An Absorption Feature in the All-Sky Radio Spectrum

Raul Monsalve

Credit: NASA / WMAP Team

S.G. Djorgovski et al. & Digital Media Center, Caltech

0

Standard Prediction for Global 21-cm Signal

EDGES

Experiment to Detect the Global EoR Signature

Prof. Judd Bowman (PI) Dr. Alan Rogers Dr. Raul Monsalve Dr. Thomas Mozdzen Ms. Nivedita Mahesh

Western Australia

Murchison Radio-astronomy Observatory (MRO) Radio-Quiet Site

MWA

SKA-Low

EDGES Instruments

EDGES Instrument Block Diagram

EDGES Low-Band

Main Challenges

- 1) Hard instrument calibration problem.
- 2) Strong diffuse foregrounds (Galactic and Extragalactic) compared to cosmological 21-cm signal.

Instrumental Calibration

- 1) Instrument gain and noise offset.
- 2) Impedance mismatch between receiver and the antenna.
- 3) Antenna and ground losses.
- 4) Frequency-dependence of the antenna beam.

Beam Projected onto the Sky

Constraining Standard Models with the EDGES **High-Band** Spectrum

EDGES High-Band Spectrum

Monsalve, Rogers, Bowman, & Mozdzen (2017b)

No detection claimed in this frequency range

Integration

- 40 days
- 6 hrs of low foreground regions
- Noise of 6 mK at 140 MHz.

Physical 21cm Models from Fialkov et al.

Monsalve, Fialkov, Bowman, Rogers, Mozdzen, Cohen, Barkana, & Mahesh 2019

Monsalve, Fialkov, Bowman, Rogers, Mozdzen, Cohen, Barkana, & Mahesh 2019

Planck + High-z Quasars + Galaxies

Monsalve, Fialkov, Bowman, Rogers, Mozdzen, Cohen, Barkana, & Mahesh 2019

Planck + High-z Quasars + Galaxies + EDGES High-Band

Constraints independent from Low-Band data

Monsalve, Fialkov, Bowman, Rogers, Mozdzen, Cohen, Barkana, & Mahesh 2019

EDGES Low-Band Detection of an Absorption Feature

LETTER

doi:10.1038/nature25792

An absorption profile centred at 78 megahertz in the sky-averaged spectrum

Judd D. Bowman¹, Alan E. E. Rogers², Raul A. Monsalve^{1,3,4}, Thomas J. Mozdzen¹ & Nivedita Mahesh¹

Summary of Detection

Bowman, Rogers, Monsalve, Mozdzen, Mahesh 2018, Nature, 555, 67

Two Instruments / Several Configurations

Bowman, Rogers, Monsalve, Mozdzen, Mahesh 2018, Nature, 555, 67

Sensitivity to Possible Calibration Errors

Error source	Estimated uncertainty	Modelled error level	Recovered amplitude (K)
LNA S11 magnitude	0.1 dB	1.0 dB	0.51
LNA S11 phase (delay)	20 ps	100 ps	0.48
Antenna S11 magnitude	0.02 dB	0.2 dB	0.50
Antenna S11 phase (delay)	20 ps	100 ps	0.48
No loss correction	N/A	N/A	0.51
No beam correction	N/A	N/A	0.48

Bowman, Rogers, Monsalve, Mozdzen, Mahesh 2018, Nature, 555, 67

Absorption Amplitude for Various GHA

Galactic Hour Angle (GHA)	SNR	Amplitude (K)	Sky Temperature (K)
6-hour bins			
0	8	0.48	3999
6	11	0.57	2035
12	23	0.50	1521
18	15	0.60	2340
4-hour bins			
0	5	0.45	4108
4	9	0.46	2775
8	13	0.44	1480
12	21	0.57	1497
16	11	0.59	1803 Total temperature
20	9	0.66	3052 varies by a factor of
	-		up to 3.

Bowman, Rogers, Monsalve, Mozdzen, Mahesh 2018, Nature, 555, 67

Parameter Estimates

From All Cases Processed

Parameter	Best Fit	Uncertainty (3 σ)
Amplitude	0.5 K	+0.5/-0.2 K
Center	78 MHz	+/-1 MHz
Width	19 MHz	+4/-2 MHz
Flatness	7	+5/-3

Amplitude is in tension with standard models by $\geq 3.5\sigma$

How to Explain Deep Absorption?

