On scattering amplitudes
 in the presence of gravity

Alfredo Urbano I.N.F.N., sez. di Trieste and I.F.P.U.

Istituto Nazionale di Fisica Nucleare

QFC2019, October 23-25 2019 Pisa, Italy

PART I: Motivations

Gravity is an EFT characterized by the effective interaction strength

$$
g_{\mathrm{eff}}^{2} \equiv G_{N} E^{2}=\frac{E^{2}}{M_{\mathrm{Pl}}^{2}}
$$

It becomes strongly coupled at energies $E \gtrsim M_{\mathrm{Pl}}$ thus demanding an ultraviolet (UV) completion.

PART I: Motivations

What is the UV-completion of Gravity?

We try to answer this question by means of a "bottom-up" approach based on on-shell spinor-helicity methods.

PART I: Motivations

$$
\mathscr{A}\left(1^{h_{1}} 2^{h_{2}} \rightarrow 3^{h_{3}} 4^{h_{4}}\right)
$$

B. S. DeWitt, Phys. Rev. 162, 1239 (1967)

PART I: Motivations

$$
\mathscr{A}\left(1^{h_{1}} 2^{h_{2}} \rightarrow 3^{h_{3}} 4^{h_{4}}\right)
$$

B. S. DeWitt, Phys. Rev. 162, 1239 (1967)

$\kappa^{2} \equiv 32 \pi G_{N}=\frac{32 \pi}{M_{\mathrm{Pl}}^{2}}$
 PART I: Motivations

$\mathscr{A}\left(1^{+2} 2^{+2} \rightarrow 3^{+2} 4^{+2}\right)$

B. S. DeWitt, Phys. Rev. 162, 1239 (1967)

PART I: Motivations

$$
\mathscr{A}\left(1^{+2} 2^{+2} \rightarrow 3^{+2} 4^{+2}\right)
$$

PART I: Motivations

PART I: Motivations

PART I: Motivations

PART I: Motivations

Example: fermion/fermion scattering

"Unitarity channel"

PART I: Motivations

Example: fermion/fermion scattering

"Unitarity channel"

PART I: Motivations

$\mid \mathcal{A}_{1 h_{2}-h_{\rightarrow 3}{ }^{h^{\prime}{ }_{4}{ }^{\prime} h^{\prime}} \mid}$	Scalar	Fermion	Vector	Graviton
Scalar	$\frac{8 \pi}{M_{P 1}^{2}}\left(\frac{s_{13} s_{14}}{s_{12}}+b s_{12}\right)$ $\frac{8 \pi}{M_{P 1}^{2}}\left(\frac{s_{13} s_{14}}{s_{12}}+\frac{s_{12} s_{14}}{s_{13}}+\frac{s_{13} s_{12}}{s_{14}}\right)$	$\frac{2 \pi\left(\lambda_{3} P_{12} \tilde{\lambda}_{4}\right)}{M_{\mathrm{P} 1}^{2}}\left(\frac{s_{13}}{s_{12}}-\frac{s_{14}}{s_{12}}\right)$	$\frac{2 \pi\left(\lambda_{3} P_{12} \tilde{\lambda}_{4}\right)^{2}}{M_{\mathrm{Pl}}^{2} s_{12}}$	$\frac{\pi\left(\lambda_{3} P_{12} \tilde{\lambda}_{4}\right)^{4}}{2 M_{\mathrm{P} 1}^{2} s_{12} s_{13} s_{14}}$
Fermion		$\frac{8 \pi\langle 23\rangle[14]}{M_{\mathrm{Pl}}^{2}}\left(\frac{s_{13}}{s_{12}}+b\right)$ $\frac{8 \pi\langle 23\rangle[14]}{M_{\mathrm{P} 1}^{2}}\left(\frac{s_{13}}{s_{12}}+\frac{s_{12}}{s_{13}}+b\right)$	$\frac{4 \pi\langle 23\rangle[14]\left(\lambda_{3} P_{12} \tilde{\lambda}_{4}\right)}{M_{\mathrm{Pl}}^{1} s_{12}}$	$\frac{\pi\langle 23\rangle[14]\left(\lambda_{3} P_{12} \tilde{\lambda}_{4}\right)^{3}}{M_{P 1}^{2} s_{12} s_{13} s_{14}}$
Vector			$\begin{array}{\|c} \hline \frac{8 \pi\langle 23)^{2}[14]^{2}}{M_{\mathrm{P}}^{2} s_{12}} \\ \hline \frac{8 \pi\langle 23\rangle\rangle^{2}[14]^{2}}{M_{\mathrm{P} 1}^{2}}\left(\frac{1}{s_{12}}+\frac{1}{s_{13}}\right) \\ \hline \end{array}$	$\frac{2 \pi\langle 23\rangle^{2}[14]^{2}\left(\lambda_{3} P_{12} \tilde{\lambda}_{4}\right)^{2}}{M_{P 1}^{2} s_{12} s_{13} s_{14}}$
Graviton	$\begin{gathered} s_{i j} \equiv\left(p_{i}+p_{j}\right)^{2} \\ s_{12}+s_{13}+s_{14}=4 m^{2} \end{gathered}$	$\mathscr{A}\left(s_{13}, s_{14}\right.$		$\frac{8 \pi\{23\}^{4}[14]^{4}}{M_{\mathrm{P} 1}^{2} s_{12} s_{13} s_{14}}$

