

G

GRAN SASSO

CIENCE INSTITUTE

SCHOOL OF ADVANCED STUDIES

Scuola Universitaria Superiore

La Thuile 2019 - Les Rencontres de Physique de la Vallée d'Aoste

RESULTS FROM THE CUORE EXPERIMENT

Antonio D'Addabbo

Gran Sasso Science Institute and Laboratori Nazionali del Gran Sasso, on behalf of the CUORE collaboration

OUTLINE

CUORE: Cryogenic Underground Observatory for Rare Events

- Double beta decay
- Detector
- Cryostat
- Commissioning
- Detector optimization
- Data analysis
- Results
- Conclusion

DOUBLE BETA DECAY

Double Beta Decay ($\beta\beta$)

is a second order weak interaction, directly observable only for few nuclei

The isotope of interest for the CUORE experiment is ¹³⁰Te

- high isotopic abundance (34.17%)
- ¹³⁰Te within the detector absorber of TeO₂
- reproducible growth of high quality crystals
- Q-value of 2527.515 ± 0.013 keV

DOUBLE BETA DECAY

Signature:

Goals:

CHALLENGES

Sensitivity:

M: isotope masst: live timeb: background indexΔE: energy resolution

big exposure (mass x time)

- 988 TeO₂ crystal with isotopic abundance of 34.167% for a total mass 206 kg of active material
- foreseen 5 years of data taking

~ 1 ton year

high energy resolution

- noise reduction techniques
- temperature stability
- fine tuning of detectors parameters to optimize the signal to noise ratio

low background

- strict radiopurity criteria on material selection and assembly chain
- passive shields from external and cryostat radioactivity

5 keV FWHM

0.01 counts/keV/kg/yr

Goal: $T_{1/2}$ (90% C.L.) > 9 x 10²⁵ yr <m_{$\beta\beta$}> 45 - 210 meV

European Physical Journal C 77.532 (2017)

CUORE: A LONG HISTORY

CUORE DETECTOR

TeO2 cryogenic bolometers

CUORE DETECTOR

TeO2 cryogenic bolometers

A particle interaction in the absorber causes an increase in temperature, measured by the thermistor

The absorber and the thermistor are optimized to work at 10mK

C: absorber capacity
ΔT: temperature variation
ΔE: energy deposition
G: thermal conductance
τ: signal decay time

WHERE

LNGS - GRAN SASSO UNDERGROUND LABORATORY (ITALY)

The mountain of Gran Sasso naturally protects the experiment from cosmic rays

- 3600 m.w.e. deep
- μs: ~3x10-8/(s cm²) 10⁶ less than above ground
- γs: ~0.73/(s cm²)
- neutrons: < 4x10-6 n/(s cm²)

CUORE CRYOGENIC INFRASTRUCTURE

The CUORE detector is hosted in a cryogen-free cryostat:

- Mass to be cooled < 4K: ~15 tons (Pb, Cu and TeO_2)
- Operating temperature 10 mK
- Designed to guarantee extremely low radioactivity and low vibrations environment
- Biggest dilution cryostat in the world

paper in preparation

Top lead shield

988 TeO₂ crystals (arranged in 19 towers with 13 floors each, 52 5x5x5 cm³ TeO₂ crystals per tower)

CUORE CRYOGENIC INFRACTRUCTURE

11

COMMISSIONING

Tower assembly performed in N2 atmosphere to prevent contamination from Rn

Nuclear Instruments and Methods A 768, 130-140 (2014)

Lateral and bottom shielding with 6cm - thick ²¹⁰Pb - depleted roman lead

The ingots stayed under water for centuries, loosing their radioactive components. The ingots have been recasted in a clean environment.

Cryogenic system commissioning completed in March 2016:

- Stable base temperature @ 6.3mK
- Cooling power: > 3µW @10mK

COMMISSIONING

towers installation July - August 2016

The 19 towers were installed in a radon free clean room. It took about one month. Only 4 out of 988 channels were lost during the installation. In September 2018 we were ready to cool down.

COOL DOWN

The cool down of the cryostat started in December 2016

First phase with dedicated Fast Cooling System, introduction of He exchange gas prior to the start of Pulse Tubes, then pulse tubes only.

Last phase after the pause dedicated to electronics optimisation was achieved with the dilution unit, down to base temperature (~7mK).

