

Heavy flavour spectroscopy at the LHC

Liupan An

On behalf of the LHCb, CMS and ATLAS collaborations Sezione INFN di Firenze

@ La Thuile 2019, Mar 12th 2019

Introduction

≻Quark model proposed by M. Gell-mann and G. Zweig in 1964

>Heavy spectroscopy provides primary tests and inputs to QCD models

Striking news keep emerging in recent years, e.g.

- $\checkmark X(3872)$
- ✓ Pentaquarks

LHCb, CMS and ATLAS experiments

Major LHC detectors complementary to each other in spectroscopy

 \checkmark CMS and ATLAS cover high $p_{\rm T}$ and low y region

✓ LHCb covers low p_T and higher y region:
 excellent vertexing and particle identification capabilities
 ⇒ dedicated beauty flavor experiment!

 \Rightarrow dedicated heavy flavor experiment!

Incomplete list of recent results

Mesons

[LHCb-PAPER-2019-005] (in preparation)

✓ Observation of new charmonium in near threshold $D\overline{D}$ spectroscopy

✓ Studies of $B_{s2}^*(5840)^0$ and $B_{s1}(5830)^0$ mesons [EPJC 78 (2018) 939]

✓ Observation of $B^0_{(s)} \rightarrow J/\psi p\bar{p}$ and mass measurements of $B^0_{(s)}$ [arxiv: 1902.05588]

✓ Observation of excited B_c^+ states [arxiv: 1902.00571] [LHCb-PAPER-2019-007] (in preparation)

✓ Observation of $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ [PRL 121 (2018) 092002]

➢ Baryons

 \checkmark Lifetime measurement of $\varOmega^0_{\mathcal{C}}$ [PRL 121 (2018) 092003]

✓ Observation of a new Ξ_b^- resonance [PRL 121 (2018) 072002]

✓ Observation of two resonances in $\Lambda_b^0 \pi^\pm$ system [PRL 122 (2019) 012001]

✓ Mass and production measurement of Ξ_b^- baryons [arxiv: 1901.07075]

 $*\mathcal{Z}_{cc}$ covered in **Murdo Traill**'s talk on Wednesday

Exotic states

✓ Exotic contributions to $B^0 \rightarrow J/\psi K^+ \pi^-$ [arxiv: 1901.05745]

✓ Evidence for an $\eta_c(1S)\pi^-$ resonance [EPJC 78 (2018) 1019]

✓ Search for beautiful tetraquarks in $\Upsilon(1S)\mu^+\mu^-$ [JHEP 10 (2018) 086]

* This talk will focus on the most recent ones. Sorry for not being able to cover all results! 12/3/19 Liupan An 4/17

New charmonium in $D\overline{D}$ spectroscopy (I)

Study of conventional $c\bar{c}$ states is critical to understand the nature of exotic $c\bar{c}$ states

First LHCb result with full Run 1 + Run 2 data corresponding to 9 fb^{-1}

 \succ Promptly produced D^+D^- and $D^0\overline{D}^0$ candidates selected

 \blacktriangleright Exploit the long decay time of D mesons to suppress background

 \triangleright Only D mesons within $\pm 20 \text{ MeV}/c^2$ of the known masses are selected

12/3/19

New charmonium in $D\overline{D}$ spectroscopy (II)

> Fit performed in 3 overlapping mass regions to better model background

First observation of X(3842); possible interpretation: $\psi_3(1^3D_3)$ with $J^{PC} = 3^{--}$

 $\mu_{X(3842)} = 3842.71 \pm 0.16 \pm 0.12 \text{ MeV}/c^2$, $\Gamma_{X(3842)} = 2.79 \pm 0.51 \pm 0.35 \text{ MeV}/c^2$

Prompt hadroproduction of $\psi(3770)$ and $\chi_{c2}(3930)$ seen for the first time

