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What is dark matter? 

NGC 100



NGC 100

Light (pseudo-)scalar fields are featured in many UV models,  
where they arise as PNGBs of spontaneously broken symmetries. 

The PQ- or QCD-axion is an example. 

Such scalar field, initially displaced from a minimum of its potential during the early 
cosmological history, begins to oscillate around the minimum when H~m. 

Correct cosmological equation of state for dark matter. 
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NGC 100Natural initial condition:                      =  range of Goldstone boson. 

Assuming SSB before end of inflation, 
contribution to energy density today:    
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B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagat-

ing protons in spin-symmetric contraction. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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where the average pair momentum and the momentum dif-
ference are defined as

~

P = (~p1 + ~p2) /2, ~q = ~p1 � ~p2. (12)

The probability density associated with | s

p1,p2
i can be cal-

culated as [30, 31]
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Assuming unpolarised isospin-invariant HXS, we use the
same ⇢2 (x0

1, x
0
2;x1, x2) for the proton-proton and proton-

neutron reduced density matrix, appearing in Eqs. (13)
and (4). Gs

2 is a normalisation constant. Inserting Eqs. (5)
and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.

We can repeat the same steps above for the spin anti-
symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates giving
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C. Coalescence from two-particle correlations

� ⇠ f

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element

when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
�
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3
p2. Subtleties arise in

the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [23]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-

out surface t

f

= t

f

(

~

R). We now make the connection to
observable quantities.
Inspecting Eqs. (10) and (14), we can write a di↵erential

relation

d

d

3
R

✓
dN

d

d

3
P

d

◆
⇡ G

d

d

d

3
R

Z
d

3
qD(~q)F2

 
~

P

d

2

, ~q

!
.

(16)

This can also be written as
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
done in Ref. [16], which used the Cooper-Frye pre-
scription [23] to make the replacement �
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µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.
While Ref. [16] (which focused on D formation) arrived at

this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.
Experimental collaborations report the coalescence factor
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proton spectrum. The two-particle correlation function is
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
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Ultra-light dark matter (ULDM)



NGC 100

On scales much larger than de Broglie wavelength, ULDM behaves like WIMP DM. 

dB length ~ 100 pc for m~10^-22 eV
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NGC 100

On scales of order de Broglie wavelength, ULDM is markedly different than WIMPs. 

dB length ~ 100 pc for m~10^-22 eV

2.6 kpc

Halpha HI

Kamphuis et al. MNRAS 414,3444 2011



Numerical simulations: inner part of galaxies develops a core (“soliton”)

Schive et al 1406.6586 
Schive et al 1407.7762 
Veltmaat et al 1804.09647 
Mocz 1705.05845



On scales of order de Broglie wavelength, equations of motion of ULDM 
are simple enough to solve

3

The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
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. A numerical calculation gives [4–6]
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also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are
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A mnemonic for the numerical value of � is given by

� = 3.6⇥ 10�4

⇣ m

10�22 eV

⌘✓
M�

109 M�

◆
. (17)

The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
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2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,
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Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�
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| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-
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Another useful relation gives the energy per unit mass
from the scaling parameter �,
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The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)
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The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.
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The energy in an arbitrary nonrelativitsic ULDM con-

figuration is

E =
1

2

Z
d3x
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1

m2

|r |2 + � | |2
◆

= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (21)

Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
M2

pl

m
, (22)

M� ⇡ 2.06�
M2

pl

m
. (23)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2

pl/m)
⇡ 2.64

�����
E�

(M2

pl/m)

�����

1
3

. (24)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
M�

⇡ 0.23�2, (25)

which can also be written as

M� ⇡ 4.3

✓ |E�|
M�

◆ 1
2 M2

pl

m
. (26)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)
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On scales of order de Broglie wavelength, equations of motion of ULDM 
are simple enough to solve
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The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
1

. A numerical calculation gives [4–6]

�
1

⇡ �0.69. (9)

The mass of the �
1

soliton is

M
1

=
M2

pl

m

Z 1

0

drr2�2

1

(r) (10)

⇡ 2.79⇥ 1012
⇣ m

10�22 eV

⌘�1

M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

Other solutions of Eqs. (7-8) can be obtained from
�
1

(r), �
1

(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1

(�r), (12)

��(r) = �2�
1

(�r), (13)

�� = �2�
1

, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6⇥ 10�4

⇣ m

10�22 eV

⌘✓
M�

109 M�

◆
. (17)

The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,
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kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is

E =
1

2

Z
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m2

|r |2 + � | |2
◆

= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (21)

Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
M2

pl

m
, (22)

M� ⇡ 2.06�
M2

pl

m
. (23)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2

pl/m)
⇡ 2.64

�����
E�

(M2

pl/m)

�����

1
3

. (24)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
M�

⇡ 0.23�2, (25)

which can also be written as

M� ⇡ 4.3

✓ |E�|
M�

◆ 1
2 M2

pl

m
. (26)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)
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On scales of order de Broglie wavelength, equations of motion of ULDM 
are simple enough to solve

…nothing like this for WIMPs!



4

The circular velocity rises as V
circ,� / r at small r and

decreases as V
circ,� / r�

1
2 at large r. The peak of V

circ

is obtained at

x
peak,� ⇡ 0.16��1

⇣ m

10�22 eV

⌘�1

pc (28)

⇡ 460
⇣ m

10�22 eV

⌘�2

✓
M�

109 M�

◆�1

pc,

and the peak velocity is

maxV
circ,� ⇡ 2.3⇥ 105 � km/s (29)

⇡ 83
⇣ m

10�22 eV

⌘✓
M�

109 M�

◆
km/s.

III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �

1

profile (�2

1

(r), to be precise).

FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is

M ⇡ 1.4⇥ 109
⇣ m

10�22 eV

⌘�1

✓
Mh

1012 M�

◆ 1
3

M�,(32)

so its � parameter is

� ⇡ 4.9⇥ 10�4

✓
Mh

1012 M�

◆ 1
3

. (33)

Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
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tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is

M ⇡ 1.4⇥ 109
⇣ m

10�22 eV

⌘�1

✓
Mh

1012 M�

◆ 1
3

M�,(32)

so its � parameter is

� ⇡ 4.9⇥ 10�4
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3

. (33)

Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via

Schive et al 1406.6586 
Schive et al 1407.7762

Numerical simulations: soliton — halo relation
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
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4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
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At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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1012 M�

◆ 1
3

M�,(32)

so its � parameter is

� ⇡ 4.9⇥ 10�4

✓
Mh

1012 M�

◆ 1
3

. (33)

Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via

Schive et al 1406.6586 
Schive et al 1407.7762
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Note that on the LHS of Eq. (12),
E

M

���
soliton

is defined

for the self-gravitating soliton without including the gravi-
tational potential induced by the large-scale halo. The halo
gravitational potential �h, defined to vanish at infinity, is
approximately constant throughout the halo inner region
where the soliton occurs and can be estimated as �h ⇠
10

E

M

���
halo

, up toO(1) corrections depending on the detailed

shape of the halo [17]. If we were to include the correc-
tion to the soliton energy due to this constant background

potential, it would change:
E

M

���
soliton

! E

M

���
soliton

+ �h.

This discussion suggests that the soliton–host halo relation
is better expressed using kinetic energy, rather than total
energy:

K

M

���
soliton

=

K

M

���
halo

. (13)

Because �h is approximately constant over the region where
the soliton is supported, the soliton shape is not distorted
and its kinetic energy is not modified from its value for
the self-gravitating solution. This means that for massive
halos in DM-only simulations, Eq. (13) and Eq. (12) are
indistinguishable.

Eq. (13) and Eq. (12) become distinguishable when we
turn on �b 6= 0, with a nontrivial spatial profile such that
�b is not constant throughout the large-scale halo.

III. APPLICATION: THE MILKY WAY

We now consider soliton solutions in the background of
a gravitational potential �b, chosen to roughly mimic the
inner region of the MW. For concreteness, throughout this
section we set m = 10

�22 eV. Results for m = 10

�21 eV
are collected in App. E 1.

