

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, Aosta Valley, 15 March 2019

Recent Progress on ALPs

Matthias Neubert

PRISMA Cluster of Excellence Johannes Gutenberg University Mainz

based on work with M. Bauer, A. Thamm & M. Heiles: 1704.08207 (PRL), 1708.00443 (JHEP) & 1808.10323 (EPJC)

Motivation

- Axion-like particles (ALPs) appear in many BSM scenarios and are well motivated: strong CP problem, mediator to hidden sector, pNGB of spontaneously broken global symmetry, explanation of (g-2)µ, ...
- * Assume the existence of a new pseudoscalar resonance *a*, which is a SM singlet and whose mass is protected by a (approximate) shift symmetry $a \rightarrow a+const$.
- * How can one probe such an ALP at colliders?

[previous studies: Kim, Lee 1989; Djouadi, Zerwas, Zunft 1991; Rupak, Simmons 1995; Kleban, Ramadan 2005; Mimasu, Sanz 2014; Jäckel, Spannowsky 2015; Knapen, Lin, Lou, Melia 2016; Brivio et al. 2017; ...]

* The ALP couplings to the SM start at D=5 and are described by the effective Lagrangian (with $\Lambda = 32\pi^2 f_a |C_{GG}|$ a NP scale):

$$\mathcal{L}_{\text{eff}}^{D \leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_{F} \mathbf{C}_{F} \gamma_{\mu} \psi_{F}$$

$$+ g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$
[Georgi, Kaplan, Randall 1986]

* The ALP couplings to the SM start at D=5 and are described by the effective Lagrangian (with $\Lambda = 32\pi^2 f_a |C_{GG}|$ a NP scale):

$$\mathcal{L}_{\text{eff}}^{D \leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_{F} C_{F} \gamma_{\mu} \psi_{F}$$

$$+ g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$
[Georgi, Kaplan, Randall

1986]

* The ALP couplings to the SM start at D=5 and are described by the effective Lagrangian (with $\Lambda = 32\pi^2 f_a |C_{GG}|$ a NP scale):

$$\mathcal{L}_{\text{eff}}^{D\leq5} = \frac{1}{2} \left(\partial_{\mu}a\right) \left(\partial^{\mu}a\right) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu}a}{\Lambda} \sum_{F} \bar{\psi}_{F} C_{F} \gamma_{\mu} \psi_{F}$$

$$+ g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + g^{\prime 2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

$$= e^{2} C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^{2}}{s_{w}c_{w}} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^{2}}{s_{w}^{2}c_{w}^{2}} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$$

$$\left(C_{\gamma\gamma} = C_{WW} + C_{BB} \text{ etc.}\right)$$

* The ALP couplings to the SM start at D=5 and are described by the effective Lagrangian (with $\Lambda = 32\pi^2 f_a |C_{GG}|$ a NP scale):

$$\mathcal{L}_{\text{eff}}^{D\leq 5} = \frac{1}{2} (\partial_{\mu}a)(\partial^{\mu}a) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu}a}{\Lambda} \sum_{F} \bar{\psi}_{F} C_{F} \gamma_{\mu} \psi_{F}$$

$$+ g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

$$= EWSB$$

$$e^{2} C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^{2}}{s_{w}c_{w}} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^{2}}{s_{w}^{2}c_{w}^{2}} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$$

$$(C_{\gamma\gamma} = C_{WW} + C_{BB} \text{ etc.})$$

$$\sum_{f} \frac{c_{ff}}{2} \frac{\partial^{\mu}a}{\Lambda} \bar{f} \gamma_{\mu}\gamma_{5} f + \text{flavor off-diagonal terms}$$
[Georgi, Kaplan, Randall 1986]

* The ALP couplings to the SM start at D=5 and are described by the effective Lagrangian (with $\Lambda = 32\pi^2 f_a |C_{GG}|$ a NP scale):

$$\mathcal{L}_{\text{eff}}^{D \leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_{F} C_{F} \gamma_{\mu} \psi_{F}$$

$$+ g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$
[Georgi, Kaplan, Randall 1986]

At D=6 order and higher, additional interactions arise:

$$\mathcal{L}_{\text{eff}}^{D\geq 6} = \frac{C_{ah}}{\Lambda^2} \left(\partial_{\mu} a\right) \left(\partial^{\mu} a\right) \phi^{\dagger} \phi + \frac{C_{Zh}^{(7)}}{\Lambda^3} \left(\partial^{\mu} a\right) \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.}\right) \phi^{\dagger} \phi + \dots$$

- * Our goal is to probe scales Λ ~1-100 TeV at the LHC
- Include one-loop corrections in production and decay rates