PART I: Motivations

On-shell helicity methods are the

 best-suited tools to study scattering with spin 2 (or higher...)

PART II: Analyoio

> PART I: Motivations

On-shell helicity methods are the best-suited tools to study scattering with spin 2 (or higher)
(p_{4}, h_{4}

PART II: Analysio

N. Arkani-Hamed, T. C. Huang and Y. t. Huang, "Scattering Amplitudes For All Masses and Spins," arXiv:1709.04891

PART II: Analyois

$$
\mathscr{A}=\frac{g_{J}^{2}(2 J)!!}{2^{J+2 h}(2 J-1)!!}\binom{J+2 h}{J}\binom{J}{2 h}^{-1} \frac{M_{J}^{2}}{s_{12}-M_{J}^{2}}\left(\frac{\langle 24\rangle[13]}{M_{J}^{2}}\right)^{2 h} P_{J-2 h}^{(0,4 h)}(x)
$$

PART II: Analysio

If $\mathrm{h}=0$ (scalar case) we recover the Legendre polynomials $P_{J}^{(0,0)}(x)=\mathscr{P}_{J}(x)$

PART II: Analysis

$12=34$
$\frac{g_{J}^{2}(2 J)!!}{2^{J+2 h}(2 J-1)!!}\binom{J+2 h}{J}\binom{J}{2 h}^{-1}=16 \pi(2 J+1) \frac{\Gamma_{J \rightarrow 1^{h 2}-h}}{M_{J}}$

PART II: Analysio

PART II: Analysio

$$
\begin{aligned}
& \mathscr{A}_{\phi \varphi}=\frac{1}{M_{\mathrm{Pl}}^{2}}\left(-\frac{t u}{s}+b s\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
a_{0}(s)=\frac{s(-1+6 b)}{96 \pi M_{\mathrm{Pl}}^{2}} \\
a_{1}(s)=0 \\
a_{2}(s)=\frac{s}{480 \pi M_{\mathrm{Pl}}^{2}}
\end{array}\right.
$$

PART II: Analysio

PART II: Analysio

$$
\begin{aligned}
& \mathscr{A}_{\phi \varphi}=\frac{1}{M_{\mathrm{Pl}}^{2}}\left(-\frac{t u}{s}+b s\right) \quad\left\{\begin{array}{l}
a_{p}(s)=\frac{s(-1+6 b)}{96 \pi M_{\mathrm{Pl}}^{2}} \\
a_{0}(2 J+1) a_{J}(s) \mathscr{P}_{J}(\cos \theta) \\
a_{1}(s)=0 \\
a_{2}(s)=\frac{s}{480 \pi M_{\mathrm{Pl}}^{2}}
\end{array}\right. \\
& +\frac{g_{\phi} g_{\varphi}}{s-M_{2}^{2}}\left[M_{2}^{2} \mathscr{P}_{2}\left(1+\frac{2 t}{M_{2}^{2}}\right)+\left(s-M_{2}^{2}\right) \mathscr{G}_{(1,1)}\left(\frac{s}{M_{2}^{2}}, \frac{t}{M_{2}^{2}}\right)\right] \\
& \text { on-shell } \\
& \text { off-shell } \\
& +\frac{\tilde{g}_{\phi} \tilde{g}_{\varphi}}{s-M_{3}^{2}}\left[M_{3}^{2} \mathscr{P}_{3}\left(1+\frac{2 t}{M_{3}^{2}}\right)+\left(s-M_{3}^{2}\right) \mathscr{G}_{(2,2)}\left(\frac{s}{M_{3}^{2}}, \frac{t}{M_{3}^{2}}\right)\right]
\end{aligned}
$$

