

Global Fits for Rare B decays

Javier Virto

Massachusetts Institute of Technology and

Technische Universität München

La Thuille 2019, March 13th 2019

Marie Skłodowska-Curie Actions

$\Box \ b \rightarrow s\ell\ell$: Model-Independent Fits to NP [6']

+ Looking ahead (R_K and more) [3']

- \Box $b \rightarrow s\ell\ell$: Fits to hadronic contributions [6']
 - + Prospects [3']

NP fits to $b \rightarrow s\ell\ell$

A legacy of LHC Run 1

HED	1 962 records found 1 250 b to jump to record:	
<u>HEP</u>	1,303 records round 1 - 200 P PP jump to record: 1	
1. The LHC (2633) LHCb Colla Published i DOI: 10.10	b Detector at the LHC bioration (AAugusto Alves, Jr. (Rio de Janeiro, CBPF) et al.). 2008. 217 pp. n JINST 3 (2008) S08005 80/1746-0221/J008/S08005	
Detailed re	rences BibTeX LaTeX(US) LaTeX(EU) Harvmac EndNote IN Document Server cord - Cited by 2633 records	
2. Test of le (774) LHCb Colla Published CERN-PH- DOI: 10.11 e-Print: ar2 Refe CER	pton universality using $B^+ \rightarrow K^+ \ell^+ \ell^-$ decays aboration (Real Aaij (NiKVEF, Amsterdam) et al.). Jun 26, 2014. 10 pp. n Phys. Rev. Lett. 13 (2014) 151601 002PhysRevLett. 113.(151601 002PhysRevLett. 113.(151601	
Detailed re-	cord - Cited by 774 records and	
3. Observa (683) LHCb Collu Published i CERN-PH- DOI: <u>10.11</u> e-Print: <u>ary</u> <u>Refe</u>	tion of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \rightarrow J/\psi K^- p$ Diportion (Rein Vaig) (CERN) et al. Jul 13, 2015. 15 pp. n Phys.Rev.Lett. 115 (2015) 072001 EP-2015-153. LUG-BAPER-2015-229 03/PhysRev.Lett.115.072001 div1597.03414 (Nep-ext) [PDF rences] BBTeX [LaTeX[US] LaTeX[EQ] Hormaci [EndNote IN Document Server: 205 Abstact Service; Interactions any article; Link to BBC News article; Link to Symmi	acays
Detailed re-	cord - Cited by 683 records Cons	
4. Measure (550) LHCb Colla Published i CERN-PH- DOI: 10.11 e-Print: ar2 Refe CEF Detailed re-	ment of the ratio of branching fractions $B(B^0 \to D^{*+}\tau^-\bar{\nu}_r)/B(B^0 \to D^{*+}\mu^-\bar{\nu}_\mu)$ borston (Reek Jail (CERN) et al.), un 20, 2016. 10 pp. n Phys.Rev.Lett. 115 (2015) no.115, 115000 Exp3015.160, LUCE MARER.2015.020 (2015) 2016.100, LUCE MARER.2016.100, L	
5. LHCb De (506) LHCb Colla Published i LHCB-DP- DOI: 10.11 e-Print: ar2 Refe Detailed re	tector Performance bording (NikHER, Amaterdam) et al.). Dec 19, 2014. 73 pp. n Int.JMod.Phys. A39 (2015) no.07, 4530022 302017751x14530227 302017751x1453027 302017751x14530 302017 30201751x14530 302017 302017 302017 302017 30201 30201 30201 3020 3020 3020 302 302 302 302 302 302	
6. Measure (503) LHCb Colla Published I LHCB-PAP DOI: 10.11 e-Print: at2 Refe CEE	ment of Form-Factor-Independent Observables in the Decay $B^0 \rightarrow \overline{K}^{*0}\mu^+\mu^-$ however, if μ (a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(