Example: ALP decay into photons

Including the complete set of one-loop corrections, we obtain from the effective Lagrangian:

$$\Gamma(a \to \gamma \gamma) \equiv \frac{4\pi \alpha^2 m_a^3}{\Lambda^2} \left| C_{\gamma \gamma}^{\text{eff}} \right|^2$$

where $(\tau_i \equiv 4m_i^2/m_a^2)$:

$$C_{\gamma\gamma}^{\text{eff}}(m_a \gg \Lambda_{\text{QCD}}) = C_{\gamma\gamma} + \sum_f \frac{N_c^f Q_f^2}{16\pi^2} c_{ff} B_1(\tau_f) + \frac{2\alpha}{\pi} \frac{C_{WW}}{s_w^2} B_2(\tau_W)$$

Example: ALP decay into photons

Including the complete set of one-loop corrections, we obtain from the effective Lagrangian:

where $(\tau_i \equiv 4m_i^2/m_a^2)$:

$$C_{\gamma\gamma}^{\text{eff}}(m_a \gg \Lambda_{\text{QCD}}) = C_{\gamma\gamma} + \sum_f \frac{N_c^f Q_f^2}{16\pi^2} c_{ff} B_1(\tau_f) + \frac{2\alpha}{\pi} \frac{C_{WW}}{s_w^2} B_2(\tau_W)$$

$$C_{\gamma\gamma}^{\text{eff}}(m_a \lesssim 1 \,\text{GeV}) \approx C_{\gamma\gamma} - (1.92 \pm 0.04) C_{GG} - \frac{m_a^2}{m_\pi^2 - m_a^2} \left[C_{GG} \frac{m_d - m_u}{m_d + m_u} + \frac{c_{uu} - c_{dd}}{32\pi^2} \right] \\ + \sum_{q=c,b,t} \frac{N_c Q_q^2}{16\pi^2} c_{qq} B_1(\tau_q) + \sum_{\ell=e,\mu,\tau} \frac{c_{\ell\ell}}{16\pi^2} B_1(\tau_\ell) + \frac{2\alpha}{\pi} \frac{C_{WW}}{s_w^2} B_2(\tau_W)$$

Pattern of decay rates

 Assuming that the relevant Wilson coefficients are equal to 1/TeV, we find the following pattern of decay rates:

Constraints on $C_{\gamma\gamma}$ and c_{ee}

[Armengaud et al. 2013; Jäckel, Spannowsky 2015; many others ...]

10

- * Anomaly $a_{\mu}^{exp} a_{\mu}^{SM} = (288 \pm 63 \pm 49) \cdot 10^{-11}$ can be reproduced for O(1) Wilson coefficients $C_{\gamma\gamma}$ and $c_{\mu\mu}$
- ★ BaBar search for [BaBar: 1606.03501] $e^+e^- \rightarrow \mu^+\mu^- + Z' \rightarrow \mu^+\mu^- + \mu^+\mu^$ significantly constrains the allowed parameter space (grey)
- Tighter constraints expected from Belle II

 $(-2)_{\mu}$ anomaly

Higgs Decays as an ALP Factory

[see also: Dobrescu, Landsberg, Matchev 2000; Chang, Fox, Weiner 2006; Draper, McKeen 2012; Curtin et al. 2013]

On-shell Higgs decays into ALPs

- ★ Effective Lagrangian allows for h→Za and h→aa decays at rates likely to be accessible in the high-luminosity run of LHC (already with 300 fb⁻¹)
- * Branching ratios can reach 10%

 Higgs physics provides powerful observatory for ALPs in the mass range between 1 MeV and 60 GeV, which is otherwise not easily accessible to experimental searches

Example: Exotic decay $h \rightarrow aa$

 Higgs portal interaction and loop-mediated processes allow for ALP pair production in Higgs decay:

$$\Gamma(h \to aa) = \frac{\left|C_{ah}^{\text{eff}}\right|^2}{32\pi} \frac{v^2 m_h^3}{\Lambda^4} \left(1 - \frac{2m_a^2}{m_h^2}\right) \sqrt{1 - \frac{4m_a^2}{m_h^2}}$$

with:

$$C_{ah}^{\text{eff}} = C_{ah}(\mu) + \frac{N_c y_t^2}{4\pi^2} c_{tt}^2 \left[\ln \frac{\mu^2}{m_t^2} - g_1(\tau_{t/h}) \right] + \dots$$
$$\approx C_{ah}(\Lambda) + 0.173 c_{tt}^2 - 0.0025 \left(C_{WW}^2 + C_{ZZ}^2 \right)$$

* A 10% branching ratio is obtained for $|C_{ah}^{eff}| \approx 0.62 \, (\Lambda/\text{TeV})^2$