The dominant contributions to the stellar mass profile of
the MW inner few hundred pc were described in the pho-
tometric analysis of Ref. [31] as a spherical nuclear stellar
cluster (NSC) and a nuclear stellar disk (NSD)3.

The NSC density profile was modelled as

⇢NSC(r) =

⇢̄NSC

1 +

⇣
r

rNSC

⌘nNSC
✓ (RNSC � r) , (14)

where ⇢̄NSC = 3.3 ⇥ 10

6
M

�

/pc3, rNSC = 0.22 pc,
RNSC = 200 pc. The index nNSC = 2 for r < r0 and

3 See Secs. 5.2-5.5 and Tab. 7 in [31]. In addition to the stellar
components, dynamics in the central ⇠ 1 pc is dominated by a
super-massive black hole (SMBH) with mass MBH ⇡ 4⇥106 M

�

.
Here we omit the SMBH contribution, which was studied in [17] and
shown to have negligible impact on the soliton for m . 10�20 eV.
We note that the numerical code in App. A is capable of handling
the SMBH contribution via the procedure described in App. A 1.
An interstellar gas torus at scale radius of ⇠ 100 pc contributes
⇠ 2 ⇥ 107 M

�

and is also neglected here in comparison to the
stellar components.

nNSC = 3 for r � r0, with r0 = 6 pc. With these parame-
ters we have MNSC ' 5.1⇥ 10

7 M
�

.
The NSD density profile was modelled as

⇢NSD = ⇢̄NSD exp

✓
� |z|
hz

� ⇢

h⇢

◆
, (15)

where h⇢ = 250 pc, hz = 50 pc, and ⇢̄NSD = 70 M

�

/pc3

is defined such that the total mass of the NSD is set to
MNSD ' 2.8⇥ 10

9 M
�

.
In Fig. 1 we plot the soliton mass vs. �, which allows us

to access di↵erent solutions. For � & 10

�3 we retrieve the
self-gravitating soliton result, shown by the dashed line. For
smaller � we find M / �

4 [17]4. Fig. 1, which accounts
for the non-spherical stellar potential, can be compared to
Fig. 16 in Ref. [17] which considered a spherically-averaged
approximation to the same stellar mass model. While the
trend is similar, there is an O(1) di↵erence in the M vs.
� relation in the phenomenologically interesting range � ⇠
10

�4 � 10

�3.

10-4 10-3
107

108

109

M
 [
M

so
l]

Milky Way

Without Baryons

With Baryons ( =0.5)
With Baryons ( =1)

With Baryons ( =2)

FIG. 1: Soliton M-� relation in the stellar-induced background
gravitational potential of the inner MW. For a halo mass Mh =
1012 M

�

, the soliton host-halo relation found in DM-only numer-
ical simulations predicts � = 4.9 ⇥ 10�4. The ULDM particle
mass is m = 10�22 eV.

In Fig. 2 we study the deformation in the soliton shape
caused by the stellar mass distribution. We fix the soliton
mass to M ⇡ 1.35 ⇥ 10

9 M
�

. The contour lines show
the soliton mass density normalised to a reference value
of 23.6 M

�

/pc3. Solid lines show the result for the self-
gravitating soliton and dashed lines show the result obtained
when �b is included in the SPE. The baryonic potential
contracts the soliton profile towards the origin and deforms
it’s shape, that is no longer spherically symmetric.

4 This can be understood as follows. For small � the external potential
dominates and the SPE reduce to r2

� ⇡ 2(�b � �)�. Since this
equation is homogeneous and linear in �, the normalisation at ~x = 0
is a multiplicative factor and M /

R
d

3
x�

2 / �

4.
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region and concluded that the density profile in this re-
gion should follow approximately ⇢ ⇠ x� 5

3 , steeper than
the usual inner NFW form ⇢ ⇠ x�1. This would a↵ect
the detailed shape of the rotation curve in the interme-
diate region between the two peaks, but not our general
results.

Eq. (49) was derived for an NFW host halo, but it is
the manifestation of the empirical Eq. (35) that is not
tied to a particular parametrisation of the host halo pro-
file. Building on Eq. (35), we expect in general that for
DM-dominated galaxies, the soliton peak circular veloc-
ity should roughly equal the peak circular velocity in the
host halo. The NFW example demonstrates that details
of the host halo profile a↵ect this result at the 10% level
or so.

In the rest of this paper, when we refer to Eq. (49),
we set the RHS to unity. Approximating the RHS of
Eq. (49) by unity, and replacing maxV

circ,h instead of
maxV

circ,� in Eq. (29), the peak circular velocity of a
host halo allows to predict the scale parameter � and
thus the soliton relevant for that host halo.

A. Comparison to numerical simulations

In Fig. 4 we compare our results to two soliton+halo
configurations from the simulations of [9] and [29] (for [9],
we take the largest halo, and for [29] we take the ini-
tial state of Case C). To calculate the soliton, we read
maxV

circ,h from the large-scale peak (at x ⇠ 20 kpc)
of the numerically extracted halo rotation curves (solid
lines), use it instead of maxV

circ,� in Eq. (29), and read
o↵ the value of �. The predicted soliton bump is shown
in dashed lines. It gives the correct soliton peak rotation
velocity to ⇠ 20% accuracy in both cases, consistent with
the factor of . 2 spread shown in [10] for Eq. (32) across
di↵erent simulations.

0.5 1 5 10 50 100
x [kpc]

20

40

60
80
100
Vcirc [km/s]

Schive (2014)

Chan (2017)

FIG. 4. Comparison of the prediction of Eq. (49) (dashed
lines) to the numerical simulation results (solid lines) of
Refs. [9] (Schive 2014) and [29] (Chan 2017).

B. Comparison to real galaxies

We now consider some observational consequences of
our analysis. We choose to do so by examining the rota-
tion curves of nearby dwarf galaxies with halo masses in
the range ⇠ 109 to a few 1010 M�, within the range cov-
ered by the simulations of [9, 10] and above the minimal
mass of an ULDM halo with m � 10�22 eV.
In Fig. 5 we show the rotation curves of four dwarf

galaxies taken from Ref. [24] (see Ref. [25] for a recent
rendering of these and many other rotation curves), for
which high-resolution kinematical data is available. The
observed rotation curves are compared to the soliton con-
tribution predicted by Eq. (49), for m = 10�21, 10�22

and 2 ⇥ 10�23 eV. Eq. (49) overestimates the rotation
velocity in the inner part of all of the galaxies in Fig. 5.
We emphasize that in using Eq. (49) to predict the soli-

ton, we set the RHS of that equation to unity, and thus
we ignore any details of the shape of the host halo. As
we have learned from the NFW analysis, this prescrip-
tion for deriving the soliton profile would su↵er O(10%)
corrections from the detailed halo shape, but it relieves
us from the need to fit for the virial mass or any other
detail of the host halo. All that is needed is the peak
halo rotation velocity, a directly observable quantity6.
Eq. (49) represents the central value of the soliton–

host halo relation Eq. (35). Ref. [9, 10] showed a scatter
of about a factor of two in their Eq. (34) between simu-
lated halos. This translates to a factor of two scatter in
the soliton � parameter, derived through our procedure.
It is therefore important to check, if natural scatter be-
tween di↵erent galaxies could explain the discrepancy,
with the four galaxies in Fig. 5 being accidental outliers.
In App. A we address this question, by analysing the en-
tire SPARC data base [25] of 175 rotation curves. As we
show, the large majority of galaxies from [25] show strong
tension, and a factor of two scatter between di↵erent ha-
los is not enough to resolve the discrepancy highlighted
by the smaller sample of galaxies in Fig. 5.
The discrepancy remains large, and would be di�cult

to attribute to the scatter seen in the simulations. We
conclude that if the soliton-host halo relation of [9, 10]
is correct, then ULDM in the mass range m ⇠ 10�22 to
m ⇠ 10�21 is ruled out.
For lower particle mass, m . 10�23 eV, the soliton

contribution extends over much of the velocity profile of
the dwarf galaxies under discussion, leaving little room
for a host halo. This limit, where the galaxies are en-
tirely composed of a single giant soliton, was considered
in other works. We do not pursue it further, one reason
being that this range of small m is in significant tension
with Ly-↵ data [15, 16].