$b \rightarrow s\ell\ell$ Observables – Total ~ 174

$B_{\rm S} o \mu^+ \mu^-$	$B \rightarrow X_{\rm S} \mu^+ \mu^-$	$B ightarrow K^* \gamma$	$B \rightarrow X_s \gamma$
$B ightarrow { m K} \mu \mu$	$B ightarrow K^* \mu \mu$	$B_{\rm S} o \Phi \mu \mu$	$\Lambda_b o \Lambda \mu \mu$
BRs	AOs	Low q ²	Large q ²
R _K	R _{K*}	LFU	LFUV
LHCb	Belle/BaBar	ATLAS	CMS

□ Observables with larger pulls:

Largest pulls	$\langle P_5' angle_{[4,6]}$	$\langle P_5' \rangle_{[6,8]}$	$R_K^{[1,6]}$	$R_{K^*}^{[0.045,1.1]}$	$R_{K^*}^{[1.1,6]}$	$\mathcal{B}^{[2,5]}_{B_s\to\phi\mu^+\mu^-}$	$\mathcal{B}^{[5,8]}_{B_s \to \phi \mu^+ \mu^-}$
Experiment	$-0.30 {\pm} 0.16$	$-0.51 {\pm} 0.12$	$0.745\substack{+0.097\\-0.082}$	$0.66\substack{+0.113\\-0.074}$	$0.685\substack{+0.122\\-0.083}$	$0.77 {\pm} 0.14$	$0.96{\pm}0.15$
SM prediction	$-0.82 {\pm} 0.08$	$-0.94{\pm}0.08$	$1.00 {\pm} 0.01$	$0.92 {\pm} 0.02$	1.00 ± 0.01	$1.55{\pm}0.33$	$1.88{\pm}0.39$
Pull (σ)	-2.9	-2.9	+2.6	+2.3	+2.6	+2.2	+2.2
Prediction for $C_{9\mu}^{\rm NP} = -1.1$	$-0.50 {\pm} 0.11$	$-0.73 {\pm} 0.12$	$0.79 {\pm} 0.01$	$0.90 {\pm} 0.05$	$0.87 {\pm} 0.08$	$1.30{\pm}0.26$	$1.51{\pm}0.30$
Pull (σ)	-1.0	-1.3	+0.4	+1.9	+1.2	+1.8	+1.6

Interpretation Layers

Effective Theory for $b \rightarrow s$ Transitions

For Λ_{EW} , $\Lambda_{NP} \gg M_B$: General model-indep. parametrization of NP :

$$\mathcal{L}_{W} = \mathcal{L}_{QCD} + \mathcal{L}_{QED} + \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{\star} \sum_{i} C_{i}(\mu) \mathcal{O}_{i}(\mu)$$

$$\mathcal{O}_{1} = (\bar{c}\gamma_{\mu}P_{L}b)(\bar{s}\gamma^{\mu}P_{L}c) \qquad \mathcal{O}_{2} = (\bar{c}\gamma_{\mu}P_{L}T^{a}b)(\bar{s}\gamma^{\mu}P_{L}T^{a}c)$$

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b}(\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu} \qquad \mathcal{O}_{7'} = \frac{e}{16\pi^{2}} m_{b}(\bar{s}\sigma_{\mu\nu}P_{L}b)F^{\mu\nu}$$

$$\mathcal{O}_{9\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell) \qquad \mathcal{O}_{9'\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$$

$$\mathcal{O}_{10\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \qquad \mathcal{O}_{10'\ell} = \frac{\alpha}{4\pi}(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$$

SM contributions to $C_i(\mu_b)$ known to NNLL Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06

 $\mathcal{C}_{7\rm eff}^{\rm SM} = -0.3, \; \mathcal{C}_9^{\rm SM} = 4.1, \; \mathcal{C}_{10}^{\rm SM} = -4.3, \; \mathcal{C}_1^{\rm SM} = 1.1, \; \mathcal{C}_2^{\rm SM} = -0.4, \; \mathcal{C}_{\rm rest}^{\rm SM} \lesssim 10^{-2}$

Global Fits to all data

Perform a global fit to 174 observables (or 17 LFUV observables)

