

MEASUREMENT OF THE EMISSION OF HAWKING RADIATION WITH THE HAWKING TEMPERATURE IN AN ANALOGUE BLACK HOLE

Juan Ramón Muñoz de Nova In collaboration with V. I. Kolobov , K. Golubkov & J. Steinhauer

THEORY

Black hole

-Solution of Einstein equations:

$$ds^{2} = -\left(1 - \frac{2GM}{rc^{2}}\right)dt^{2} + \frac{dr^{2}}{\left(1 - \frac{2GM}{rc^{2}}\right)} + r^{2}d\Omega^{2}$$

-Event horizon at $r_S = \frac{2GM}{rc^2}$ Region inside is causally disconnected!!!!

-Semiclassical calculation (classical gravity, quantum field) \rightarrow Spontaneous emission of radiation with a Planck distribution

$$F(\omega) = \frac{\Gamma(\omega)}{e^{\frac{\hbar\omega}{k_B T_H}} - 1} \qquad \qquad k_B T_H = \frac{\hbar\kappa}{2\pi c} = \frac{\hbar c^3}{8\pi GM}, \ \kappa = \frac{c^4}{4GM}$$

Problems

- Experimental problems.
- Low effective temperature $T_H \simeq 60 \times \frac{M_{\bigodot}}{M} nK$ (CMB=2.7 K)
- Theoretical problems: information paradox, trans-Planckian problem...NO quantum gravity
- Possible solution: use of laboratory analogues!
- Bose-Einstein condensates are great!

E. Cornell, C. E. Wieman JILA (1995)

Intuitive picture

-Light cannot escape from the interior of a black hole

- Sound waves cannot travel upstream in a supersonic flow
- -Subsonic/supersonic interface = Outside/inside black hole
- -Transition between subsonic and supersonic=analog event horizon

Rigorous derivation

-Flow of an ideal fluid, irrotational and barotropic

$$\partial_t \rho + \nabla(\rho \mathbf{v}) = 0$$
 $\partial_t \mathbf{v} + (\mathbf{v}\nabla)\mathbf{v} = -\frac{\nabla P}{\rho} - \frac{\nabla V}{m}$ $\mathbf{v} = \nabla\phi, \ P = P(\rho)$

-Linear perturbations around a given equilibrium solution $\rho + \delta \rho$, $\phi + \delta \phi$

$$\nabla^2 \delta \phi + \frac{\nabla \rho}{\rho} \nabla \delta \phi - \frac{1}{c^2} D_t^2 \delta \phi - \frac{1}{\rho} D_t \left[\delta \phi D_t \frac{\rho}{c^2} \right] - \frac{\nabla \mathbf{v}}{c^2} D_t \delta \phi = 0$$

-Equivalent to massless scalar field equation with effective metric

$$\Box \theta \equiv \frac{1}{\sqrt{-g}} \partial_{\mu} (\sqrt{-g} g^{\mu\nu} \partial_{\nu} \theta) = 0 \quad g_{\mu\nu}(x) = \frac{\rho(x)}{c(x)} \begin{bmatrix} -[c^2(x) - v^2(x)] & -\mathbf{v}^T(x) \\ -\mathbf{v}(x) & \delta_{ij} \end{bmatrix}, \ x \equiv (t, \mathbf{x})$$
-Acoustic horizons at $c(\mathbf{x}) = v(\mathbf{x})$! Gravity surface $\kappa = \frac{1}{2} \frac{d(c^2 - v^2)}{dn}$

W. G. Unruh, PRL 46, 1351 (1981)

General idea

-The condensate wave-function $\Psi(\mathbf{x}, t)$ follows the Gross-Pitaevskii (GP) equation:

$$i\hbar\partial_t\Psi(\mathbf{x},t) = \left[-\frac{\hbar^2\nabla^2}{2m} + V(\mathbf{x},t) + g|\Psi(\mathbf{x},t)|^2\right]\Psi(\mathbf{x},t)$$

-Decomposing in amplitude and phase $\Psi(\mathbf{x},t) = \sqrt{
ho(\mathbf{x},t)} e^{i\phi(\mathbf{x},t)}$

$$\partial_t \rho + \nabla(\rho \mathbf{v}) = 0 \qquad \mathbf{v}(\mathbf{x}, t) = \frac{\hbar \nabla \phi(\mathbf{x}, t)}{m} \quad \Rightarrow \text{Potential flow!}$$
$$\hbar \partial_t \phi(\mathbf{x}, t) = \frac{\hbar^2}{2m\sqrt{\rho(\mathbf{x}, t)}} \nabla^2 \sqrt{\rho(\mathbf{x}, t)} - \frac{1}{2}mv^2(\mathbf{x}, t) - g\rho(\mathbf{x}, t) - V(\mathbf{x}, t)$$

-Quantum physics only enters through the first term at r.h.s. ("quantum pressure")

-Quantum fluctuations of density and phase $\delta \hat{\rho}, \delta \hat{\phi}$ + hydrodynamic regime \rightarrow

Same result as Unruh but for the quantum fluctuations of the phase!!