26.01.2017 Base temperature 7 mK

27.01.2017 As soon as we reached base temperature we observed the first pulse!

DETECTOR OPTIMIZATION

Temperature scan:

Chose temperature that optimises the signal and at the same time allows to work with the designed thermistor resistance (this analysis @ **15 mK**)

Working point and Load Curves:

scan to choose the best bias current to feed to each channel thermistor: linear behaviour for small temperature variations maximisation of signal to noise ratio optimization of pulse amplitude

Optimization of trigger thresholds:

Trigger thresholds ranging from 20 to a few hundred keV

DETECTOR OPTIMIZATION

The Cryostat is cool down to 4K by 5 Pulse Tubes that induce vibrations at 1.4 Hz and harmonics.

Attenuation of Pulse tube induced vibrations:

- Switch to Linear Drives to control PT motor heads -> reduce temperature variations on the Mixing Chamber
- 2. PT phase scan to find the phase configuration that actively minimize the PT induced vibrations
- 3. Drive the PT at the minimum noise phase configuration

Noise level on the detector

PT phase optimization changes noise by an order of magnitude! Cryogenics 93 (2018) 56-65

A. D'Addabbo - Results from the CUORE experiment

DATA TAKING

- CUORE surpassed CUORE-0 exposure in about 3 weeks of data taking
- Collected 86.3 kg·yr of TeO₂ over 7 weeks in summer 2017 (splitted in two datasets)
- 99.6% of channels active (984/988)

- 92% of channels passing analysis cuts
- Energy resolution of 7.7 keV FWHM
- Signal efficiency of ~80%
- Average rates per channel: calibration: ~50 mHz, physics: ~6 mHz

DATA ANALYSIS

- Amplitude Evaluation
- Thermal gain stabilization
- Energy calibration
- Blinding
- Select events with multiplicity = 1
- Pulse shape analysis selection
- Line shape fit

Sum on all towers of the line shape fit

A. D'Addabbo - Results from the CUORE experiment

RESULTS

Search for $0\nu\beta\beta$ of ¹³⁰Te

UEML fit in the ROI (2465 - 2575) keV:

- 60Co peak position: (2506.4 ± 1.2) keV
- Background index is consistent with expectations (1.4 ± 0.2) x 10⁻² cnts/(keV·kg·yr)
- Median expected sensitivity $T^{0v_{1/2}} = 7.0 \times 10^{24} \text{ yr}$
- Signal decay rate best fit: Γ_{0ν} = (-1.0 + 0 .4_{-0.3} (stat) ± 0.1 (syst)) x 10⁻²⁵ yr⁻¹

RESULTS Background model

20

γ background significantly reduced

- Most α background consistent
- Backgrounds consistent with expectations
- ²¹⁰Po excess appears to be from shallow contamination in copper around the detectors
 - Current estimated contribution to ROI at the level of ~ 10⁻⁴ cnts/(keV kg yr)

The background model is able to reconstruct the major features of the observed spectrum in CUORE

RESULTS

Measurement of the $2\nu\beta\beta$ half life of Te¹³⁰

In CUORE-0, $2\nu\beta\beta$ decay spectrum accounts for ~20% of the signal in the range 1-2 MeV

In CUORE, $2\nu\beta\beta$ decay spectrum accounts for nearly all of the signal in the range 1-2 MeV

paper in preparation

CUORE-0: $T^{2\nu}_{1/2} = [8.2 \pm 0.2 \text{ (stat.)} \pm 0.6 \text{ (syst.)}] \times 10^{20} \text{ yr}$ NEMO: $T^{2\nu}_{1/2} = [7.0 \pm 0.9 \text{ (stat.)} \pm 1.1 \text{ (syst.)}] \times 10^{20} \text{ yr}$

CONCLUSION

The first result from the CUORE experiment

• Published in 2018 on PRL 120, 132501

Scientific:

- Most stringent limit on $Ov\beta\beta$ decay half-life of ¹³⁰Te to date T^{0v}_{1/2} > 1.5 x 10²⁵ yr m_{\beta\beta} < 110 - 520 meV
- Most precise and accurate measurements of <u>2νββ decay</u> <u>half-life of ¹³⁰Te</u> [7.9 ± 0.1 (stat.) ± 0.2 (syst.)] x 10²⁰ yr

Technical:

- operation of the world's first ton-scale bolometric detector
- construction and operation of the world's largest and most powerful dilution refrigerator

The present:

- Analysis ongoing on the data collected in 2018 at 11mK
- New 2019 dataset is going to start in few weeks

The future:

- 5 years of live time planned
- New analyses (dark matter, axions...)
- CUPID (CUORE Upgrade with Particle Identification)

THANK YOU

