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Today’s perspective: put aside our prejudices in favor of empirical verification
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constrain its parameters

Put constraints on the 
operators of an EFT 

With no single ‘best- motivated’ proposal at hand, useful to resort to the 
maximally model-independent EFT approach 
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What are the light degrees of freedom?

Assume the light degrees of freedom are the graviton + 1 extra scalar
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EFT in Cosmology

On cosmological scales, FRW universes are characterized by a “medium”   
with a homogeneous and isotropic stress energy tensor  

This medium, at variance with a CC, breaks spontaneously Lorentz invariance 

The simplest example: in single field Inflation a scalar with a time-dependent 
expectation value breaks time translations and Lorentz boosts to ISO(3) 

“covariant” EFT  
(trivial background)

EFT for perturbations around  
the relevant solution 

Gravitational perturbations that travel on this background carry information about the  
underlying microscopic theory, already at the level of the quadratic action

Two different approaches
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EFT before expanding 
Full                          gauge invariance

EFT for perturbations around v
Only                 gauge invariance

Resum the contribution of many operators if non-linearities are large

The Standard Model EFT
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Construct an EFT for perturbations  

Start from a background solution 
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Choose a foliation of spacetime (unitary gauge) such that 

Construct an EFT for perturbations  

Write down in a derivative expansions all the operators that are invariant under the 
residual symmetries (spatial diffs) 

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore ‘07

Start from a background solution 

The EFT can contain: 
• generic functions of time 
• free 0 indices, like  
• geometric objects of the 3d spatial slices such as 

g00, R00

Kµ⌫ , R(3)

Write the action already expanded in perturbations, e.g.
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The EFT of quasi de Sitter

xi ! xi + ⇠i(t, ~x)



Quasi de Sitter
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Solve the equation of motion  
to compute the background

Expand in small perturbations

These terms are fixed by the background solution 
Only 3 indep. operators because of FRW symm. 

These 4 give linear equations with 2 derivatives  
for the propagating DOF

Quasi de Sitter

�
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Late time cosmology

Depends on the background (dark matter abundance,…): 
robustly set it to zero!

Creminelli, Vernizzi ‘17
Baker et al ’17 
+ many others

Abbott et al. ‘17



Very strong constraints on the Covariant Theory
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Gravity can propagate differently in FRW

Can we study the propagation around some other background 
and maybe discover a new field?

Constrain the scalar



Perturbations around Black Holes

Inspiral Merger Ringdown

Ligo & Virgo ‘17
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Fix the gauge + solve for the constraint 

h d2

dr2
+ !2

i
h(r) = V (+)(r)h(r)

V (+)(r) = . . .

One propagating DOF in the odd sector One propagating DOF in the even sector 



Perturbations around Black Holes

h d2

dr2
+ !2

i
h(r) = V (+)(r)h(r)

V (+)(r) = . . .

One propagating DOF in the odd sector One propagating DOF in the even sector 

Nollert ‘99

In GR quasi-normal modes are isospectral
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Assumption: there is a non-trivial r-dependent scalar profile 

Choose unitary gauge  

More information than just the velocity:  
the whole QNM spectra are modified 

Franciolini, Hui, Penco, Santoni, ET ’18 



Phenomenology

If the strength of the scalar-matter  
coupling is gravitational or bigger

the most prominent observational signal 
would be the scalar mode itself  

(the extra mode in the even sector) 

If the scalar-matter coupling  
is absent or very weak

introduce deviations from GR in the 
spectrum of even and odd modes while 

preserving isospectrality  

break isospectrality 

mix the even and odd modes  
if it is a pseudo-scalar
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Outlook

EFT of perturbations around 
spherically symmetric backgrounds 

Generalize to Kerr Black Holes

Investigate the stability of wormholes

Characterize the QNM spectrum  
in terms of the EFT operators

Franciolini, Hui, Penco, Santoni, ET ‘19

Study in full generality  
the coupling to matter 

Assumption: 
light scalar

Reanalyze the BH no-hair theorems
Hui, Penco, Santoni, ET, Trombetta, in progress

Extend to different light DOF



“[concerning the use of supernovae for cosmology] the optimists were 
theorists or newcomers who had not worked long in the field, and 
pessimists (or realists as we prefer to be called) were observers” 

Robert Kirshner