L. J. Garay, J. R. Anglin, J. I. Cirac, & P. Zoller, PRL 85, 4643 (2000)

Black-Hole Configurations

-Scattering states are solutions of BdG:

$$\hat{\Phi}(x) = \int_{0}^{\infty} d\omega \sum_{\substack{a=u-\mathrm{in},\mathrm{d}1-\mathrm{in}\\ + \int_{0}^{\omega_{\mathrm{max}}} d\omega [z_{\mathrm{d}2-\mathrm{in},\omega}(x)\hat{\gamma}_{\mathrm{d}2-\mathrm{in}}^{\dagger}(\omega) + \bar{z}_{\mathrm{d}2-\mathrm{in},\omega}(x)\hat{\gamma}_{\mathrm{d}2-\mathrm{in}}^{\dagger}(\omega)] } \begin{bmatrix} \hat{\gamma}_{u-\mathrm{out}}\\ \hat{\gamma}_{d1-\mathrm{out}}\\ \hat{\gamma}_{d2-\mathrm{out}}^{\dagger} \end{bmatrix} = \begin{bmatrix} S_{uu} & S_{ud1} & S_{ud2}\\ S_{d1u} & S_{d1d1} & S_{d1d2}\\ S_{d2u} & S_{d2d1} & S_{d2d2} \end{bmatrix} \begin{bmatrix} \hat{\gamma}_{u-\mathrm{in}}\\ \hat{\gamma}_{d1-\mathrm{in}}\\ \hat{\gamma}_{d2-\mathrm{in}}^{\dagger} \end{bmatrix}$$

-Flux of outgoing particles in vacuum: $\langle 0_{\rm in} | \hat{\gamma}_{u-{\rm out}}^{\dagger}(\omega) \hat{\gamma}_{u-{\rm out}}(\omega') | 0_{\rm in} \rangle = \delta(\omega - \omega') |S_{ud2}(\omega)|^2 \neq 0$

Hydrodynamic regime
$$\rightarrow |S_{ud2}(\omega)|^2 = \frac{1}{e^{\frac{\hbar\omega}{k_B T_H}} - 1}, \ k_B T_H = \frac{\hbar}{2\pi} |c'(x_H) - v'(x_H)|$$

A. Recati et al., PRA 80, 043603 (2009) J. Macher et al., PRD 79, 124008 (2009)

EXPERIMENT

Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate

Oren Lahav, Amir Itah, Alex Blumkin, Carmit Gordon, Shahar Rinott, Alona Zayats, and Jeff Steinhauer Technion—Israel Institute of Technology, Haifa, Israel

Observation of quantum Hawking radiation and its entanglement in an analogue black hole

Jeff Steinhauer

https://doi.org/10.1038/s41586-019-1241-0

Observation of thermal Hawking radiation and its temperature in an analogue black hole

Juan Ramón Muñoz de Nova¹, Katrine Golubkov¹, Victor I. Kolobov¹ & Jeff Steinhauer^{1*}

JRMdN, V. I. Kolobov, K. Golubkov & J. Steinhauer Nature 569, 688 (2019)

https://doi.org/10.1038/s41586-019-1241-0

Observation of thermal Hawking radiation and its temperature in an analogue black hole

Juan Ramón Muñoz de Nova¹, Katrine Golubkov¹, Victor I. Kolobov¹ & Jeff Steinhauer^{1*}

MANY IMPROVEMENTS WITH RESPECT TO PREVIOUS EXPERIMENTS:

-REDUCED NOISE MAGNETIC FIELD -CORRECTION OF THE CENTER OF THE TRAP EVERY 5 RUNS -REDESIGNED OPTICS FOR THE WATERFALL -MIRROR FOR TRANSLATING THE WATERFALL -IMPROVED MECHANICAL AND OPTICAL STABILITY

JRMdN, V. I. Kolobov, K. Golubkov & J. Steinhauer Nature 569, 688 (2019)

-CONDENSATE ACCELERATED BY A WATERFALL POTENTIAL TO SUPERSONIC SPEEDS!

-DENSITY IS MEASURED THROUGH IN-SITU IMAGING WITH CAMERA

-AVERAGE DENSITY OVER AN ENSEMBLE OF 7400 REPETITIONS

-WE NEED TO MEASURE THE PREDICTED HAWKING TEMPERATURE

$$k_B T_H = \frac{\hbar}{2\pi} \left[\frac{dv}{dx} - \frac{dc}{dx} \right]_{x=0}$$

-HOWEVER, COMPUTING THE ACTUAL FLOW VELOCITY IS VERY DEMANDING...

-USING CONTINUITY EQUATION +QUASI STATIONARITY ->

$$k_B T_H = \frac{\hbar}{2\pi} \left[\frac{dv}{dx} - \frac{dc}{dx} \right]_{x=0} = -\frac{\hbar}{2\pi} \left[\frac{v}{n} \frac{dn}{dx} + \frac{dc}{dx} \right]_{x=0}$$

-ONLY DENSITY MEASUREMENTS ARE NEEDED!