IOP Publishing 🧧 🕈 💌 🔊

physicsworld

Dec 13, 2018

TOP 10 Breakthrough in 2018

Ancient hydrogen reveals clues to dark matter's identity

To Judd Bowman, Raul Monsalve, Thomas Mozdzen and Nivedita Mahesh of Arizona State University Arizona State University and Alan Rogers of the Massachusetts Institute of Technology for using the EDGES radio telescope to observe colder-than-expected hydrogen gas that existed just 180 million years after the Big Bang; and <u>Rennan Barkana</u>, of Tel Aviv University for calculating that this could be the first direct observation of a non-gravitational interaction between dark matter and conventional matter. While further observations are needed to back-up this hypothesis, the research could help resolve one of the most important unsolved mysteries of physics: what is the nature of dark matter?

Light and dark: did dark matter cool ancient hydrogen?

BRIEF COMMUNICATIONS ARISING

Concerns about modelling of the EDGES data

ARISING FROM J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen & N. Mahesh Nature 555, 67–70 (2018); https://doi.org/10.1038/ nature25792

A Ground Plane Artifact that Induces an Absorption Profile in Averaged Spectra from Global 21-cm Measurements - with Possible Application to EDGES

Richard F. Bradley, Keith Tauscher, David Rapetti, and Jack O. Burns

Addressing Concerns: Recent Tests in the Field

Null Tests (feature should not be found)

- 1) Measuring noise sources that produce a flat spectrum.
- 2) Measuring noise sources that produce a spectrum resembling the diffuse foregrounds.

<u>Tests Addressing Antenna Beam Effects (feature should be found)</u>

- 1) Using smaller Mid-Band antenna covering 60-160 MHz.
- 2) Using Low-Band antenna over a smaller 9m x 9m ground plane. We call this Low-Band 3.

These tests have been passed successfully. This supports a spectral feature from the sky.

Verification with EDGES Mid-Band

Low-Band

Mid-Band (~25% smaller)

Same Ground Plane as Low-Band

Preliminary Mid-Band Results

Monsalve, Mahesh, Rogers, Bowman, Mozdzen, & Johnson (in preparation)

Worldwide Effort

+ a few Space-Based Efforts

- Continue favoring a spectral feature in the sky spectrum
- Constraining models and parameters of the early Universe
- Expecting results soon from other experiments

We are Witnessing the Dawn of 21-cm Cosmology

Credit: NASA / WMAP Team

Thank you

Credit: NASA / WMAP Team

Extra Slides

Global Interaction

Adapted from Greenhill 2018, Nature, 555, 38

Global 21-cm Brightness Temperature

$$T_{\rm b}(z) \approx 28 \, {\rm mK} \quad \cdot \sqrt{\frac{1+z}{10}} \cdot \bar{x}_{\rm HI} \cdot \left(\frac{T_{\rm S} - T_{\rm R}}{T_{\rm S}}\right)$$
fraction spin
of neutral temperature
hydrogen

High redshift -> Low frequency

 $v_{\text{rest frame}} = 1420 \text{ MHz}$

Due to Cosmological Expansion

 $v_{\rm obs} = \frac{v_{\rm rest\,frame}}{(1+z)}$

Redshift	Frequency	
0	1420 MHz	
6	200 MHz	
13	100 MHz	First Billion Years
140	10 MHz	

Field Relative Calibration

3-position switching removes time variability.

In each 3-position switching cycle we measure power spectral density from:

- 1) Antenna
- 2) Ambient Load
- 3) Ambient Load + Noise Source

Absolute Lab Calibration

Receiver parameters are obtained measuring calibration standards in the lab.

We measure with high precision and accuracy the spectrum, reflection, and temperature of the standards.

Antenna Reflection Coefficients

Beam Chromaticity

7.88 7.39 6.89 6.4 5.91 5.42 4.92 4.43 3.94 3.45 2.95 2.46 1.97 1.48 8.985 8.492 -2.01 -4.02 -6.02 -8.03 -10 -12 -14.1 -16.1 -20.1 -22.1 -22.1 -24.1 -26.1 -28.1 -30.1 -32.1

Simulated Antenna Beam

Antenna-to-Sky Temperature

 $\langle T_{ant}(v, LST) \rangle_{\Omega} = \int T_{sky}(v, LST, \Omega) \cdot B(v, LST, \Omega) d\Omega$

 $\langle T_{ant}(v, LST) \rangle_{\Omega} = C(v, LST) \cdot \langle T_{sky}(v, LST) \rangle_{\Omega}$