Capdevila, Crivellin, Descotes-Genon, Matias, JV 2017

▶ Observed LFNU consistent with $B \rightarrow K^* \mu \mu$ Anomaly

 $\mathcal{L}_{NP} \simeq (35 \text{ TeV})^{-2} [\bar{s} \gamma^{
u} P_L b] [\bar{\mu} \gamma_{
u} \mu]$ Descotes-Genon Matias JV 2013

$P'_5(B \rightarrow K^* \mu \mu)$ = "LFNU Prediction" (2017)

Capdevila, Crivellin, Descotes-Genon, Matias, JV 2017

Red: Best fit point from LFNU-only fit

Fit to R_K , R_{K^*} and $B_s \rightarrow \mu^+ \mu^-$

▶ $R_{K^{(\star)}}$ constrain $\simeq (C_{i\mu}^{NP} - C_{ie}^{NP})$. But let's assume NP in μ only... $\mathcal{L}_{\rm eff}^{\rm NP} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha_{\rm em}}{4\pi} \left\{ C_{9\mu}^{\rm NP} \left[\bar{s} \gamma_{\nu} P_L b \right] [\bar{\mu} \gamma^{\nu} \mu] + C_{10\mu}^{\rm NP} \left[\bar{s} \gamma_{\nu} P_L b \right] [\bar{\mu} \gamma^{\nu} \gamma_5 \mu] + \cdots \right\}$

Disclaimer: Theorist speculations involved

$$\square R_{K}^{2014} = 0.745^{+0.090}_{-0.074} \pm 0.036 \longrightarrow 3/\text{fb} \quad (2011-12)$$

 \Box + 2/fb (2015-16) \rightarrow Out next week?? (not full Run 2)

 \Box + improved selection \Rightarrow 15% more events from Run 1

$$^{+0.090}_{-0.074} \times \sqrt{\frac{3}{3+2\times2}} \times \sqrt{\frac{1}{1.15}} = ^{+0.055}_{-0.045}$$

Disclaimer: Theorist speculations involved

$$\square R_{K}^{2014} = 0.745^{+0.090}_{-0.074} \pm 0.036 \longrightarrow 3/\text{fb} \quad (2011-12)$$

 \Box + 2/fb (2015-16) \rightarrow Out next week?? (not full Run 2)

 \Box + improved selection \Rightarrow 15% more events from Run 1

$$+ 0.090 - 0.074 \times \sqrt{\frac{3}{3 + 2 \times 2}} \times \sqrt{\frac{1}{1.15}} = + 0.055 - 0.045$$

$$\Rightarrow \quad R_{K}^{2019} = \left[- \frac{1}{2000} + 0.055 - 0.030 \right]$$

Disclaimer: Theorist speculations involved

- $\square R_{K^*}^{2017} = 3/\text{fb}$ (2011-12) +2/fb (2015-16) for this fall??
- \square R_{Kp} , R_{ϕ} and $R_{K\pi\pi} \sim 2020$
- \Box Also $B \rightarrow K^* \mu \mu$ AOs 5/fb update for ~ fall (?)
- \square $B \rightarrow K^* ee$ and $B_s \rightarrow \Phi \mu \mu \sim 2020$
- □ Unbinned analyses for end 2019 or 2020 (see later)

Complementarity with inclusive measurements at Belle-2

▶ Belle-II is directly sensitive to the $b \rightarrow$ s anomaly with $B \rightarrow X_s \mu^+ \mu^-$

Huber, Ishikawa, JV, "The Belle II Physics Book"

 \Box LHC Phase-2 will put experimental errors to negligible levels (\sim 2035) CERN-LHCC-2017-003, LHCb EoI

□ Bottleneck is SM uncertainties: Assuming vanishing exp uncertainties Pull($P_5^{([2.5,4.0])}$) = 3.5 σ Pull($P_5^{([4.0,6.0])}$) = 6.5 σ Pull($P_5^{([6.0,8.0])}$) = 5.4 σ

 \square Good motivation to improve on the theory.

 \Box Huge improvement in e^+e^- modes too.