 $\mu_{\psi(3770)} = 3778.13 \pm 0.70 \pm 0.63 \text{ MeV}/c^2$ $\mu_{\chi_{c2}(3930)} = 3921.90 \pm 0.55 \pm 0.19 \text{ MeV}/c^2, \Gamma_{\chi_{c2}(3930)} = 36.64 \pm 1.88 \pm 0.85 \text{ MeV}/c^2$ 12/3/19Liupan An 6/17

 $B^0_{(s)} \rightarrow J/\psi p\bar{p}$ (I)

⇒ $B_{(s)}^{0}$ → $J/\psi p\bar{p}$ are sensitive to pentaquark in $J/\psi p(\bar{p})$ and glueball in $p\bar{p}$ > The $B_{(s)}^{0}$ → $J/\psi p\bar{p}$ decays are Cabibbo or OZI suppressed and have limited phase space

 $\mathcal{B}(B^0_s \to J/\psi p\bar{p})$ is predicted to be $\mathcal{O}(10^{-9})$, but can be enhanced by pentaquark and glueball contributions [EPJC 75 (2015) 101]

Searched with 2011-2016 data corresponding to 1, 2 and 2.2 fb⁻¹ at $\sqrt{s} = 7$, 8 and 13 TeV

 $B^0_{(s)} \rightarrow J/\psi p\bar{p}$ (II)

Event selection relies on excellent vertexing and charged PID capabilities of LHCb

First observation of the decays $B^0_{(s)} \rightarrow J/\psi p\bar{p}$

- $B^0 \rightarrow J/\psi p\bar{p}: 256 \pm 22$ $B_s^0 \rightarrow J/\psi p\bar{p}: 609 \pm 31$

 Most precise determination of $m_{B^0} = 5279.74 \pm 0.30(\text{stat}) \pm 0.10(\text{syst}) \text{ MeV}/c^2$ $m_{B_c^0} = 5366.85 \pm 0.19 (\text{stat}) \pm 0.13 (\text{syst}) \text{ MeV}/c^2$

 $\gg \mathcal{B}(B^0 \to J/\psi p\bar{p}) = (4.51 \pm 0.40(\text{stat}) \pm 0.44(\text{syst})) \times 10^{-7}$ ✓ Consistent with theoretical prediction $\gg \mathcal{B}(B_s^0 \to J/\psi p\bar{p}) = (3.58 \pm 0.19(\text{stat}) \pm 0.33(\text{syst})) \times 10^{-6}$

 \checkmark Enhanced by two orders of magnitude w.r.t predictions without resonances [EPJC 75 (2015) 101]

Excited B_c^+ states

 $> B_c$ has a rich spectroscopy

✓ Can provide tests of QCD models successfully applied to quarkonium

 \checkmark Less explored due to limited statistics

✓ States below *BD* threshold can only undergo radiative or pionic transitions to the ground state B_c^+ which decays weakly

► In 2014, ATLAS observed a state consistent with $B_c^{(*)}(2S)^+$ in $B_c^+\pi^+\pi^-$ spectrum $M\left(B_c^{(*)}(2S)^+\right) = 6842 \pm 4(\text{stat}) \pm 5(\text{syst}) \text{ MeV}/c^2$

 $B_c(2S)^+$ and/or $B_c^*(2S)^+$?

 $B_{c}^{(*)}(2S)^{+}$ in $B_{c}^{+}\pi^{+}\pi^{-}$

 \succ With the low-energy photon not reconstructed, the $B_c^*(2S)^+$ peak remains with

 $M(B_c^*(2S)^+)_{\rm rec} = M(B_c^*(2S)^+) - \Delta M(1S) = M(B_c^*(2S)^+) - (M(B_c^{*+}) - M(B_c^{+}))$

$$M(B_c(2S)^+) - M(B_c^*(2S)^+)_{\rm rec} = \Delta M(1S) - \Delta M(2S)$$

= $(M(B_c^{*+}) - M(B_c^+)) - (M(B_c^*(2S)^+) - M(B_c(2S)^+))$

► Most predictions give $M(B_c(2S)^+) > M(B_c^*(2S)^+)_{rec}$

12/3/19

[arxiv: 1902.00571]