-ACCURATE MEASUREMENT -> ACCURATE KNOWLEDGE OF THE RELATION BETWEEN DENSITY AND SPEED OF SOUND.

-ADAPTED FORMALISM OF NON-POLYNOMIAL GPE [L. Salasnich et al. PRA 69, 045601 (2004)]

 $\begin{aligned} \mathfrak{L}[\Psi] &= \int \mathrm{d}^{3}\mathbf{x} \; i\hbar\Psi^{*}(\mathbf{x},t)\partial_{t}\Psi(\mathbf{x},t) - \frac{\hbar^{2}}{2m}|\nabla\Psi(\mathbf{x},t)|^{2} - V(\mathbf{x},t)|\Psi(\mathbf{x},t)|^{2} - \frac{g_{3\mathrm{D}}}{2}|\Psi(\mathbf{x},t)|^{4} \\ &- \mathsf{GAUSSIAN}\;\mathsf{ANSATZ}\;\mathsf{FOR}\;\mathsf{TRANSVERSE}\;\mathsf{DOF} \quad \Psi(\mathbf{x},t) = \psi(x,t)\frac{e^{-\frac{\rho^{2}}{2\sigma^{2}(x,t)}}}{\sqrt{\pi}\sigma(x,t)}, \; \rho = \sqrt{y^{2} + z^{2}} \end{aligned}$

-NEW MODIFIED GPE->MODIFIED SOUND SPEED->NON-HARMONIC TRAP (ODT)!

Oscillating horizon

POSITION OF THE HORIZON OSCILLATES WITH GIVEN FREQUENCY -> OUTGOING WAVES ARE GENERATED

EACH REPETITION WITH A RANDOM PHASE-> DENSITY-DENSITY CORRELATIONS-> FOURIER TRANSFORM-> OUTGOING DISPERSION RELATION

Density-density correlations

-Density fluctuations->Density-density correlation $G^{(2)}(x, x') = \sqrt{\frac{\xi_u \xi_d}{n_u n_d}} \langle \delta n(x) \delta n(x') \rangle$

-Background substracted due to experimental reasons (filtering).

-Theory?

Theoretical model

-Quantum fluctuations are modeled using the Truncated Wigner method:

Classical field+stochastic initial condition

$$\Psi_{W}(x,0) = \Psi_{0}(x) + \sum_{n=1}^{M} \left[\gamma_{n} u_{n}(x) + \gamma_{n}^{*} v_{n}(x) \right]$$

Numerical integration in time:

$$i\hbar\partial_t\Psi_W(x,t) = \left[-\frac{\hbar^2\partial_x^2}{2m} + V(x,t) + g|\Psi_W(x,t)|^2\right]\Psi_W(x,t)$$

Amplitudes of the modes sampled from the equilibrium Wigner distribution $\langle \gamma_m^* \gamma_n \rangle = \frac{\delta_{nm}}{2}, \langle \gamma_m \gamma_n \rangle = 0$ (Independent Gaussian variables)

Average over ensemble=Quantum expectation values of symmetric ordered operators!

$$\langle \Psi^*(x')\Psi(x)\rangle_W = \frac{\langle \hat{\Psi}^\dagger(x')\hat{\Psi}(x)\rangle + \langle \hat{\Psi}(x)\hat{\Psi}^\dagger(x')\rangle}{2} = \langle \hat{\Psi}^\dagger(x')\hat{\Psi}(x)\rangle + \frac{\delta(x-x')}{2}$$

For the second-order correlation function:

$$\begin{split} \langle \hat{\Psi}^{\dagger}(x)\hat{\Psi}^{\dagger}(x')\hat{\Psi}(x)\hat{\Psi}(x)\rangle &- \langle \hat{\Psi}^{\dagger}(x)\hat{\Psi}(x)\rangle \langle \hat{\Psi}^{\dagger}(x')\hat{\Psi}(x')\rangle \ = \ \langle \Psi^{*}(x')\Psi^{*}(x')\Psi(x)\Psi(x')\rangle_{W} - \langle \Psi^{*}(x)\Psi(x)\rangle_{W} \langle \Psi^{*}(x')\Psi(x')\rangle_{W} \\ &- \ \delta(x-x')\frac{\langle \Psi^{*}(x')\Psi(x)\rangle_{W} + \langle \Psi^{*}(x)\Psi(x')\rangle_{W}}{2} + \frac{\delta^{2}(x-x')}{4} \end{split}$$

Numerical procedure

1-Computation of the ground state using imaginary time GP equation.

2-Computation of the BdG modes (cutoff M~700 modes)

3-Initial stochastic condition sampled from the equilibrium Wigner distribution

4-Numerical integration of the time-dependent GP equation.

5-Computation of the correlation by averaging over the ensemble (typically 10000 realizations)→Focus on non-diagonal elements!

Density-density correlations

Density-density correlations

Experiment

Simulation

Conclusions

-Hawking radiation was observed.

-Spectrum thermal -> Very good agreement with the theory!

-Dispersion irrelevant.

-No grey-body factors.