

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

New physics search with $^{76}\text{Ge}~0\nu\beta\beta$ decay

Yoann KERMAÏDIC

On behalf the GERDA and LEGEND collaborations

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile, Italy

11 March 2019

Crucial open issues in particle physics

Non-zero but tiny neutrino masses

See-saw mechanism?

- requires neutrinos to be Majorana Lepton Number is violated in general
- new mass term in the Lagrangian explaining the smallness of masses
- provides a mechanism for **effective leptogenesis**

HOW TO RELATE THIS TO ⁷⁶Ge?

Two neutrinos double beta decay - $2\nu\beta\beta$

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{\nu}$

Such process:

- ✓ energetically favored in some isotopes (⁷⁶Ge, ⁸²Se, ¹³⁰Te, ¹³⁶Xe, ...)
- ✓ is predicted by the SM
- \checkmark is measured experimentally

Neutrinoless double beta decay - $0\nu\beta\beta$

 $(A,Z) \quad \rightarrow \quad (A,Z+2) + 2e^{-}$

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

Such process:

- ✓ violates the Lepton Number by 2 units = New Physics!
- \checkmark determines the nature of neutrinos: Majorana particle $\nu = \overline{\nu}$
- ✓ gives information on the ν mass via $m_{\beta\beta}$ (light neutrino exchange scenario)
- ✓ has never been observed so far
- \blacktriangleright High sensitivity due to the Avogadro number: $\sim 10^{25}$ Ge nuclei / kg

⁷⁶Ge based $0\nu\beta\beta$ decay experiment

- $Q_{\beta\beta} = 2039 \text{ keV}$
 - relatively low value as compared to other isotopes
- Calorimetry
- High detection efficiency
 - > 2β decay source = detector
- Excellent energy resolution
 - > 3 keV FWHM @ $Q_{\beta\beta}$ (0.15%)
- Enrichment up to 88% in ⁷⁶Ge
 - current mass scale: 30 40 kg
- "Background-free experiment" :
 - Nbkg < 1 expected at full exposure (~100 kg.yr) $\sigma T_{1/2}^{0\nu} \propto M.t$
- Motivating larger mass ⁷⁶Ge based experiment for the future

Current and planned experiments

GERDA collaboration

La Thuile, 11.03.19

Yoann Kermaïdic

7

GERDA location @ LNGS

• Cosmic ray background mitigation

• signal signature

background mitigation

La Thuile, 11.03.19

background mitigation

Pure water Liquid Ar $\beta\beta$ decay signal: single energy LAr veto based on Ar scintillation light read by fibers and PMT Muon veto based on Optical Cherenkov light and fibers plastic scintillator u

deposition in a 1 mm³ volume

background mitigation

Pure water Liquid Ar Ge detector anti-coincidence $\beta\beta$ decay signal: single energy deposition in LAr veto based on Ar a 1 mm³ volume scintillation light read by fibers and PMT Muon veto based on Optical Cherenkov light and fibers plastic scintillator

background mitigation

 $\beta\beta$ decay signal: single energy deposition in a 1 mm³ volume

Pulse shape discrimination (PSD) for multi-site and surface α , β events

Ge detector anti-coincidence

LAr veto based on Ar scintillation light read by fibers and PMT

Muon veto based on Cherenkov light and plastic scintillator

GERDA Phase II: From concept to design

Ge detectors phase II

7 strings with 40 detectors:

- 3 natural semi-coaxial (7.6 kg)
- 7 enriched semi-coaxial (15.6 kg)
 - Large contact = large capacitance
- 30 enriched BEGe (20.0 kg)
 - Point-contact = small capacitance

Pulse shape discrimination

- ²⁰⁸TI DEP (1592 keV) used as a proxy for Single-Site Events (SSE)
- Multi-Site Events (MSE) cut set such that 90% of ²⁰⁸TI DEP events survive
- Alphas and Betas cut due to specific signal time profile

• **BEGe** cut parameter: A/E

• **Coax** cut parameter: Artificial Neural network

NB: 100 MHz x 10 ns trace

Phase II physics data release at Nu18

- [600-1300] keV $2\nu\beta\beta$ decays produce single-site events -> No suppression
- [1450-1530] keV Strong suppression of ⁴⁰K and ⁴²K gamma lines (MSE)
- [> 3000] keV Suppression of almost all α events (p+ contact)

Yoann Kermaïdic

Energy spectrum after unblinding!