 \succ CMS performed the search with the full 140 fb⁻¹ Run 2 data

Selection criterion designed based on the event topology

> Kinematic requirements: $p_T(B_c^+) > 15 \text{ GeV}/c$, one pion $p_T > 800 \text{ MeV}/c$, the other pion $p_T > 600 \text{ MeV}/c$

 $> B_c^*(2S)^+$ and $B_c(2S)^+$ resolved for the first time with significance $> 5 \sigma$

 $B_c^{(*)}(2S)^+$ at LHCb

[LHCb-PAPER-2019-007] (in preparation)

>LHCb performed the search with 8.5 fb^{-1} Run 1 + Run 2 data

- >Kinematic requirements: $p_{\rm T}(B_c^+) > 10 \text{ GeV}/c$, $p_{\rm T}(\pi^{\pm}) > 300 \text{ MeV}/c$
- $> B_c^*(2S)^+$ observed with significance $> 5 \sigma$

> Hint for $B_c(2S)^+$ with global (local) significance of 2.2 (3.2) σ

 $M(B_c^*(2S)^+)_{\rm rec} = 6841.2 \pm 0.6(\text{stat}) \pm 0.1(\text{syst}) \pm 0.8(B_c^+) \text{ MeV}/c^2$ $M(B_c(2S)^+) = 6872.1 \pm 1.3(\text{stat}) \pm 0.1(\text{syst}) \pm 0.8(B_c^+) \text{ MeV}/c^2$ $M(B_c(2S)^+) - M(B_c^*(2S)^+)_{\rm rec} = 31.0 \pm 1.4(\text{stat}) \text{ MeV}/c^2$ $12/3/19 \qquad \qquad \text{Liupan An}$

Mass and production of \mathcal{Z}_b^- (I)

 \succ No complete measurement of *b*-hadron fragmentation functions at LHC yet

$$f_{u} + f_{d} + f_{s} + f_{\text{baryon}} = 1$$

$$f_{\text{baryon}} = f_{A_{b}^{0}} + f_{\Xi_{b}^{0}} + f_{\Xi_{b}^{-}} + f_{\Omega_{b}^{-}} = f_{A_{b}^{0}} \cdot (1 + 2 \times \frac{f_{\Xi_{b}^{-}}}{f_{A_{b}^{0}}} + \frac{f_{\Omega_{b}^{-}}}{f_{A_{b}^{0}}})$$

► Using *SU(3)* flavor symmetry

$$\frac{\Gamma(\Xi_b^- \to J/\psi\Xi^-)}{\Gamma(\Lambda_b^0 \to J/\psi\Lambda)} = \frac{3}{2} \text{ [PLB 751 (2015) 127-130]}$$

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi\Xi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi\Lambda)} = \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\Gamma(\Xi_b^- \to J/\psi\Xi^-)}{\Gamma(\Lambda_b^0 \to J/\psi\Lambda)} \frac{\tau_{\Xi_b^-}}{\tau_{\Lambda_b^0}} = \frac{N(\Xi_b^- \to J/\psi\Xi^-)}{N(\Lambda_b^0 \to J/\psi\Lambda)} \frac{\varepsilon_{\Lambda_b^0}}{\varepsilon_{\Xi_b^-}}$$
Known Measurable

≻Using 2011-2016 data corresponding to 1, 2 and 1.6 fb⁻¹ at $\sqrt{s} = 7$, 8 and 13 TeV ≻First measurement of Ξ_b^- production rate in pp collisions

Mass and production of Ξ_b^- (II)

 $Farchinesine \Xi^- \rightarrow \Lambda \pi^-$ occurs either inside or outside the vertex locator (VELO)

Most precise measurement of $m(\Xi_b^-) = 5796.70 \pm 0.39 \pm 0.15 \pm 0.17 \text{ MeV}/c^2$ Σ_b^- production asymmetry consistent with zero

