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Today’s perspective: put aside our prejudices in favor of empirical verification



Can we detect new light DOF using gravitational waves?

On cosmological scales, Dark Energy acts like a “medium” with a homogeneous 
and isotropic stress energy tensor that breaks spontaneously Lorentz invariance

Gravitational perturbations that travel on this background carry information about 
the underlying microscopic theory, already at the level of the quadratic action  
(speed of propagation can be different from c, damping)
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Abbott et al. ‘17

GW170817 = GRB170817A 
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Can we detect new light DOF using gravitational waves?

Inspiral Merger Ringdown
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The observed accelerated expansion of the Universe can be given by new DOF that either: 

1) have a background value that produce 
a sizable stress-energy tensor  

2) affect the propagation of gravity, without  
any large contribution to T 

The dynamics is made structurally robust by symmetries (exact & approximate) 
Well defined low-energy EFTs 

Allows for the largest variety of potentially observable signatures 
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No gravitational coupling to the Standard Model  
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Some HD operators modifies the speed of gravitational waves
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Why raising M might be useful  

It explains why the speed of gravitational waves is the speed of light
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Positivity bounds 

The general properties of the S-matrix (unitarity, analyticity) imply dispersion relations 
for forward elastic scattering amplitudes  positivity bounds for amplitudes in the IR.  
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Positivity bounds 

The general properties of the S-matrix (unitarity, analyticity) imply dispersion relations 
for forward elastic scattering amplitudes  positivity bounds for amplitudes in the IR.  

a > 0

the scales Λ2 and Λ3 cannot be arbitrarily separated 
while keeping the cutoff ΛUV fixed
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20 solar masses black holes are within the EFT range  
(still above tabletop experiments but …) 

3.

⇤3 = (H2
0MPl)

1/3

⇤2 = (H2
0M

2
Pl)

1/4

103⇤3

105⇤3

The presence of HD at cosmological scales is negligible
Can be tested at shorter distances (UV)?



Black Hole Background



Black Hole Background

The propagation of gravity is different IF a black hole has a scalar background



Black Hole Background

The propagation of gravity is different IF a black hole has a scalar background

the scalar non-trivial profile deforms the BH geometry1.

Deviation from GR predictions:

there is a quadratic mixing between scalar and gravitational perturbations 2.

Both will affect the QNM spectrum



No Hair Theorem

Scalar EOM rµJ
µ = 0

If the solution is static and spherical symmetric only 

should be regular at the horizon                          at the horizonJµJµ = (Jr)2/f

Jr 6= 0

=) Jr = 0

Using the conservation of the current  =) Jr(r) = 0

One last crucial step is need to conclude that a vanishing current implies a constant scalar

is a polynomial

vanishes at infinity⇡0

asymptotes to a constant at infinity

Hui, Nicolis ’12

Then ⇡0(r) = 0



Scalar coupled to Gauss-Bonnet

The GB invariant is a total derivative: the coupling is shift invariant

aMPl ⇡G



Scalar coupled to Gauss-Bonnet

Sotiriou, Zhou ’13

The GB invariant is a total derivative: the coupling is shift invariant

+F̃ (g, g0, g00)

is no longer a solution ⇡0(r) = 0

Every HD Lagrangian with the addition of the sGB coupling have non-trivial scalar bkgrd

aMPl ⇡G



Scalar coupled to Gauss-Bonnet

Sotiriou, Zhou ’13

The GB invariant is a total derivative: the coupling is shift invariant

+F̃ (g, g0, g00)

is no longer a solution ⇡0(r) = 0

What is           ? The GB coupling breaks explicitly the galileon symmetry

is consistent with the power counting of the EFT 

When      is linearized it can be rewritten as @2⇡@h@hR

Every HD Lagrangian with the addition of the sGB coupling have non-trivial scalar bkgrd
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2 + ZGB

mix @hc@⇡

Deviations in the QNM spectrum depends on

evaluated at the BH light ring  r =
3

2
rs

The same coupling gives rise to the emission of scalar wave in the inspiral phase

It is already constrained: ainsp =
ap

Z⇡(rinsp)
. 2 km2



Observable effects in BH merger

(@⇡)2 + ⇤4
2
(@⇡)2n

⇤4n
2

(@@⇡)m

M3m
+ aMPl ⇡R

2

There is a large kinetic mixing a



Subluminality problem

The cutoff can be lower around non-linear backgrounds

(@⇡)2(@@⇡)2
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3

Z2
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2 + (@?⇡)
2Around a point-like source 

The energy cutoff is significantly lowered due to the scattering  
of the slow moving modes along the transverse directions  

This is not true anymore in the BH background: there is no cancellation 
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Conclusions

Not much is know about BH with non-trivial scalar backgrounds

Several ways to avoid the ho-hair theorems (non-trivial boundary conditions, time-
dependent solutions, breaking of the shift symmetry, HD interactions,…)

Useful to use an EFT framework to describe QNMs of hairy black hole  

Dynamical DE is still a possibility

Maybe it leaves an imprint during BH merger

Several important missing step: how to generalize to Kerr, … 





Perturbations around Black Holes

Exponentially damped sinusoidal waves: Quasi Normal Modes (QNM) 

Spectrum of characteristic (complex) frequencies  



Perturbations around Black Holes

Exponentially damped sinusoidal waves: Quasi Normal Modes (QNM) 

Spectrum of characteristic (complex) frequencies  

Nollert ‘99

In GR black holes are characterized only by 3 parameters: M, J, Q 



Perturbations around Black Holes

Exponentially damped sinusoidal waves: Quasi Normal Modes (QNM) 

Spectrum of characteristic (complex) frequencies  

Nollert ‘99

In GR black holes are characterized only by 3 parameters: M, J, Q 



Classified accordingly to the behavior under parity 
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Classified accordingly to the behavior under parity 

Axial (odd) perturbations Polar (even) perturbations 
Regge Wheeler ’57

Schwarzschild: static, spherically symmetric background 

Zerilli ‘70

Fix the gauge + solve for the constraint 

h d2

dr2
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i
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V (+)(r) = . . .

One propagating DOF in the odd sector One propagating DOF in the even sector 
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h d2

dr2
+ !2

i
h(r) = V (+)(r)h(r)

V (+)(r) = . . .

One propagating DOF in the odd sector One propagating DOF in the even sector 

Perturbations around Black Holes

Nollert ‘99

In GR quasi-normal modes are isospectral
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More information than just the velocity:  
the whole QNM spectra are modified 

If the strength of the scalar-matter  
coupling is gravitational or bigger

the most prominent observational signal 
would be the scalar mode itself  
(the extra mode in the even sector) 



EFT for perturbations in spher symm bkgrd

The linearized equations of motion are modified

The propagation of gravity is different IF a black hole 
has a scalar background

More information than just the velocity:  
the whole QNM spectra are modified 

If the scalar-matter coupling  
is absent or very weak

introduce deviations from GR in the 
spectrum of even and odd modes while 
preserving isospectrality  

break isospectrality 

mix the even and odd modes  
if it is a pseudo-scalar
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