Hadronic (+NP) fits to $b \rightarrow s\ell\ell$

Exclusive Decay Amplitude

$[B \to M_{\lambda} \ell^+ \ell^-]$

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

► Local (Form Factors) : $\mathcal{F}_{\lambda}^{(T)}(q^2) = \langle \bar{M}_{\lambda}(k) | \bar{s} \Gamma_{\lambda}^{(T)} b | \bar{B}(k+q) \rangle$

► Non-Local : $\mathcal{H}_{\lambda}(q^2) = i \mathcal{P}^{\lambda}_{\mu} \int d^4x \ e^{iq \cdot x} \langle \bar{M}_{\lambda}(k) | T \{ \mathcal{J}^{\mu}_{em}(x), \mathcal{C}_i \mathcal{O}_i(0) \} | \bar{B}(q+k) \rangle$

Hadronic Form Factors

 q^2 -dependence : $\mathcal{F}(q^2) \propto \sum_k \alpha_k Z(q^2)^k$ "z-parametrization" Bourrely, Caprini, Lellouch

"Optimized" observables :

 $P_1, P_2, \mathbf{P'_5}, \ldots$ (a full basis)

Mescia, Matias, Ramon, JV, 1202.4266 Descotes-Genon, Matias, Ramon, JV, 1207.2753 Descotes-Genon, Hurth, Matias, JV, 1303.5794

Finite width effects ! : $B \rightarrow K^*(\rightarrow K\pi)$ Accessible via LCSRs

Cheng, Khodjamirian, JV, 1701.01633 Cheng, Khodjamirian, JV, 1709.00173

Form Factors : q^2 -dependence from analyticity

 $\mathcal{F}_{\lambda}^{(T)}(q^2) = \langle \bar{M}_{\lambda}(k) | \bar{s} \Gamma_{\lambda}^{(T)} b | \bar{B}(k+q) \rangle$: Analytic structure in q^2 :

 $\widehat{\mathcal{F}}_{\lambda}^{(T)}(q^2) \equiv (q^2 - m_{B_c^*}^2) \mathcal{F}_{\lambda}^{(T)}(q^2)$ has no pole, only cut.

Form Factors : q^2 -dependence from analyticity

▶ "z-parametrization" : $\widehat{\mathcal{F}}_{\lambda}^{(T)}(q^2(z))$ is analytic in |z| < 1

$$\mathcal{F}_{\lambda}^{(7)}(q^2) = rac{1}{(q^2 - m_{B_s^*}^2)} \sum_k \alpha_k \, z(q^2)^k$$

Bourrely, Caprini, Lellouch

Form Factors : *q*²-dependence from analyticity

			, . ,						
	b_0^+	b_1^+	b_2^+	b_0^0	b_1^0	b_2^0	b_0^T	b_1^T	b_2^T
Mean	0.466	-0.885	-0.213	0.292	0.281	0.150	0.460	-1.089	-1.114
error	0.014	0.128	0.548	0.010	0.125	0.441	0.019	0.236	0.971
b_0^+	1	0.450	0.190	0.857	0.598	0.531	0.752	0.229	0.117
b_1^+		1	0.677	0.708	0.958	0.927	0.227	0.443	0.287
b_2^+			1	0.595	0.770	0.819	-0.023	0.070	0.196
b_0^0				1	0.830	0.766	0.582	0.237	0.192
b_1^0					1	0.973	0.324	0.372	0.272
b_2^0						1	0.268	0.332	0.269
b_0^T							1	0.590	0.515
b_1^T								1	0.897
b_2^T									1

Fermilab-MILC 1509.06235

Non-local form factor

► QCD Factorization Beneke, Feldmann, Seidel $\mathcal{H}_{\lambda}(q^2) \sim \Delta C_9^{\lambda}(q^2) \mathcal{F}_{\lambda}(q^2) + \frac{1}{q^2} \Delta C_7^{\lambda}(q^2) \mathcal{F}_{\lambda}^{T}(q^2) + HSS + \mathcal{O}(\Lambda/m_B, \Lambda/E)$

▶ It is assumed that the charm loop is dominated by short distances

• Kink at $q^2 = 4m_c^2$ symptom of breaking of perturbativity

z-parametrisation for $\mathcal{H}_{\lambda}(q^2)$

Same strategy as form factors!