 $f_{\frac{F_{b}}{f_{\Lambda_{b}^{0}}}} = \frac{\left(6.7 \pm 0.5(\text{stat}) \pm 0.5(\text{syst}) \pm 2.0(SU(3) \text{ breaking})\right) \times 10^{-2} @ \sqrt{s} = 7,8 \text{ TeV}}{\left(8.2 \pm 0.7(\text{stat}) \pm 0.6(\text{syst}) \pm 2.4(SU(3) \text{ breaking})\right) \times 10^{-2} @ \sqrt{s} = 13 \text{ TeV}}$

No significant dependence on centre-of-mass energy in 7 to 13 TeV range

Exotics in $B^0 \rightarrow J/\psi K^+\pi^-$ (I)

[PRD 90 (2014) 112009] [PRD 79 (2009) 112001] Exotic state $Z_c(4200)^- \rightarrow J/\psi\pi^-$ reported by Belle, but not seen by Babar

>LHCb performed angular analysis of $B^0 \rightarrow J/\psi K^+\pi^-$ using 3 fb⁻¹ Run 1 data

 $\Box Signal statistics \times 20 \ larger than Belle and \times 40 \ larger than Babar$

 \square Poor understanding of K^* leads to large systematics in Z_c^- searches

 \Rightarrow a **model-independent 4D** analysis, which gives significantly better sensitivity

✓ Divide the data into fine bins of $m(K^+\pi^-)$

✓ In each bin, check if the 3D angular distribution can be described with reflections from conventional $K_J^*[K\pi]$ without exotic $Z_c^-[\psi\pi]$ component

✓ Requiring only the knowledge of the highest spin J_{\max} of K_J^*

12/3/19

Structures visible in $(m(J/\psi\pi^{-}), m(K^{+}\pi^{-}))$ 2D plot

12/3/19

Summary

>A wide range of interesting spectroscopy results

- ✓ Observation of new charmonium in near threshold $D\overline{D}$ spectroscopy
- ✓ Observation of $B^0_{(s)} \rightarrow J/\psi p\bar{p}$ and mass measurements of $B^0_{(s)}$ [arxiv: 1902.05588]
- ✓ Observation of excited B_c^+ states [arxiv: 1902.00571] [LHCb-PAPER-2019-007] (in preparation)
- ✓ Mass and production measurement of Ξ_b^- baryons [arxiv: 1901.07075]
- ✓ Exotic contributions to $B^0 \rightarrow J/\psi K^+ \pi^-$ [arxiv: 1901.05745]

✓.....

≻The usage of Run 2 data opens new possibilities

The LHCb, CMS and ATLAS experiments each shows its own strength in spectroscopy studies

>Look forward to more exciting news!

Back up

Charmonium states in $D\overline{D}$ spectroscopy

12/3/19

Ω_c^0 lifetime measurement [PRL 121 (2018) 092003]

The *c*-baryon lifetime hierarchy was considered to be $\tau_{\Xi_c^+} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0} > \tau_{\Omega_c^0}$ Using data corresponding to 3 fb^{-1} at $\sqrt{s} = 7$ and 8 TeV

Sample of $\Omega_b^- \to \Omega_c^0 (\to pK^-K^-\pi^+)\mu^-\bar{\nu}_{\mu}X$ used to measure $r_{\Omega_c^0} \equiv \frac{\tau_{\Omega_c^0}}{\tau_{p+}}$,

taking $B \to D^+ (\to K^- \pi^+ \pi^+) \mu^- \bar{\nu}_{\mu} X$ as reference to reduce systematic uncertainty

 $\tau_{\Omega_c^0} = \mathbf{268} \pm \mathbf{24} \pm \mathbf{10} \pm \mathbf{2} \, \mathbf{fs}, \sim 4 \text{ times larger than world average 69} \pm 12 \, \mathrm{fs}$ $\mathbf{New} \, c \text{-baryon lifetime hierarchy:} \, \tau_{\Xi_c^+} > \tau_{\Omega_c^0} > \tau_{A_c^+} > \tau_{\Xi_c^0}$