Chromaticity Correction

 $C(v, \text{LST}) = \frac{\int T_{\text{sky}}(\boldsymbol{v}_{\text{ref}}, \text{LST}, \Omega) \cdot B(\boldsymbol{v}, \text{LST}, \Omega) \, d\Omega}{\int T_{\text{sky}}(\boldsymbol{v}_{\text{ref}}, \text{LST}, \Omega) \cdot B(\boldsymbol{v}_{\text{ref}}, \text{LST}, \Omega) \, d\Omega}$

Low-Band Ground Plane

Central Square: 20m x 20m 16 Triangles: 5m-long

Foreground Spectral Index

LST (h)

Bayesian Approach

 $\propto P(D_1|\theta) \cdot P(D_2|\theta) \cdot P(D_3|\theta) \cdot P(\theta)$

Constraints from EDGES High-Band

Monsalve, Fialkov, Bowman, Rogers, Mozdzen, Cohen, Barkana, & Mahesh 2019

Low-Band Ground Plane: 2015-2016

Same Ground Plane as Low-Band

Low-Band Ground Plane: 2018-2019

We call this configuration "Low-Band 3"

Preliminary Low-Band 3 Results

Monsalve, Mahesh, Rogers, Bowman, Mozdzen, & Johnson (in preparation)

- 1) Data from August October 2018.
- 2) Low foregrounds.
- 3) Best-fit absorption parameters **consistent with Bowman et al. (2018)**.

Model of the Spectrum

$$m(\nu) = m_{21}(\nu) + m_{fg}(\nu)$$

Phenomenological 21-cm Model "Flattened Gaussian"

$$m_{21}(\nu, \boldsymbol{\theta}_{21}) = -\boldsymbol{A} \left(\frac{1 - e^{-\boldsymbol{\tau}} e^{\boldsymbol{B}}}{1 - e^{-\boldsymbol{\tau}}} \right)$$

$$B = \frac{4 \left(\nu - \nu_0\right)^2}{w^2} \quad \ln\left[-\left(\frac{1}{\tau}\right)\ln\left(\frac{1 + e^{-\tau}}{2}\right)\right]$$

- **A** : absorption amplitude
- v_0 : center frequency
- **w**: width
- *t*: flattening parameter

"Foreground" Models

Linearized Version of Physically-Motivated Foreground Model

$$m_{\rm fg}(\nu, \boldsymbol{a_i}) = \nu^{-2.5} \left\{ \boldsymbol{a_0} + \boldsymbol{a_1}[\log\nu] + \boldsymbol{a_2}[\log\nu]^2 + \boldsymbol{a_3}\nu^{-2.0} + \boldsymbol{a_4}\nu^{0.5} \right\}$$

Alternative Polynomial Model

$$m_{\rm fg}(\nu, \boldsymbol{a_i}) = \nu^{-2.5} \sum_{i=0}^{N_{\rm fg}-1} \boldsymbol{a_i} \nu^i$$

Smooth sets of basis functions that model well, with few terms, the spectrum over wide frequency ranges.

Linear fit coefficients not intended to be assigned physical interpretation.

MCMC Parameter Estimation

Parameter Estimates

57

Interactions of Baryons with Dark Matter?

unt of mini changed dank matter could

A small amount of mini-charged dark matter could cool the baryons in the early Universe

Julian B. Muñoz¹* & Abraham Loeb²

LETTER

NATURE, 557, 31 MAY 2018

https://doi.org/10.1038/s41586-018-0151-x

- 1) Enough IGM cooling achieved if small fraction (<1%) of DM particles posses electric mini-charge (~ 10^{-6} the charge of an electron).
- 2) Mass of these DM particles constrained to \sim 1-60 MeV.

Global 21-cm Experiments

PRI^ZM

(McGill, Sievers et al.)

SARAS 2

(RRI, Subrahmanyan et al.)

LEDA

(Harvard, Greenhill et al.)

CTP (NRAO, Bradley et al.)

Epoch of Reionization Constraints (Hot IGM)

- TANH model for the evolution of the average neutral hydrogen fraction (\bar{x}_{HI}).
- Parameters are EoR center (z_r) and duration (Δz) .

Monsalve, Rogers, Bowman, & Mozdzen (2017b)

Epoch of Reionization Constraints (Hot IGM)

Monsalve, Rogers, Bowman, & Mozdzen (2017b)

NO IGM Heating prior to Reionization

Monsalve, Rogers, Bowman, & Mozdzen (2017b)

Verification Using ~300K Passive Noise Sources

EDGES-3 Recently Proposed to NSF-ATI

- 1) Observe from **Oregon**, USA.
- 2) **Improved** hardware.
- 3) More **portable design**.
- 4) Electronics within antenna.

New Global 21-cm Experiment MIST: Mapper of the IGM Spin Temperature