PART II: Analysio

$$
\phi
$$

$$
A_{\phi \varphi}=\frac{1}{M_{\Gamma 1}^{2}}\left(-\frac{t u}{s}+b s\right)
$$

$$
\begin{aligned}
& +\frac{g_{\phi} g_{\varphi}}{s-M_{2}^{2}} \underbrace{\left[M_{2}^{2} \mathscr{P}_{2}\left(1+\frac{2 t}{M_{2}^{2}}\right)\right.}_{\text {on-shell }}+\underbrace{\left.\left(s-M_{2}^{2}\right) \mathscr{G}_{(1,1)}\left(\frac{s}{M_{2}^{2}}, \frac{t}{M_{2}^{2}}\right)\right]}_{\text {offf-shell }} \\
& +\ldots
\end{aligned}
$$

$$
=\frac{1}{M_{P 1}^{2}}\left(-\frac{t u}{s}+b s\right) \frac{N(s, t)}{\prod_{k}^{\infty}\left(s-M_{k}^{2}\right)}
$$

PART II: Analysio

$$
\mathscr{A}_{\phi \varphi}=\frac{1}{M_{\mathrm{Pl}}^{2}}\left(-\frac{t u}{s}+b s\right) \frac{\prod_{n}^{\infty}\left[t-f_{n}(s)\right]}{\prod_{k}^{\infty}\left(s-M_{k}^{2}\right)}
$$

PART II: Analysio

$$
\mathscr{A}_{\phi \varphi}=\frac{1}{M_{\mathrm{Pl}}^{2}}\left(-\frac{t u}{s}+b s\right) \frac{\prod_{n}^{\infty}\left[t-f_{n}(s)\right]}{\prod_{k}^{\infty}\left(s-M_{k}^{2}\right)}
$$

Unitarity + Locality

PART II: Analysio

$$
\mathscr{A}_{\phi \varphi}=\frac{1}{M_{\mathrm{Pl}}^{2}}\left(-\frac{t u}{s}+b s\right) \frac{\prod_{n}^{\infty}\left[t-f_{n}(s)\right]}{\prod_{k}^{\infty}\left(s-M_{k}^{2}\right)}
$$

Unitarity + Locality

$$
\mathscr{A}_{\phi \varphi}=\frac{1}{M_{\mathrm{Pl}}^{2}}\left(-\frac{t u}{s}+b s\right) \frac{\prod_{n}^{\infty}\left[t-f_{n}(s)\right]}{\prod_{m}^{\infty}\left[t-g_{m}(s)\right] \prod_{k}^{\infty}\left(s-M_{k}^{2}\right)}
$$

PART II: Analysis

$$
\mathscr{A}_{\phi \varphi}=\frac{1}{M_{\mathrm{Pl}}^{2}}\left(-\frac{t u}{s}+b s\right) \frac{\prod_{n}^{\infty}\left[t-f_{n}(s)\right]}{\prod_{k}^{\infty}\left(s-M_{k}^{2}\right)}
$$

Unitarity + Locality $M_{k}^{2}=k M^{2} \quad$ with $\quad k \in \mathbb{Z}^{+}$

$$
\mathscr{A}_{\phi \varphi}=\frac{1}{M_{\mathrm{Pl}}^{2}}\left(-\frac{t u}{s}+b s\right) \frac{\prod_{k}^{\infty} M_{k}^{2}\left(-t-s+M_{k}^{2}\right)}{\prod_{k}^{\infty}\left(t-M_{k}^{2}\right)\left(s-M_{k}^{2}\right)}
$$

PART II: Analysio

$$
\mathscr{A}_{\phi \varphi}=\frac{1}{M_{\mathrm{Pl}}^{2}}\left(-\frac{t u}{s}+b s\right) \frac{\prod_{n}^{\infty}\left[t-t_{n}(s)\right]}{\prod_{k}^{\infty}\left(s-M_{k}^{2}\right)}
$$

Unitarity + Locality $\quad M_{k}^{2}=k M^{2}$ with $k \in \mathbb{Z}^{+}$

$$
\mathscr{A}_{\phi \varphi}=\frac{1}{M_{\mathrm{Pl}}^{2}}\left(-\frac{t u}{s}+b s\right) \frac{\prod_{k}^{\infty}\left(s+M_{k}^{2}\right)\left(t+M_{k}^{2}\right)\left(u+M_{k}^{2}\right)}{\prod_{k}^{\infty}\left(s-M_{k}^{2}\right)\left(t-M_{k}^{2}\right)\left(u-M_{k}^{2}\right)}
$$

PART II: Analysis

$$
\mathscr{A}_{\phi \varphi}=\frac{1}{M_{\mathrm{Pl}}^{2}}\left(-\frac{t u}{s}+b s\right) \frac{\prod_{n}^{\infty}\left[t-t_{n}(s)\right]}{\prod_{k}^{\infty}\left(s-M_{k}^{2}\right)}
$$