6 The rotation curves in Fig. 5 do not show a clear peak within
the range of the measurement; this means that our soliton bump,
derived from the peak velocity actually seen in the data, under-
estimates the true predicted soliton and is thus conservative.
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cut. Of the 175 galaxies in [25], 160 pass the M
gal

cut
for m = 10�22 eV, and 174 pass it for m = 10�21 eV.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). Our first pass
on the data includes only galaxies for which the predicted
soliton is resolved, namely, x

peak,� from Eq. (50), with
maxV

circ,� = maxV
circ,h, lies within the rotation curve

data. For these galaxies, we compute from data the ratio

V
circ, obs(xpeak,�)

maxV
circ,h

. (A1)

Here, V
circ, obs(xpeak,�) is the measured velocity at the

expected soliton peak position. We compute it by av-
eraging the two data points corresponding to measured
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FIG. 10. UGC 1281.

FIG. 11. UGC 4325.

radius just below and just above x
peak,�.

The results of this first pass on the data are shown in
Fig. 14. 46 galaxies passed the resolved soliton cut for
m = 10�22 eV, and 4 galaxies pass it for m = 10�21 eV.

Including only galaxies with a resolved soliton causes
us to loose many relevant rotation curves, with discrim-
inatory power. To overcome this, yet maintain a simple
analysis, we perform a second pass on the data. Here,
we allow galaxies with unresolved soliton, as long as
the lowest radius data point is located not farther than
3 ⇥ x

peak,�. We need to correct for the fact that the
soliton peak velocity is outside of the measurement res-
olution. To do this, we modify the velocity observable

FIG. 12. NGC 1560.

FIG. 13. NGC 100.
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expected soliton peak position. We compute it by av-
eraging the two data points corresponding to measured

FIG. 10. UGC 1281.

FIG. 11. UGC 4325.

radius just below and just above x
peak,�.

The results of this first pass on the data are shown in
Fig. 14. 46 galaxies passed the resolved soliton cut for
m = 10�22 eV, and 4 galaxies pass it for m = 10�21 eV.

Including only galaxies with a resolved soliton causes
us to loose many relevant rotation curves, with discrim-
inatory power. To overcome this, yet maintain a simple
analysis, we perform a second pass on the data. Here,
we allow galaxies with unresolved soliton, as long as
the lowest radius data point is located not farther than
3 ⇥ x

peak,�. We need to correct for the fact that the
soliton peak velocity is outside of the measurement res-
olution. To do this, we modify the velocity observable

FIG. 12. NGC 1560.

0 2 4 6 8
x [kpc]0

20

40

60

80

100

120
Vcirc [km/s]

NGC 100

m=10-22eV

FIG. 13. NGC 100.

Bar et al. 1805.00122 analysed dozens of rotation curves: the feature isn’t there. 
m < 1e-21 eV   in tension with observations. 
(excludes ULDM from addressing small-scale puzzles of DM.)
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Summary 

* ULDM exhibits wave dynamics on scales ~ de Broglie wavelength. 
* Lends itself to analytic understanding (nothing like this for WIMPs). 
* Predicts features in inner kinematics of galaxies. 

Bar et al. 1805.00122 analysed dozens of clean rotation curves. 
As far as we could see, the feature isn’t there: 

m < 1e-21 eV in tension with observations. 
(excludes ULDM from addressing small-scale puzzles of DM.) 

Open questions / work in progress: 
Is the soliton—host halo relation correct? (or artefact of numerical simulations?) 
If yes, what is the dynamical reason for it? 

More observational tests of particle nature of dark matter, based on gravity alone?

Comparable independent constraints from Ly-alpha Forest 
Armengaud (1703.09126), Irsic (1703.04683), Zhang (1708.04389), Kobayashi (1708.00015) 
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Rotation curves from simulations 

Velocity bump in inner galaxy: implied by soliton—halo relation



* 3.6um 
* HI + Halpha rotation curves
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max Vbar/VDM < 0.5

max Vbar/VDM < 0.3

* 3.6um 
* HI + Halpha rotation curves

SPARC Lelli et al, 1606.09251 
175 rotation curves



The Milky Way: nuclear bulge vs. soliton 

10-4 10-3 10-2 10-1 100 101 102 103 104 105

r [pc]

105

106

107

108

109

1010

1011

1012

en
clo

se
d 

m
as

s 
[M

]

m=10-19 eV
m=10-20 eV
m=10-21 eV
m=10-22 eV
Ghez 2003
McGinn 1989
Fritz 2016
Lindqvist 1992
Schodel 2014
Sofue 2009
Sofue 2012
Sofue 2013
Chatzopoulos 2015
Deguchi 2004
Oh 2009
Trippe 2008
Gilessen 2008

NFW fit,
Piffl (2015)



The Milky Way: nuclear bulge vs. soliton 

10-4 10-2 100 102 104

r [pc]

105

106

107

108

109

1010

1011

1012

en
clo

se
d 

m
as

s 
[M

]

m=10-19 eV
m=10-20 eV
m=10-21 eV
m=10-22 eV
Ghez 2003
McGinn 1989
Fritz 2016
Lindqvist 1992
Schodel 2014
Sofue 2009
Sofue 2012
Sofue 2013
Chatzopoulos 2015
Deguchi 2004
Oh 2009
Trippe 2008
Gilessen 2008

Nuclear Bulge (disc+star cluster)
from photometry, Launhardt (2002)

NFW fit,
Piffl (2015)

there are about 10^9 stars in there…
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Analytic soliton:

3

The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
1

. A numerical calculation gives [4–6]

�
1

⇡ �0.69. (9)

The mass of the �
1

soliton is

M
1

=
M2

pl

m

Z 1

0

drr2�2

1

(r) (10)

⇡ 2.79⇥ 1012
⇣ m

10�22 eV

⌘�1

M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

Other solutions of Eqs. (7-8) can be obtained from
�
1

(r), �
1

(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1

(�r), (12)

��(r) = �2�
1

(�r), (13)

�� = �2�
1

, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6⇥ 10�4

⇣ m

10�22 eV

⌘✓
M�

109 M�

◆
. (17)

The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27⇥ 108
⇣ m

10�22 eV

⌘�2

kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is

E =
1

2

Z
d3x

✓
1

m2

|r |2 + � | |2
◆

= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (21)

Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
M2

pl

m
, (22)

M� ⇡ 2.06�
M2

pl

m
. (23)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2

pl/m)
⇡ 2.64

�����
E�

(M2

pl/m)

�����

1
3

. (24)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
M�

⇡ 0.23�2, (25)

which can also be written as

M� ⇡ 4.3

✓ |E�|
M�

◆ 1
2 M2

pl

m
. (26)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)

3

The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
1

. A numerical calculation gives [4–6]

�
1

⇡ �0.69. (9)

The mass of the �
1

soliton is

M
1

=
M2

pl

m

Z 1

0

drr2�2

1

(r) (10)

⇡ 2.79⇥ 1012
⇣ m

10�22 eV

⌘�1

M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

Other solutions of Eqs. (7-8) can be obtained from
�
1

(r), �
1

(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1

(�r), (12)

��(r) = �2�
1

(�r), (13)

�� = �2�
1

, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6⇥ 10�4

⇣ m

10�22 eV

⌘✓
M�

109 M�

◆
. (17)

The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27⇥ 108
⇣ m

10�22 eV

⌘�2

kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is

E =
1

2

Z
d3x

✓
1

m2

|r |2 + � | |2
◆

= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (21)

Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
M2

pl

m
, (22)

M� ⇡ 2.06�
M2

pl

m
. (23)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2

pl/m)
⇡ 2.64

�����
E�

(M2

pl/m)

�����

1
3

. (24)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
M�

⇡ 0.23�2, (25)

which can also be written as

M� ⇡ 4.3

✓ |E�|
M�

◆ 1
2 M2

pl

m
. (26)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)

3

The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
1

. A numerical calculation gives [4–6]

�
1

⇡ �0.69. (9)

The mass of the �
1

soliton is

M
1

=
M2

pl

m

Z 1

0

drr2�2

1

(r) (10)

