Discrete time crystal in a finite chain of Rydberg atoms without disorder

Davide Rossini

Università di Pisa & INFN, Pisa (Italy)

QFC 2019, Pisa (Italy), 24 October 2019

How does a quantum system thermalize?

Onset of thermalization:

- \rightarrow Eigenstate Thermalization Hypothesis
- → equilibrium statistical mechanics sets in the system locally resembles a canonical state diagonal ensemble = canonical ensemble
- \rightarrow *entanglement growth* between subsystems

How does a quantum system thermalize?

Onset of thermalization:

- \rightarrow Eigenstate Thermalization Hypothesis
- → equilibrium statistical mechanics sets in the system locally resembles a canonical state diagonal ensemble = canonical ensemble

 \rightarrow *entanglement growth* between subsystems

Nonthermal behavior in certain occasions:

- → *impurities and localization effects* (more complex behavior)
- \rightarrow *exotic nonequilibrium* states of matter

Thermalization in static/driven systems

	emergence of thermalization $S_A \sim A $	absence of thermalization $S_A \sim \partial A $
<u>Static</u> systems	the system acts as its own bath $ ho_A \sim e^{-eta_{ m eff} H_A}$	frozen-in impurities
<u>Periodically driven</u> (Floquet) systems	heating up at $eta ightarrow 0$ $ ho_A\sim \mathbb{I}$	nonequilibrium states of matter → pre-thermal states → "crypto-equilibrium"

<u>Time crystals</u>: three key manifestations

 $\langle O \rangle(t + nT) = \langle O \rangle(t) \quad (n \ge 2)$

\rightarrow Broken time-translation symmetry

After an initial transient, late-time oscillations appear with a period longer than that of the drive (T)

\rightarrow Crypto-equilibrium

The system looks at equilibrium, in some time-dependent frame No entropy generated by late-time oscillations

\rightarrow Rigid long-range order

Oscillations remain in phase over long distances & times (synchronization)

unfeasible at thermal equilibrium

F. Wilczek, PRL 109, 160401 (2012)

K. Sacha, J. Zakrzewski, *Rep. Prog. Phys.* 81, 016401 (2018)

D. V. Else, C. Monroe, C. Nayak, N. Y. Yao, *arXiv:1905.13232*

Discrete time crystals with Rydberg atoms

C.-H. Fan, DR, H.-X. Zhang, J.-H. Wu, M. Artoni, and G. C. La Rocca, arXiv:1907.03446

Experimental realizations of DTCs

Zhang et al. (trapped ions – Monroe), Nature 543, 217 (2017)

Clean DTCs

DTCs are not necessarily "protected" by MBL. Proposals using <u>non-disordered systems</u>:

- \rightarrow cold atoms in ladder configurations
- B. Huang, Y. Wu, W. Liu, PRL 120, 110603 (2018)
- \rightarrow prethermal states with short-range interactions D. Else, B. Bauer, C. Nayak, *PRX* 7, 011026 (2017)

 \rightarrow spin-chain models with variable-range interactions

A. Russomanno, F. Iemini, M. Dalmonte, R. Fazio, PRB 95, 214307 (2017)

F. Surace, A. Russomanno, M. Dalmonte, A. Silva, R. Fazio, F. Iemini, PRB 99, 104303 (2019)

W. Yu, J. Tangpanitanon, A. Glaetzle, D. Jaksch, D. Angelakis, PRA 99, 033618 (2019)

\rightarrow open quantum systems

F. Gambetta, F. Carollo, M. Marcuzzi, J. Garrahan, I. Lesanovsky, PRL 122, 015701 (2019)

First experiments (NMR):

J. Rovny, R. Blum, S. Barrett, *PRL* **120**, 180603 (2018) S. Pal, N. Nishad, T. Mahesh, G. Sreejith, *PRL* **120**, 180602 (2018)

DTC in a chain with Rydberg atoms

Initial state: $|\Psi(0)\rangle = \otimes_j |g\rangle_j$

Floquet time evolution:

$$U_F(n) = \left[e^{-iH_2T_2/\hbar}e^{-iH_1T_1/\hbar}\right]^n$$

 $nT - T_2 \le t < nT$

Step I

$$H_1 = \hbar \sum_{j} \left[\Omega(\sigma_j^+ + \sigma_j^-) + \Delta N_j^r + V N_j^r N_{j+1}^r \right] \quad (n-1)T \le t < nT - T_2$$

Step II

$$H_2 = \hbar \sum_j \left[\Delta N_j^r + V N_j^r N_{j+1}^r \right]$$

The DTC phase

The following conditions must be satisfied:

- (i) time-translation symmetry breaking
- (ii) *rigidity* against variations of parameters
- (iii) *persistence* in time with increasing size

Emergence of 27 periodicity

units of $T_1 = 1 \, \mu s$

Emergence of 27 periodicity

$$\Omega T_1 = \frac{\pi}{2} + \epsilon T_1$$

$$\epsilon = 0; \quad V = 0$$

strict 27 periodicity

BUT unstable against perturbations

 $\epsilon=0.1; \quad V=0$

units of $T_1 = 1 \, \mu s$

Emergence of 27 periodicity

Other proposals turn off the interactions during H_1 here we set $\Omega \gg V, T_1 \ll T_2 \Rightarrow \omega T_1 \approx VT_2$

units of $T_1 = 1 \, \mu s$

Persistence of the DTC

Persistence in time:

stability of oscillations over tens of thousands of Floquet cycles

$$\Delta = 0.6, \ \epsilon = 0, \ T_2 = 15$$

Persistence of the DTC

Role of the detuning \Delta

Emergence of <u>sharp peaks</u> of n_c vs. Δ

<u>Symmetry</u>: invariant results for simultaneous sign change of V and Δ

Model II: externally controlled detuning

Sharp peaks of n_c vs. Δ are replaced by a <u>smooth envelope</u> The effect of Δ can be reduced taking $\varepsilon < 0$ (DTC more stable): $\Omega_e = \sqrt{\left[\pi/(2T_1) + \epsilon\right]^2 + \Delta^2}$ <u>Same symmetry</u>: invariant results for simultaneous sign change of V and Δ

Pre-thermal time crystal?

A "*boundary effect*" for the persistence of a DTC in the parameter space

Pre-thermal time crystal?

Dissipation effects

Conclusions

• Discrete time crystals in non-disordered Rydberg atoms chains

- \rightarrow time-translation symmetry breaking
- \rightarrow robustness to system's parameters
- \rightarrow persistence over long times already @ *L*~10

experimental viability (losses under control)

 \rightarrow DTC in clean and short-range systems:

Which mechanism is preventing the system from heating up? Quantum Many-body scars?