Example: Exotic decay $h \rightarrow aa$

- Depending on ALP decay modes, several interesting final-state signatures can arise:
 - * $h \rightarrow aa \rightarrow \gamma\gamma + \gamma\gamma$, where the two photons in each pair are either resolved (for $m_a > \sim 100$ MeV) or appear as a single photon in the calorimeter (adds to $h \rightarrow \gamma\gamma$ signal)

*
$$h \rightarrow aa \rightarrow l^+l^- + l^+l^-$$
 with $l = e, \mu, \tau$

- * $h \rightarrow aa \rightarrow 4j$, including heavy-quark jets, ...
- * Most of these decays can be reconstructed

Decay-length effect

- Weakly coupled light ALPs can have a macroscopic decay length, hence only a fraction f_{dec} decays inside detector
- * We define effective branching ratios:

 $\operatorname{Br}(h \to aa \to 4X)\Big|_{\operatorname{eff}} = \operatorname{Br}(h \to aa) \operatorname{Br}(a \to XX)^2 f_{\operatorname{dec}}^2$

$$Br(h \to Za \to \ell^+ \ell^- XX) \Big|_{eff} = Br(h \to Za) \\ \times Br(a \to XX) f_{dec} Br(Z \to \ell^+ \ell^-)$$

* Even for $L_a >> L_{det}$ there remains some sensitivity

Probing the ALP-photon coupling

 Higgs analyses at the LHC (Run-2, 300 fb⁻¹) will be able to explore a large region of uncovered parameter space:

Probing the ALP-photon coupling

 Higgs analyses at the LHC (Run-2, 300 fb⁻¹) will be able to explore a large region of uncovered parameter space:

- Region preferred by (g-2)_μ can be covered completely!
- The ALP-photon coupling can be probed even if the ALP decays predominantly to other particles!

 $|C_{ah}^{\text{eff}}| = 0.01, \text{ Br}(a \to \gamma\gamma) > 0.49$ $|C_{ah}^{\text{eff}}| = 0.1, \text{ Br}(a \to \gamma\gamma) > 0.049$ $|C_{ah}^{\text{eff}}| = 1, \text{ Br}(a \to \gamma\gamma) > 0.006$ $(\text{for } \Lambda = 1 \text{ TeV})$

Probing the ALP-lepton couplings

 Higgs analyses at the LHC (Run-2, 300 fb⁻¹) will be able to explore a large region of uncovered parameter space:

Babar 10³ ex ev $|C_{ah}^{\text{eff}}| = 0.01, \ \operatorname{Br}(a \to e^+e^-) > 0.49$ $|C_{ah}^{\text{eff}}| = 0.1, \text{ Br}(a \to e^+e^-) > 0.049$ $|C_{ah}^{\text{eff}}| = 1$, $Br(a \to e^+e^-) > 0.006$ Beam Dump 1 $c_{\ell\ell}^{\rm eff}|/\Lambda$ [TeV⁻¹] 14× (for $\Lambda = 1 \,\text{TeV}$) Edelweiss 入 入 、 Assume (absence of LFV transitions): $c_{ee} \approx c_{\mu\mu} \approx c_{\tau\tau}$ **Red Giants** $h \rightarrow aa$ 10^{-6} 10^{-9} 10^{-6} 10^{-3} 1 m_a [GeV]

Probing the ALP-photon coupling

- Alternative representation of the parameter space in the ALP-Higgs and ALP-photon coupling plane
- * Accessible region depends on the ALP mass and $a \rightarrow \gamma \gamma$ branching ratio (dashed contours)
- Lines show predictions for the coefficients in two scenarios with couplings induced by loops of SM fermions

Probing ALPs at Future Colliders

* We focus on ALP decay
 a→γγ but similar results
 hold for ALP decays into
 leptons, jets or heavy
 quarks

ALP searches at future hadron colliders

M. Neubert: Recent progress on ALPs (La Thuile 2019)

ALP searches at future e⁺e⁻ colliders

(assuming $C_{WW}=0$, so that $C_{\gamma\gamma}$ and $C_{\gamma Z}$ are correlated)

ALP searches at future e⁺e⁻ colliders

based on work with Mathias Heiles

assumes $Br(a \rightarrow \gamma \gamma) = 1$

Conclusions

- Exotic Higgs and Z decays provide new probes for ALPs with masses between 1 MeV and 90 GeV, and couplings suppressed by Λ~1-100 TeV and beyond
- * Searches for final states such as $h \to 4\gamma, h \to \ell^+ \ell^- \gamma \gamma$, $h \to \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$ and final states with jets need to be devised
- Accessible parameter space could be significantly enlarged at future hadron and lepton colliders