⇡ 2.79⇥ 1012
⇣ m

10�22 eV

⌘�1

M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

Other solutions of Eqs. (7-8) can be obtained from
�
1

(r), �
1

(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1

(�r), (12)

��(r) = �2�
1

(�r), (13)

�� = �2�
1

, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6⇥ 10�4

⇣ m

10�22 eV

⌘✓
M�

109 M�

◆
. (17)

The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27⇥ 108
⇣ m

10�22 eV

⌘�2

kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is

E =
1

2

Z
d3x

✓
1

m2

|r |2 + � | |2
◆

= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (21)

Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
M2

pl

m
, (22)

M� ⇡ 2.06�
M2

pl

m
. (23)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2

pl/m)
⇡ 2.64

�����
E�

(M2

pl/m)

�����

1
3

. (24)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
M�

⇡ 0.23�2, (25)

which can also be written as

M� ⇡ 4.3

✓ |E�|
M�

◆ 1
2 M2

pl

m
. (26)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)

Mocz et al 1705.05845 



3

The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
1

. A numerical calculation gives [4–6]

�
1

⇡ �0.69. (9)

The mass of the �
1

soliton is

M
1

=
M2

pl

m

Z 1

0

drr2�2

1

(r) (10)

⇡ 2.79⇥ 1012
⇣ m

10�22 eV

⌘�1

M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

Other solutions of Eqs. (7-8) can be obtained from
�
1

(r), �
1

(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1

(�r), (12)

��(r) = �2�
1

(�r), (13)

�� = �2�
1

, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6⇥ 10�4

⇣ m

10�22 eV

⌘✓
M�

109 M�

◆
. (17)

The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27⇥ 108
⇣ m

10�22 eV

⌘�2

kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is

E =
1

2

Z
d3x

✓
1

m2

|r |2 + � | |2
◆

= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (21)

Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
M2

pl

m
, (22)

M� ⇡ 2.06�
M2

pl

m
. (23)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2

pl/m)
⇡ 2.64

�����
E�

(M2

pl/m)

�����

1
3

. (24)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
M�

⇡ 0.23�2, (25)

which can also be written as

M� ⇡ 4.3

✓ |E�|
M�

◆ 1
2 M2

pl

m
. (26)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)
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This means that the total energy 
in the simulation box 
was eaten up by 1 soliton. 

Should not apply to real 
galaxies above ~1e8 Msol 

(initial conditions?)
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conditions in each of the 100 simulation runs in Ref. [3] contained a number N of randomly placed initial solitons,
with N ranging between 4 to 32. Each initial soliton was characterised by a core radius xc randomly selected (we
assume from a uniform distribution) in the range 8 � 50 kpc. Since the mass (energy) of a given soliton is inversely
proportional to its core radius (radius cubed), a uniform distribution of xc corresponds to a non-uniform distribution
of initial soliton masses and energies.
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FIG. 3: Some insight on the simulations of Ref. [3].

In Fig. 3 we copy the information from Fig. 4 of Ref. [3]: black diamonds show the 100 converged simulation results
of [3]. The black dashed line shows the soliton mass-halo energy relation noted in [3]. Now, the x-axis of Fig. 3 is
|Etot|/M3

tot, so, since Etot and Mtot are conserved quantities, the x-axis location of each simulation run stays fixed
between the initial conditions at time t = 0 and the final state at large t. What moves in time in the simulation is
the y-axis coordinate, which shows the central soliton mass normalised to the total conserved mass M/Mtot. This
y-coordinate grows as the central soliton grows in mass by absorbing ULDM from the surrounding. We can estimate
how much vertical movement is actually happening in the simulation, as follows. Given the number of initial solitons
N , and assuming that the initial core radii are drawn from a uniform distribution in the range stated by [3], we can
produce random sets of Mtot, Etot with the corresponding statistics. In Fig. 3 we show the results of such random set
generation, for N = 4, 6, 12, 20, 30 (blue, green, cyan, magenta, red circles). The x-axis locations of the random sets
of initial solitons is well defined. On the y-axis, we characterised the initial conditions by taking the mass of the most
massive soliton in the set.

Two main points can be seen in Fig. 3. First, the initially most massive solitons in the simulations typically start
their life with a mass that is already not far o↵ below the mass of the final state evolved configuration. For simulations
starting with 4 initial solitons (blue points), the most massive soliton typically needs to grow by a mere factor of
1.5 or less, to achieve its final mass; for 30 initial solitons (red points), the typical growth is a factor of 2 or less.
This is a small mass adjustment: the evolved central solitons of [3] must be the result of only mild processing of the
initial state. Second, the global properties of the simulation runs depend on the initial number of solitons in the box.
Few-soliton systems populate large |Etot|/M3

tot, while many-soliton systems populate small |Etot|/M3
tot in the plot.

This is not a huge surprise: if [3] had taken a single soliton initial condition, than that simulation would start and
end its life at M/Mtot = 1 and |Etot|/M3

tot = 1/2.63 = 0.054, at the top right of Fig. 3 along the black dashed line.
We conclude that the simulations of [3] were constructed such that one (or a small few) initial state soliton – the

soliton of initially largest mass – grew to absorb essentially the entire (negative) total energy of the system. To do
so, the most massive soliton needed only to grow in mass by a factor of 1.5-2. Fig. 1 in Ref. [3], showing a rendering
of one simulation run, appears qualitatively consistent with this picture. This result is qualitatively consistent with
the assumption we made in Sec. III B, namely that the soliton will grow to suck in all available negative energy while
maintaining mass conservation together with the soliton mass-energy relation. However, the simulations of [3] describe
the evolution of a dominant soliton assembling an energetically sub-dominant halo around it. We, on the other hand,
are more interested in the scenario of a massive, energetically dominant, MW-like halo, assembling a soliton inside
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In this work we consider the soliton–host halo relations,
found by di↵erent numerical simulation groups [9–13].
Our first observation is that properties of the analytic
soliton solution can provide important insight on the nu-
merical results. We show that: (i) the soliton–host halo
relation, reported in [11], essentially attributes the total
energy (kinetic+gravitational) of the halo to the domi-
nant soliton. This energetic dominance of the soliton is
unlikely to hold for realistic galaxies above a certain size.
(ii) the soliton–host halo relation, reported in [9], essen-
tially equates the energy per unit mass in the soliton to
the energy per unit mass in the virial halo. This relation
could apply to real galaxies.

Assuming that the soliton–host halo relation of [9, 10]
is correct, we analyse its implications. We show that the
equality of energy per unit mass between the soliton and
the halo leads to a strong prediction: the peak circular ve-
locity characterising the host halo on large scales (few kpc
for typical 109 � 1010 M� dwarf galaxies) should repeat
itself in the core on small scales (< 1 kpc), insensitive to
the details of the host halo density profile. This implies
an observational constraint that can be tested without
free parameters. Applying this test to high resolution ro-
tation curves of dwarf galaxies from [24] and [25], we find
that ULDM in the mass rangem ⇠ 10�22�10�21 eV is in
strong tension with the data. As a result, if the soliton–
host halo relation of [9, 10] is correct, ULDM is excluded
below ⇠ 10�21 eV and cannot play a role in solving the
small scale puzzles of ⇤CDM.

The outline of this paper is as follows. In Sec. II we
review some basic properties of the soliton. In Sec. III
we discuss the soliton–host halo relations found in sim-
ulations, and show that these relations can be under-
stood in terms of fundamental properties of the soliton
and the halo. The simulations of [9, 10] are considered
in Sec. IIIA; they can be summarised by the statement
(E/M)|

soliton

= (E/M)|
halo

, where E is the total energy
(kinetic+gravitational, within the virial radius, for the
halo) and M is the mass (again within the virial radius,
for the halo). The simulations of [11] are considered in
Sec. III B; their main result can be summarised by the
statement E|

soliton

= E|
halo

. We argue that this result
is unlikely to represent realistic galaxies above a certain
size.

