi n \pi^{0} \nu_{\tau}$ (n=0,1,2)

Momentum spectra for tracks in the signal hemisphere, for real data and simulated MC contributions, after all corrections