 $\blacktriangleright \hat{\mathcal{H}}_{\lambda}(q^2(z)) = (q^2 - M_{J/\psi}^2)(q^2 - M_{\psi(2S)}^2) \mathcal{H}_{\lambda}(q^2) \quad \text{is analytic in } |z| < 1$

► Taylor expand $\hat{\mathcal{H}}_{\lambda}(z)$ around z = 0:

$$\hat{\mathcal{H}}_{\lambda}(z) = \left[\sum_{k=0}^{K} \alpha_{k}^{(\lambda)} z^{k}\right] \mathcal{F}_{\lambda}(z)$$

▶ Expansion needed for |z| < 0.52 ($-7 \text{ GeV}^2 \le q^2 \le 14 \text{GeV}^2$)

Fit to *z*-parametrisation

Bobeth, Chrzaszcz, van Dyk, JV, 1707.07305

Fit to z-parametrisation

SM predictions and Fit including $B \to K^* \mu^+ \mu^-$ data and $C_9^{\rm NP}$:

The NP hypothesis with $C_9^{NP} \sim -1$ is favored strongly in the global fit

Prospects: LHC Run-2 unbinned fits to z-parametrization

Chrzaszcz, Mauri, Serra, Coutinho, van Dyk 1805.06378

Mauri, Serra, Coutinho 1805.06401

Unbinned fits to $B \to K^* \mu \mu$ (Left) and $B \to K^* \ell \ell$ (Right)

'A posteriori' test of non-local effect

Descotes-Genon, Hofer, Matias, JV 1510.04239

□ Tiny uncertainites will allow to test hadronic contributions precisely See also Altmannshofer, Straub 1503.06199, Ciuchini et al 1512.07157, Chobanova et al 1702.02234

'A posteriori' test of non-local effect

□ Testing the data : *K**-helicity dependence

Altmannshofer, Niehoff, Stangl, Straub 1703.09189

□ Tiny uncertainites will allow to test hadronic contributions precisely See also Altmannshofer, Straub 1503.06199, Ciuchini et al 1512.07157, Chobanova et al 1702.02234

Extra slides

Bobeth, Chrzaszcz, van Dyk, Virto 2017

Experimental constraints :

▶ The residues of the poles are given by $B \rightarrow K^* \psi_n$:

$$\mathcal{H}_{\lambda}(q^2
ightarrow M_{\psi_n}^2) \sim rac{M_{\psi_n} f_{\psi_n}^* \mathcal{A}_{\lambda}^{\psi_n}}{M_B^2(q^2 - M_{\psi_n}^2)} + \cdots$$

► Angular analyses Belle, Babar, LHCb determine :

$$\begin{split} |r_{\perp}^{\psi_n}|, \ |r_{\parallel}^{\psi_n}|, \ |r_{0}^{\psi_n}|, \ \arg\{r_{\perp}^{\psi_n}r_{0}^{\psi_n*}\}, \ \arg\{r_{\parallel}^{\psi_n}r_{0}^{\psi_n*}\}, \\ \end{split}$$
 where $r_{\lambda}^{\psi_n} \equiv \underset{q^2 \to M_{\psi_n}^2}{\operatorname{Res}} \frac{\mathcal{H}_{\lambda}(q^2)}{\mathcal{F}_{\lambda}(q^2)} \sim \frac{M_{\psi_n}f_{\psi_n}^*\mathcal{A}_{\lambda}^{\psi_n}}{M_B^2 \mathcal{F}_{\lambda}(M_{\psi_n}^2)}$

▶ We produce correlated pseudo-observables from a fit (5+5).