In Sec. IV, assuming that the soliton–host halo rela-
tion of [9, 10] is correct, we work out its observational
consequences. We show that in ULDM galaxies satisfy-
ing this relation, the rotation velocity in the inner core
should be approximately as high as the peak rotation ve-
locity in the outer part of the galaxy. In Sec. IVA we
compare this analysis to numerical profiles taken directly
from the published simulation results, finding good agree-
ment. In Sec. IVB we compare this prediction to dwarf
galaxy data from [24], finding tension with the data for
m ⇠ 10�22 � 10�21 eV. An important analysis is con-
tained in App. A, where we analyse the SPARC [25] ro-
tation curve data base, showing that halo-to-halo scatter
cannot resolve the discrepancy.

Our main results are unlikely to be a↵ected by baryonic
physics: the discrepancy between ULDM (with soliton–
host halo relation) and dwarf galaxy data is too large.
Nevertheless, for completeness, in Sec. V we calculate
how baryonic e↵ects could modify the soliton solution.
In Sec. VA we consider a smooth fixed distribution of
baryonic mass, deferring the case of a super-massive
black hole (SMBH) to App. B. An interesting case study,
where baryonic e↵ects would be important for an ULDM
soliton satisfying the soliton–host halo relation, is the
Milky-Way (MW) galaxy. We study ULDM in the MW
in Sec. VB, showing that a dedicated analysis of inner
MW kinematics – including simultaneous modelling of
the baryonic mass and the soliton – could potentially
test ULDM for m & 10�19 eV.
In Sec. VI we conclude and compare our results to

related results from previous literature. In Sec. VII we
present a brief summary.

II. SOLITON PROPERTIES: ANALYTIC
CONSIDERATIONS

Our analysis in this section parallels earlier discussion
in, e.g. [4–6], which we expand to point out relevant prop-
erties of the soliton that help to understand results from
numerical simulations.
We consider a real, massive, free1 scalar field �, satisfy-

ing the Klein-Gordon equation of motion and minimally
coupled to gravity. In the non-relativistic regime it is
convenient to decompose � as

�(x, t) =
1p
2m

e�imt (x, t) + cc, (2)

with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |, and that satis-
fies the Schroedinger-Poisson (SP) equations [27]

i@t = � 1

2m
r2 +m� , (3)

r2� = 4⇡G| |2. (4)

We look for a quasi-stationary phase-coherent solution,
described by the anzats2

 (x, t) =

✓
mMplp

4⇡

◆
e�i�mt�(x). (5)

The ULDM mass density is

⇢ =
(mMpl)

2

4⇡
�2 (6)

⇡ 4.1⇥ 1014
⇣ m

10�22 eV

⌘
2

�2 M�/pc
3.

1 Analyses of interacting fields can be found in, e.g. [4, 5, 26].
2 Mpl = 1/

p
G.
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In this work we consider the soliton–host halo relations,
found by di↵erent numerical simulation groups [9–13].
Our first observation is that properties of the analytic
soliton solution can provide important insight on the nu-
merical results. We show that: (i) the soliton–host halo
relation, reported in [11], essentially attributes the total
energy (kinetic+gravitational) of the halo to the domi-
nant soliton. This energetic dominance of the soliton is
unlikely to hold for realistic galaxies above a certain size.
(ii) the soliton–host halo relation, reported in [9], essen-
tially equates the energy per unit mass in the soliton to
the energy per unit mass in the virial halo. This relation
could apply to real galaxies.

Assuming that the soliton–host halo relation of [9, 10]
is correct, we analyse its implications. We show that the
equality of energy per unit mass between the soliton and
the halo leads to a strong prediction: the peak circular ve-
locity characterising the host halo on large scales (few kpc
for typical 109 � 1010 M� dwarf galaxies) should repeat
itself in the core on small scales (< 1 kpc), insensitive to
the details of the host halo density profile. This implies
an observational constraint that can be tested without
free parameters. Applying this test to high resolution ro-
tation curves of dwarf galaxies from [24] and [25], we find
that ULDM in the mass rangem ⇠ 10�22�10�21 eV is in
strong tension with the data. As a result, if the soliton–
host halo relation of [9, 10] is correct, ULDM is excluded
below ⇠ 10�21 eV and cannot play a role in solving the
small scale puzzles of ⇤CDM.

The outline of this paper is as follows. In Sec. II we
review some basic properties of the soliton. In Sec. III
we discuss the soliton–host halo relations found in sim-
ulations, and show that these relations can be under-
stood in terms of fundamental properties of the soliton
and the halo. The simulations of [9, 10] are considered
in Sec. IIIA; they can be summarised by the statement
(E/M)|

soliton

= (E/M)|
halo

, where E is the total energy
(kinetic+gravitational, within the virial radius, for the
halo) and M is the mass (again within the virial radius,
for the halo). The simulations of [11] are considered in
Sec. III B; their main result can be summarised by the
statement E|

soliton

= E|
halo

. We argue that this result
is unlikely to represent realistic galaxies above a certain
size.

In Sec. IV, assuming that the soliton–host halo rela-
tion of [9, 10] is correct, we work out its observational
consequences. We show that in ULDM galaxies satisfy-
ing this relation, the rotation velocity in the inner core
should be approximately as high as the peak rotation ve-
locity in the outer part of the galaxy. In Sec. IVA we
compare this analysis to numerical profiles taken directly
from the published simulation results, finding good agree-
ment. In Sec. IVB we compare this prediction to dwarf
galaxy data from [24], finding tension with the data for
m ⇠ 10�22 � 10�21 eV. An important analysis is con-
tained in App. A, where we analyse the SPARC [25] ro-
tation curve data base, showing that halo-to-halo scatter
cannot resolve the discrepancy.

Our main results are unlikely to be a↵ected by baryonic
physics: the discrepancy between ULDM (with soliton–
host halo relation) and dwarf galaxy data is too large.
Nevertheless, for completeness, in Sec. V we calculate
how baryonic e↵ects could modify the soliton solution.
In Sec. VA we consider a smooth fixed distribution of
baryonic mass, deferring the case of a super-massive
black hole (SMBH) to App. B. An interesting case study,
where baryonic e↵ects would be important for an ULDM
soliton satisfying the soliton–host halo relation, is the
Milky-Way (MW) galaxy. We study ULDM in the MW
in Sec. VB, showing that a dedicated analysis of inner
MW kinematics – including simultaneous modelling of
the baryonic mass and the soliton – could potentially
test ULDM for m & 10�19 eV.
In Sec. VI we conclude and compare our results to

related results from previous literature. In Sec. VII we
present a brief summary.

II. SOLITON PROPERTIES: ANALYTIC
CONSIDERATIONS

Our analysis in this section parallels earlier discussion
in, e.g. [4–6], which we expand to point out relevant prop-
erties of the soliton that help to understand results from
numerical simulations.
We consider a real, massive, free1 scalar field �, satisfy-

ing the Klein-Gordon equation of motion and minimally
coupled to gravity. In the non-relativistic regime it is
convenient to decompose � as

�(x, t) =
1p
2m

e�imt (x, t) + cc, (2)

with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |, and that satis-
fies the Schroedinger-Poisson (SP) equations [27]

i@t = � 1

2m
r2 +m� , (3)

r2� = 4⇡G| |2. (4)

We look for a quasi-stationary phase-coherent solution,
described by the anzats2

 (x, t) =

✓
mMplp

4⇡

◆
e�i�mt�(x). (5)

The ULDM mass density is

⇢ =
(mMpl)

2

4⇡
�2 (6)

⇡ 4.1⇥ 1014
⇣ m

10�22 eV

⌘
2

�2 M�/pc
3.

1 Analyses of interacting fields can be found in, e.g. [4, 5, 26].
2 Mpl = 1/

p
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In this work we consider the soliton–host halo relations,
found by di↵erent numerical simulation groups [9–13].
Our first observation is that properties of the analytic
soliton solution can provide important insight on the nu-
merical results. We show that: (i) the soliton–host halo
relation, reported in [11], essentially attributes the total
energy (kinetic+gravitational) of the halo to the domi-
nant soliton. This energetic dominance of the soliton is
unlikely to hold for realistic galaxies above a certain size.
(ii) the soliton–host halo relation, reported in [9], essen-
tially equates the energy per unit mass in the soliton to
the energy per unit mass in the virial halo. This relation
could apply to real galaxies.