10.5281/zenodo.1287604 Neutrino (2018)

Since Neutrino 2018

Restart of the data taking

- Upgrade of the detector array + LAr veto
- Run until we reach 100 kg.yr

After GERDA and MAJORANA:

Legend collaboration:

- 52 institutions, ~250 members
- GERDA / MAJORANA / external contributors

Staged approach to reach 10^{28} yr sensitivity:

- LEGEND-200 $\rightarrow 10^{27} \ yr$ after 5 years
- LEGEND-1000 $> 10^{28} \, yr$ (hosting lab under investigation)

LEGEND-200 phase:

- Up to 200 kg of ⁷⁶Ge
- Modification of existing GERDA infrastructure at LNGS
- Improved background index
- Data start in 2021
- NEWS:
 - Most of funding already secured
 - First isotopes from both ECP/URENCO have arrived!

Hardware improvements

New Inverted Coaxial Point-Contact Ge detector technology

≻ Large active mass up to 3 kg (R&D for 6 kg!)

Characterization campaign starting in a few months

 \succ Reduced background due to smaller number of channels

• Low Mass Front End (LMFE) electronics

- Experience from MAJORANA
- Reduce the signal noise w.r.t. GERDA situation
- Ongoing R&D in test stand

Better energy resolution + pulse shape discrimination

• LAr veto

- Experience from GERDA
- Design studies ongoing
- Optimization of light collection to better tag bkg

Summary

- $0\nu\beta\beta$ decay, if discovered, has far reaching consequences in particle physics! $\nu = \overline{\nu} / LNV / interplay$ with cosmology (many isotopes needed!)
- ⁷⁶Ge isotope offers excellent properties especially for signal discovery
 - > Energy resolution, background-free regime, high detection efficiency
 - > Possibility to reach $T_{1/2}^{0\nu} > 10^{28}$ yr sensitivity
 - "the new physics is at any corner!" therefore we should continue measuring in all directions, regardless of physics models
- GERDA and MAJORANA DEMONSTRATOR best technologies provide the path to next generation experiment
 - > First time to surpass the 10^{26} yr sensitivity: 1.1×10^{26} yr (90% CL)
 - LEGEND-200 phase has secured funding Ongoing efforts to start in 2021!

Phase II physics data modeling before cuts

24

Phase II PSD cut topology

Signal rise time

- Strong suppression of ⁴⁰K and ⁴²K gamma lines (MSE) [1450-1530] keV
- Suppression of almost all *α* events (p+ contact) [> 3000] keV Rise time cut for coax

La Thuile, 11.03.19

BEGe

Yoann Kermaïdic

Energy calibration

3 weak ²²⁸Th sources lowered every ~ week

Alpha background decay

Yoann Kermaïdic

Since May 2018 #3

Restart of the data taking

- Already 6.6 kg.yr exposure validated
- Improved energy resolution in BEGe strings
- No sign of significant alpha re-contamination
- Run until we reach 100 kg.yr

Dataset	Exposure [kg.yr]	FWHM [keV]	3	BI [10 ⁻³ cts/kev. kg. yr]
Phase I golden	17.9	4.3 ± 0.1	0.57 ± 0.03	11 ± 2
Phase I silver	1.3	4.3 ± 0.1	0.57 ± 0.03	30 ± 10
Phase I BEGe	2.4	2.7 ± 0.1	0.66 ± 0.02	5^{+4}_{-3}
Phase I extra	1.9	4.2 ± 0.1	0.58 ± 0.04	5 ⁺⁴ ₋₃
Phase II coax-1	5.0	3.6 ± 0.1	0.52 ± 0.04	$3.5^{+2.1}_{-1.5}$
Phase II coax-2	23.1	3.6 ± 0.1	0.48 ± 0.04	$0.6^{+0.4}_{-0.3}$
Phase II BEGe	30.8	3.0 ± 0.1	0.60 ± 0.02	$0.6^{+0.4}_{-0.3}$

« Background-free » regime

« Background-free » regime