Unitarity + Locality $M_{k}^{2}=k M^{2}$ with $k \in \mathbb{Z}^{+}$

$$
\tilde{s}=s / M^{2} \quad g^{2}=M^{2} / M_{\mathrm{Pl}}^{2}
$$

$$
\mathscr{A}_{\phi \varphi}=g^{2}\left(-\frac{\tilde{t} \tilde{u}}{\tilde{s}}+b \tilde{s}\right) \frac{\Gamma(1-\tilde{s}) \Gamma(1-\tilde{t}) \Gamma(1-\tilde{u})}{\Gamma(1+\tilde{s}) \Gamma(1+\tilde{t}) \Gamma(1+\tilde{u})}
$$

PART II: Analyoio

poles at $1-\tilde{s}=-n$
Virasoro-Shapiro form factor:
Compton scattering with gravity, scattering with scalars
Veneziano form factor:
Fermion/fermion, fermion/vector, vector/vector scattering

PART II: Analysio

$$
\mathscr{A}=\mathscr{A}_{\mathrm{GR}} \times\left\{\begin{array}{c}
\frac{\Gamma(1-\tilde{s}) \Gamma(1-\tilde{t}) \Gamma(1-\tilde{u})}{\Gamma(1+\tilde{s}) \Gamma(1+\tilde{t}) \Gamma(1+\tilde{u})} \\
\tilde{x}=x / M^{2}, x=s, t, u
\end{array}\right.
$$

poles at $1-\tilde{s}=-n$

$$
\mathscr{A}=16 \pi(2 J+1) \alpha_{h, h^{\prime}}^{J} \frac{M_{J}^{2}}{s_{12}-M_{J}^{2}} \underbrace{\left.\frac{\langle 24\rangle[13]}{M_{J}^{2}}\right)^{2 h}\left(\frac{\lambda_{4} P_{12} \tilde{\lambda}_{3}}{M_{J}^{2}}\right)^{2 h^{\prime}-2 h} P_{J-2 h^{\prime}}^{\left(2 h^{\prime}+2 h h^{\prime}-2 h\right)}(x)}_{\equiv d_{2 h, 2 h^{\prime}}^{J}(\theta)}
$$

PART IV: (some) Results

$$
\frac{\text { PARTIV:(some) Resulto }}{\mathscr{A}\left(g^{+2} g^{-2} \rightarrow g^{+2} g^{-2}\right)=\frac{t^{4}}{M_{1}^{2} s t u}\left[\frac{\Gamma(1-\tilde{s}) \Gamma(1-\tilde{t}) \Gamma(1-\tilde{u})}{\Gamma(1+\tilde{s}) \Gamma(1+\tilde{t}) \Gamma(1+\tilde{u})}\right]}
$$

PART IV: (some) Results

$$
\mathscr{A}\left(s q^{1 / 2} \rightarrow s q^{1 / 2}\right)=\frac{\lambda_{4} P_{13} \tilde{\lambda}_{2}}{M_{\mathrm{P} 1}^{2}}\left(\frac{s}{t}-\frac{u}{t}\right)\left[\frac{\Gamma(1-\tilde{s}) \Gamma(1-\tilde{t}) \Gamma(1-\tilde{u})}{\Gamma(1+\tilde{s}) \Gamma(1+\tilde{t}) \Gamma(1+\tilde{u})}\right]
$$

PART IV: (some) Results

$$
\mathscr{A}\left(q^{1 / 2} \bar{q}^{-1 / 2} \rightarrow q^{1 / 2} \bar{q}^{-1 / 2}\right)=\frac{1}{M_{\mathrm{P} 1}^{2}}\left(\frac{s^{2}+t^{2}}{s t}+b\right)\left[\frac{\Gamma(1-\tilde{s}) \Gamma(1-\tilde{t})}{\Gamma(1-\tilde{s}-\tilde{t})}\right]
$$

PART IV: (some) Results

PART IV: (some) Results

What if
space-time has torsion in addition to curvature?

$$
b=\frac{1}{2}+\frac{18 g^{2} M_{\mathrm{PI}}^{2}}{\pi M^{2}}
$$

PART V: Conclusions

PART V: Conclusions

- We propose a UV-completion of Gravity based on the tree-level exchange of an infinite tower of massive higher-spin resonances (with both integer and halfinteger spins).

Like what we expect in string theory but following a "bottom-up" approach.
Amplitudes are UV-completed by either Virasoro-Shapiro or Veneziano form factors.

- We only assume the bedrock principles of Locality, Causality and Unitarity (thus Analyticity).
- Technically, the on-shell spinor-helicity formalism is of crucial importance to deal with massive higher spins.

We cannot reconstruct the full amplitude but a number of crucial properties of the resonances can be extracted from the poles (spectrum, decay width,...).
Furthermore, even if we have some unknown parameters unitarity puts non-trivial positivity constraint on them.

PART V: Conclusions

A. Kehagias and A. Riotto,
"On the Inflationary Perturbations of Massive Higher-Spin Fields," JCAP 1707, 07, 046 (2017)
arXiv:1705.05834