Assuming that the soliton–host halo relation of [9, 10]
is correct, we analyse its implications. We show that the
equality of energy per unit mass between the soliton and
the halo leads to a strong prediction: the peak circular ve-
locity characterising the host halo on large scales (few kpc
for typical 109 � 1010 M� dwarf galaxies) should repeat
itself in the core on small scales (< 1 kpc), insensitive to
the details of the host halo density profile. This implies
an observational constraint that can be tested without
free parameters. Applying this test to high resolution ro-
tation curves of dwarf galaxies from [24] and [25], we find
that ULDM in the mass rangem ⇠ 10�22�10�21 eV is in
strong tension with the data. As a result, if the soliton–
host halo relation of [9, 10] is correct, ULDM is excluded
below ⇠ 10�21 eV and cannot play a role in solving the
small scale puzzles of ⇤CDM.

The outline of this paper is as follows. In Sec. II we
review some basic properties of the soliton. In Sec. III
we discuss the soliton–host halo relations found in sim-
ulations, and show that these relations can be under-
stood in terms of fundamental properties of the soliton
and the halo. The simulations of [9, 10] are considered
in Sec. IIIA; they can be summarised by the statement
(E/M)|

soliton

= (E/M)|
halo

, where E is the total energy
(kinetic+gravitational, within the virial radius, for the
halo) and M is the mass (again within the virial radius,
for the halo). The simulations of [11] are considered in
Sec. III B; their main result can be summarised by the
statement E|

soliton

= E|
halo

. We argue that this result
is unlikely to represent realistic galaxies above a certain
size.

In Sec. IV, assuming that the soliton–host halo rela-
tion of [9, 10] is correct, we work out its observational
consequences. We show that in ULDM galaxies satisfy-
ing this relation, the rotation velocity in the inner core
should be approximately as high as the peak rotation ve-
locity in the outer part of the galaxy. In Sec. IVA we
compare this analysis to numerical profiles taken directly
from the published simulation results, finding good agree-
ment. In Sec. IVB we compare this prediction to dwarf
galaxy data from [24], finding tension with the data for
m ⇠ 10�22 � 10�21 eV. An important analysis is con-
tained in App. A, where we analyse the SPARC [25] ro-
tation curve data base, showing that halo-to-halo scatter
cannot resolve the discrepancy.

Our main results are unlikely to be a↵ected by baryonic
physics: the discrepancy between ULDM (with soliton–
host halo relation) and dwarf galaxy data is too large.
Nevertheless, for completeness, in Sec. V we calculate
how baryonic e↵ects could modify the soliton solution.
In Sec. VA we consider a smooth fixed distribution of
baryonic mass, deferring the case of a super-massive
black hole (SMBH) to App. B. An interesting case study,
where baryonic e↵ects would be important for an ULDM
soliton satisfying the soliton–host halo relation, is the
Milky-Way (MW) galaxy. We study ULDM in the MW
in Sec. VB, showing that a dedicated analysis of inner
MW kinematics – including simultaneous modelling of
the baryonic mass and the soliton – could potentially
test ULDM for m & 10�19 eV.
In Sec. VI we conclude and compare our results to

related results from previous literature. In Sec. VII we
present a brief summary.

II. SOLITON PROPERTIES: ANALYTIC
CONSIDERATIONS

Our analysis in this section parallels earlier discussion
in, e.g. [4–6], which we expand to point out relevant prop-
erties of the soliton that help to understand results from
numerical simulations.
We consider a real, massive, free1 scalar field �, satisfy-

ing the Klein-Gordon equation of motion and minimally
coupled to gravity. In the non-relativistic regime it is
convenient to decompose � as

�(x, t) =
1p
2m

e�imt (x, t) + cc, (2)

with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |, and that satis-
fies the Schroedinger-Poisson (SP) equations [27]

i@t = � 1

2m
r2 +m� , (3)

r2� = 4⇡G| |2. (4)

We look for a quasi-stationary phase-coherent solution,
described by the anzats2

 (x, t) =

✓
mMplp

4⇡

◆
e�i�mt�(x). (5)

The ULDM mass density is

⇢ =
(mMpl)

2

4⇡
�2 (6)

⇡ 4.1⇥ 1014
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10�22 eV

⌘
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�2 M�/pc
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1 Analyses of interacting fields can be found in, e.g. [4, 5, 26].
2 Mpl = 1/
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In this work we consider the soliton–host halo relations,
found by di↵erent numerical simulation groups [9–13].
Our first observation is that properties of the analytic
soliton solution can provide important insight on the nu-
merical results. We show that: (i) the soliton–host halo
relation, reported in [11], essentially attributes the total
energy (kinetic+gravitational) of the halo to the domi-
nant soliton. This energetic dominance of the soliton is
unlikely to hold for realistic galaxies above a certain size.
(ii) the soliton–host halo relation, reported in [9], essen-
tially equates the energy per unit mass in the soliton to
the energy per unit mass in the virial halo. This relation
could apply to real galaxies.

Assuming that the soliton–host halo relation of [9, 10]
is correct, we analyse its implications. We show that the
equality of energy per unit mass between the soliton and
the halo leads to a strong prediction: the peak circular ve-
locity characterising the host halo on large scales (few kpc
for typical 109 � 1010 M� dwarf galaxies) should repeat
itself in the core on small scales (< 1 kpc), insensitive to
the details of the host halo density profile. This implies
an observational constraint that can be tested without
free parameters. Applying this test to high resolution ro-
tation curves of dwarf galaxies from [24] and [25], we find
that ULDM in the mass rangem ⇠ 10�22�10�21 eV is in
strong tension with the data. As a result, if the soliton–
host halo relation of [9, 10] is correct, ULDM is excluded
below ⇠ 10�21 eV and cannot play a role in solving the
small scale puzzles of ⇤CDM.

The outline of this paper is as follows. In Sec. II we
review some basic properties of the soliton. In Sec. III
we discuss the soliton–host halo relations found in sim-
ulations, and show that these relations can be under-
stood in terms of fundamental properties of the soliton
and the halo. The simulations of [9, 10] are considered
in Sec. IIIA; they can be summarised by the statement
(E/M)|

soliton

= (E/M)|
halo

, where E is the total energy
(kinetic+gravitational, within the virial radius, for the
halo) and M is the mass (again within the virial radius,
for the halo). The simulations of [11] are considered in
Sec. III B; their main result can be summarised by the
statement E|

soliton

= E|
halo

. We argue that this result
is unlikely to represent realistic galaxies above a certain
size.

In Sec. IV, assuming that the soliton–host halo rela-
tion of [9, 10] is correct, we work out its observational
consequences. We show that in ULDM galaxies satisfy-
ing this relation, the rotation velocity in the inner core
should be approximately as high as the peak rotation ve-
locity in the outer part of the galaxy. In Sec. IVA we
compare this analysis to numerical profiles taken directly
from the published simulation results, finding good agree-
ment. In Sec. IVB we compare this prediction to dwarf
galaxy data from [24], finding tension with the data for
m ⇠ 10�22 � 10�21 eV. An important analysis is con-
tained in App. A, where we analyse the SPARC [25] ro-
tation curve data base, showing that halo-to-halo scatter
cannot resolve the discrepancy.

Our main results are unlikely to be a↵ected by baryonic
physics: the discrepancy between ULDM (with soliton–
host halo relation) and dwarf galaxy data is too large.
Nevertheless, for completeness, in Sec. V we calculate
how baryonic e↵ects could modify the soliton solution.
In Sec. VA we consider a smooth fixed distribution of
baryonic mass, deferring the case of a super-massive
black hole (SMBH) to App. B. An interesting case study,
where baryonic e↵ects would be important for an ULDM
soliton satisfying the soliton–host halo relation, is the
Milky-Way (MW) galaxy. We study ULDM in the MW
in Sec. VB, showing that a dedicated analysis of inner
MW kinematics – including simultaneous modelling of
the baryonic mass and the soliton – could potentially
test ULDM for m & 10�19 eV.
In Sec. VI we conclude and compare our results to

related results from previous literature. In Sec. VII we
present a brief summary.