Prior Fit to z parametrisation $[B \rightarrow K^* \ell \ell]$

Bobeth, Chrzaszcz, van Dyk, Virto 2017

(Prior) Fit to Experimental and theoretical pseudo-observables :

k	0	1	2
$\operatorname{Re}[\alpha_k^{(\perp)}]$	-0.06 ± 0.21	-6.77 ± 0.27	18.96 ± 0.59
$\operatorname{Re}[\alpha_k^{(\parallel)}]$	-0.35 ± 0.62	-3.13 ± 0.41	12.20 ± 1.34
$\operatorname{Re}[\alpha_k^{(0)}]$	0.05 ± 1.52	17.26 ± 1.64	_
$\operatorname{Im}[\alpha_k^{(\perp)}]$	-0.21 ± 2.25	1.17 ± 3.58	-0.08 ± 2.24
$\operatorname{Im}[\alpha_k^{(\parallel)}]$	-0.04 ± 3.67	-2.14 ± 2.46	6.03 ± 2.50
$\operatorname{Im}[\alpha_k^{(0)}]$	-0.05 ± 4.99	4.29 ± 3.14	_

Table 1: Mean values and standard deviations (in units of 10^{-4}) of the prior PDF for the parameters $\alpha_k^{(\lambda)}$.

Light-hadron cut

The non-local ME of $O_{1,2}^c$ also contains a cut at low q^2 from intermediate "light-hadron" states:

 $\begin{aligned} \operatorname{Disc}[\mathcal{H}_{\lambda}(q^{2} > t_{+})] &\sim \sum_{\chi} \langle 0|j_{\mathrm{em}}|X_{cc}^{1--}\rangle \langle X_{cc}^{1--} \mathcal{K}^{*}|(\bar{s}c)(\bar{c}b)|\bar{B}\rangle \\ \operatorname{Disc}[\mathcal{H}_{\lambda}(0 < q^{2} < t_{+})] &\sim \sum_{\chi} \langle 0|j_{\mathrm{em}}|X^{1--}\rangle \langle X^{1--} \mathcal{K}^{*}|(\bar{s}c)(\bar{c}b)|\bar{B}\rangle \end{aligned}$

Light-hadron cut

- * Support for $\langle X^{1--}K^*|(\bar{s}c)(\bar{c}b)|\bar{B}\rangle \ll \langle X^{1--}_{cc}K^*|(\bar{s}c)(\bar{c}b)|\bar{B}\rangle$:
- ► OZI rule.

► $\mathcal{B}(B \to K^{(*)}\omega) \approx 2 - 5 \cdot 10^{-6}$ (in agr. with QCDF from [$\bar{s}q$][$\bar{q}b$])

$$\Rightarrow \langle K^* \omega | (\bar{s}c)(\bar{c}b) | \bar{B} \rangle \lesssim \underbrace{C_q / C_c}_{few \%} \langle K^* \omega | (\bar{s}q)(\bar{q}b) | \bar{B} \rangle$$

▶ Same argument for $\mathcal{B}(B \to K^{(*)}\phi)$

 \blacktriangleright In absence of OZI, the natural size of these BRs is 10^{-3} not 10^{-6} :

$$\begin{split} \mathcal{B}(B \to KJ/\psi) &= 9 \times 10^{-4} \quad \mathcal{B}(B \to K^*J/\psi) = 1.3 \times 10^{-3} \\ \mathcal{B}(B \to K[D^*\bar{D}]) &= 6 \times 10^{-3} \quad \mathcal{B}(B \to K[D^*\bar{D}^*]) = 8 \times 10^{-3} \\ \mathcal{B}(B \to K[D\bar{D}]) &= 5 \times 10^{-4} \end{split}$$

▶ Note also the **total** BR: $\mathcal{B}(B \to K^{(*)}[\bar{K}K]) \sim 10^{-5} \ll 10^{-3}$

▶ Test: $\mathcal{B}(B \to K^{(*)}X^{1--}(\text{high mass})) \ll 10^{-3}$

Conclusion: OZI \rightarrow Two order of magnitude suppression.

- ▶ But CKM- and penguin-suppressed light-quark loops are there.
- ▶ Not OZI suppressed.
- ► Must be constrained if precision is sought (but rough estimate might suffice).
- ► Can do dispersive analysis Khodjamirian, Mannel, Wang 2012 ...
- Could use $b \rightarrow d$ analogues. (measure, please)