II. SOLITON PROPERTIES: ANALYTIC
CONSIDERATIONS

Our analysis in this section parallels earlier discussion
in, e.g. [4–6], which we expand to point out relevant prop-
erties of the soliton that help to understand results from
numerical simulations.
We consider a real, massive, free1 scalar field �, satisfy-

ing the Klein-Gordon equation of motion and minimally
coupled to gravity. In the non-relativistic regime it is
convenient to decompose � as

�(x, t) =
1p
2m

e�imt (x, t) + cc, (2)

with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |, and that satis-
fies the Schroedinger-Poisson (SP) equations [27]

i@t = � 1

2m
r2 +m� , (3)

r2� = 4⇡G| |2. (4)

We look for a quasi-stationary phase-coherent solution,
described by the anzats2

 (x, t) =
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The ULDM mass density is
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The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
1

. A numerical calculation gives [4–6]

�
1

⇡ �0.69. (9)

The mass of the �
1

soliton is

M
1

=
M2

pl

m

Z 1

0

drr2�2

1

(r) (10)

⇡ 2.79⇥ 1012
⇣ m

10�22 eV

⌘�1

M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

Other solutions of Eqs. (7-8) can be obtained from
�
1

(r), �
1

(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1

(�r), (12)

��(r) = �2�
1

(�r), (13)

�� = �2�
1

, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by
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The circular velocity curve for a test particle in the
soliton gravitational potential is given by
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Real, free, KG field doing the job of DM
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In this work we consider the soliton–host halo relations,
found by di↵erent numerical simulation groups [9–13].
Our first observation is that properties of the analytic
soliton solution can provide important insight on the nu-
merical results. We show that: (i) the soliton–host halo
relation, reported in [11], essentially attributes the total
energy (kinetic+gravitational) of the halo to the domi-
nant soliton. This energetic dominance of the soliton is
unlikely to hold for realistic galaxies above a certain size.
(ii) the soliton–host halo relation, reported in [9], essen-
tially equates the energy per unit mass in the soliton to
the energy per unit mass in the virial halo. This relation
could apply to real galaxies.

Assuming that the soliton–host halo relation of [9, 10]
is correct, we analyse its implications. We show that the
equality of energy per unit mass between the soliton and
the halo leads to a strong prediction: the peak circular ve-
locity characterising the host halo on large scales (few kpc
for typical 109 � 1010 M� dwarf galaxies) should repeat
itself in the core on small scales (< 1 kpc), insensitive to
the details of the host halo density profile. This implies
an observational constraint that can be tested without
free parameters. Applying this test to high resolution ro-
tation curves of dwarf galaxies from [24] and [25], we find
that ULDM in the mass rangem ⇠ 10�22�10�21 eV is in
strong tension with the data. As a result, if the soliton–
host halo relation of [9, 10] is correct, ULDM is excluded
below ⇠ 10�21 eV and cannot play a role in solving the
small scale puzzles of ⇤CDM.

The outline of this paper is as follows. In Sec. II we
review some basic properties of the soliton. In Sec. III
we discuss the soliton–host halo relations found in sim-
ulations, and show that these relations can be under-
stood in terms of fundamental properties of the soliton
and the halo. The simulations of [9, 10] are considered
in Sec. IIIA; they can be summarised by the statement
(E/M)|

soliton

= (E/M)|
halo

, where E is the total energy
(kinetic+gravitational, within the virial radius, for the
halo) and M is the mass (again within the virial radius,
for the halo). The simulations of [11] are considered in
Sec. III B; their main result can be summarised by the
statement E|

soliton

= E|
halo

. We argue that this result
is unlikely to represent realistic galaxies above a certain
size.

In Sec. IV, assuming that the soliton–host halo rela-
tion of [9, 10] is correct, we work out its observational
consequences. We show that in ULDM galaxies satisfy-
ing this relation, the rotation velocity in the inner core
should be approximately as high as the peak rotation ve-
locity in the outer part of the galaxy. In Sec. IVA we
compare this analysis to numerical profiles taken directly
from the published simulation results, finding good agree-
ment. In Sec. IVB we compare this prediction to dwarf
galaxy data from [24], finding tension with the data for
m ⇠ 10�22 � 10�21 eV. An important analysis is con-
tained in App. A, where we analyse the SPARC [25] ro-
tation curve data base, showing that halo-to-halo scatter
cannot resolve the discrepancy.

Our main results are unlikely to be a↵ected by baryonic
physics: the discrepancy between ULDM (with soliton–
host halo relation) and dwarf galaxy data is too large.
Nevertheless, for completeness, in Sec. V we calculate
how baryonic e↵ects could modify the soliton solution.
In Sec. VA we consider a smooth fixed distribution of
baryonic mass, deferring the case of a super-massive
black hole (SMBH) to App. B. An interesting case study,
where baryonic e↵ects would be important for an ULDM
soliton satisfying the soliton–host halo relation, is the
Milky-Way (MW) galaxy. We study ULDM in the MW
in Sec. VB, showing that a dedicated analysis of inner
MW kinematics – including simultaneous modelling of
the baryonic mass and the soliton – could potentially
test ULDM for m & 10�19 eV.
In Sec. VI we conclude and compare our results to

related results from previous literature. In Sec. VII we
present a brief summary.

II. SOLITON PROPERTIES: ANALYTIC
CONSIDERATIONS

Our analysis in this section parallels earlier discussion
in, e.g. [4–6], which we expand to point out relevant prop-
erties of the soliton that help to understand results from
numerical simulations.
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2m
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r2� = 4⇡G| |2. (4)
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e�i�mt�(x). (5)

The ULDM mass density is

⇢ =
(mMpl)

2

4⇡
�2 (6)

⇡ 4.1⇥ 1014
⇣ m

10�22 eV

⌘
2

�2 M�/pc
3.

1 Analyses of interacting fields can be found in, e.g. [4, 5, 26].
2 Mpl = 1/

p
G.
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The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.
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the SP equations for � and � are given by
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@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
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also satisfy Eqs. (7-8) with correct boundary conditions
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A mnemonic for the numerical value of � is given by
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The core radius can be compared with the particle de
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3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),
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Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�
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with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have
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Note that spherical symmetry is not needed for Eq. (21)
to hold.
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The circular velocity curve for a test particle in the
soliton gravitational potential is given by
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This gives an approximately constant �dB in the soliton
core region (where x < xc�),
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Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
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Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
M2

pl

m
, (22)

M� ⇡ 2.06�
M2

pl

m
. (23)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2

pl/m)
⇡ 2.64

�����
E�

(M2

pl/m)

�����

1
3

. (24)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
M�

⇡ 0.23�2, (25)

which can also be written as

M� ⇡ 4.3

✓ |E�|
M�

◆ 1
2 M2

pl

m
. (26)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)

3

The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
1

. A numerical calculation gives [4–6]

�
1

⇡ �0.69. (9)

The mass of the �
1

soliton is

M
1

=
M2

pl

m

Z 1

0

drr2�2

1

(r) (10)

⇡ 2.79⇥ 1012
⇣ m

10�22 eV

⌘�1

M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

Other solutions of Eqs. (7-8) can be obtained from
�
1

(r), �
1

(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1

(�r), (12)

��(r) = �2�
1

(�r), (13)

�� = �2�
1

, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6⇥ 10�4

⇣ m

10�22 eV

⌘✓
M�

109 M�

◆
. (17)

The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27⇥ 108
⇣ m

10�22 eV

⌘�2

kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is

E =
1

2

Z
d3x

✓
1

m2

|r |2 + � | |2
◆

= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (21)

Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
M2

pl

m
, (22)

M� ⇡ 2.06�
M2

pl

m
. (23)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2

pl/m)
⇡ 2.64

�����
E�

(M2

pl/m)

�����

1
3

. (24)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
M�

⇡ 0.23�2, (25)

which can also be written as

M� ⇡ 4.3

✓ |E�|
M�

◆ 1
2 M2

pl

m
. (26)

The circular velocity curve for a test particle in the
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Some facts about solitons
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requires |�| ⌧ 1, and since we are looking for gravita-
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It is convenient to first solve Eqs. (7-8) with the initial
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �

1

profile (�2

1

(r), to be precise).

FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density

xc ⇡ 160

✓
Mh

1012 M�

◆� 1
3 ⇣ m

10�22 eV

⌘�1

pc, (30)

⇢(x) ⇡
190

�
m

10

�22
eV

��2

⇣
xc

100 pc

⌘�4

✓
1 + 0.091

⇣
x
xc

⌘
2

◆
8

M� pc�3, (31)

where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is

M ⇡ 1.4⇥ 109
⇣ m

10�22 eV

⌘�1

✓
Mh

1012 M�

◆ 1
3

M�,(32)

so its � parameter is

� ⇡ 4.9⇥ 10�4

✓
Mh

1012 M�

◆ 1
3

. (33)

Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via

Schive et al 1406.6586 
Schive et al 1407.7762
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Note that on the LHS of Eq. (12),
E

M

���
soliton

is defined

for the self-gravitating soliton without including the gravi-
tational potential induced by the large-scale halo. The halo
gravitational potential �h, defined to vanish at infinity, is
approximately constant throughout the halo inner region
where the soliton occurs and can be estimated as �h ⇠
10

E

M

���
halo

, up toO(1) corrections depending on the detailed

shape of the halo [17]. If we were to include the correc-
tion to the soliton energy due to this constant background

potential, it would change:
E

M

���
soliton

! E

M

���
soliton

+ �h.

This discussion suggests that the soliton–host halo relation
is better expressed using kinetic energy, rather than total
energy:

K

M

���
soliton

=

K

M

���
halo

. (13)

Because �h is approximately constant over the region where
the soliton is supported, the soliton shape is not distorted
and its kinetic energy is not modified from its value for
the self-gravitating solution. This means that for massive
halos in DM-only simulations, Eq. (13) and Eq. (12) are
indistinguishable.

Eq. (13) and Eq. (12) become distinguishable when we
turn on �b 6= 0, with a nontrivial spatial profile such that
�b is not constant throughout the large-scale halo.

III. APPLICATION: THE MILKY WAY

We now consider soliton solutions in the background of
a gravitational potential �b, chosen to roughly mimic the
inner region of the MW. For concreteness, throughout this
section we set m = 10

�22 eV. Results for m = 10

�21 eV
are collected in App. E 1.

The dominant contributions to the stellar mass profile of
the MW inner few hundred pc were described in the pho-
tometric analysis of Ref. [31] as a spherical nuclear stellar
cluster (NSC) and a nuclear stellar disk (NSD)3.

The NSC density profile was modelled as

⇢NSC(r) =

⇢̄NSC

1 +

⇣
r

rNSC

⌘nNSC
✓ (RNSC � r) , (14)

where ⇢̄NSC = 3.3 ⇥ 10

6
M

�

/pc3, rNSC = 0.22 pc,
RNSC = 200 pc. The index nNSC = 2 for r < r0 and

3 See Secs. 5.2-5.5 and Tab. 7 in [31]. In addition to the stellar
components, dynamics in the central ⇠ 1 pc is dominated by a
super-massive black hole (SMBH) with mass MBH ⇡ 4⇥106 M

�

.
Here we omit the SMBH contribution, which was studied in [17] and
shown to have negligible impact on the soliton for m . 10�20 eV.
We note that the numerical code in App. A is capable of handling
the SMBH contribution via the procedure described in App. A 1.
An interstellar gas torus at scale radius of ⇠ 100 pc contributes
⇠ 2 ⇥ 107 M

�

and is also neglected here in comparison to the
stellar components.

nNSC = 3 for r � r0, with r0 = 6 pc. With these parame-
ters we have MNSC ' 5.1⇥ 10

7 M
�

.
The NSD density profile was modelled as

⇢NSD = ⇢̄NSD exp

✓
� |z|
hz

� ⇢

h⇢

◆
, (15)

where h⇢ = 250 pc, hz = 50 pc, and ⇢̄NSD = 70 M

�

/pc3

is defined such that the total mass of the NSD is set to
MNSD ' 2.8⇥ 10

9 M
�

.
In Fig. 1 we plot the soliton mass vs. �, which allows us

to access di↵erent solutions. For � & 10

�3 we retrieve the
self-gravitating soliton result, shown by the dashed line. For
smaller � we find M / �

4 [17]4. Fig. 1, which accounts
for the non-spherical stellar potential, can be compared to
Fig. 16 in Ref. [17] which considered a spherically-averaged
approximation to the same stellar mass model. While the
trend is similar, there is an O(1) di↵erence in the M vs.
� relation in the phenomenologically interesting range � ⇠
10

�4 � 10

�3.
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M
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M
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With Baryons ( =0.5)
With Baryons ( =1)
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FIG. 1: Soliton M-� relation in the stellar-induced background
gravitational potential of the inner MW. For a halo mass Mh =
1012 M

�

, the soliton host-halo relation found in DM-only numer-
ical simulations predicts � = 4.9 ⇥ 10�4. The ULDM particle
mass is m = 10�22 eV.

In Fig. 2 we study the deformation in the soliton shape
caused by the stellar mass distribution. We fix the soliton
mass to M ⇡ 1.35 ⇥ 10

9 M
�

. The contour lines show
the soliton mass density normalised to a reference value
of 23.6 M

�

/pc3. Solid lines show the result for the self-
gravitating soliton and dashed lines show the result obtained
when �b is included in the SPE. The baryonic potential
contracts the soliton profile towards the origin and deforms
it’s shape, that is no longer spherically symmetric.

4 This can be understood as follows. For small � the external potential
dominates and the SPE reduce to r2

� ⇡ 2(�b � �)�. Since this
equation is homogeneous and linear in �, the normalisation at ~x = 0
is a multiplicative factor and M /

R
d

3
x�

2 / �

4.
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What it says:

3

with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |. The field  
satisfies the Schroedinger-Poisson (SP) equations [32]

i@t = � 1

2m
r2 + m� , (3)

r2� = 4⇡G| |2. (4)

We look for a quasi-stationary phase-coherent solution,
described by the ansatz3

 (x, t) =

✓
mMplp

4⇡

◆
e�i�mt�(x). (5)

The ULDM mass density is

⇢ =
(mMpl)

2

4⇡
�2 (6)

⇡ 4.1 ⇥ 1014

⇣ m

10�22 eV

⌘
2

�2 M�/pc3.

The parameter � is proportional to the ULDM energy per
unit mass. Validity of the non-relativistic regime requires
|�| ⌧ 1. Since we are looking for gravitationally bound
configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2

r (r�) = 2r (� � �)�, (7)

@2

r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the boundary value of � at r ! 0,
the solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the bound-
ary condition �(0) = 1. Let us call this auxiliary solution
�

1

(r), with �
1

. A numerical calculation gives [4, 5, 8]

�
1

⇡ �0.69, (9)

and the solution is plotted in Fig. 1. The mass of the �
1

soliton is

M
1

=
M2

pl

m

Z 1

0

drr2�2

1

(r) (10)

⇡ 2.79 ⇥ 1012

⇣ m

10�22 eV

⌘�1

M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

3 Mpl = 1/
p
G.
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FIG. 1. Profile of the “standard” �

1

soliton with � = 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle (dotted
green).

Other solutions of Eqs. (7-8) can be obtained from
�

1

(r), �
1

(r) by a scale transformation. That is, the func-
tions ��(r), ��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1

(�r), (12)

��(r) = �2�
1

(�r), (13)

�� = �2�
1

, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6 ⇥ 10�4

⇣ m

10�22 eV

⌘✓ M�

109 M�

◆
. (17)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27 ⇥ 108

⇣ m

10�22 eV

⌘�2

kpc M�. (18)

Formally, solutions exist for any positive value of � and
hence for any soliton mass. However, if we select � & 1
we reach |��| > 1, outside of the regime of validity of
the non-relativistic approximation. Thus, self-consistent
solutions are limited to � ⌧ 1 and their eigenvalue
|��| = �2|�

1

| ⌧ 1, consistent with the non-relativistic
approximation.

The energy in an arbitrary non-relativistic ULDM con-
figuration is

E =

Z
d3x

 
|r |2
2m2

+
� | |2

2

!
= Ek + Ep, (19)


