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Study of a dipolar quantum gas with
supersolid properties
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* Discovery of the supersolid: a phase-coherent, density-
modulated regime. [PRL 122, 130405 (2019)]

* Evidence of the simultaneous breaking of two symmetries
from the bifurcation of the lowest compressional mode.
[Nature 574, 382 (2019)]

* |n progress: investigation of non-classical rotational inertia
and superfluid fraction.



Proposal

PHYSICAL REVIEW A VOLUME 2, NUMBER 1 JULY 1970
Speculations on Bose-Einstein Condensation and Quantum Crystals*

G. V. Chester
Laboratory of Atomic and Solid State Physics, Cormnell University, Ithaca, New York 14850
(Received 13 May 1969)

It is shown, by almost rigorous arguments, that there exist many-body states of a system
of interacting bosons which exhibit both crystalline order and Bose-Einstein condensation into
the zero-momentum eigenstate of the single-particle density matrix. The implications of this
result are discussed in relation to theories of superfluidity and the nature of quantum crystals.

also: E. P. Gross, Phys. Rev. 106, 161 (1957); A.F. Andreey, |.M. Lifshitz, JEPT 29 (1969);
G.V. Chester, Phys. Rev. 2, 161 (1970); A.J. Leggett, Phys. Rev. Lett. 25, 1543 (1970); ...

Supersolid He?

Lack of unambiguous experimental observation

Balibar, The enigma of supersolidity. Nature 464, 176 (2010)
Kim and Chan, Absence of supersolidity in solid helium in porous Vycor
glass. Phys. Rev. Lett. 109, 155301 (2012).



Supersolids in quantum gases?

Gaseous Bose-Einstein condensates (superfluidity) +
engineered “long-range” interactions (density modulation)

Proposals based on:

e spin-orbit coupled atoms (observed in J.R. Li et al, Nature 543 (2017))
e atoms in optical cavities (observed in J. Leonard et al, Nature 543 (2017))
* strongly dipolar atoms
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Dipolar quantum gases: rotons and droplets
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(2018) (Innsbruck + Hannover); D. Petter et al.
Phys. Rev. Lett. 122, 183401 (2019) (Innsbruck).
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B IR ka.; bound droplets.
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Combining the roton instability with a strongly dipolar system (Dy atoms), one
might reach a regime of overlapping “unbound droplets”, realizing a supersolid.

Weak, anisotropic harmonic trapping Detection in momentum space (after
(radii 2-15 um) free expansion)
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Experimental observations

Slow tuning of the contact scattering length beyond the instability point.
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Phase coherence
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Variance of uniform

f random phase
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Theoretical simulations

Coherent regime
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Incoherent regime

Numerical simulations at finite T
with LHY term and 3-body losses by
R.Bisset and L.Santos (Hannover)

stripe contrast

phase incoherence




Strong interest by the scientific community

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About N

Featured in Physics

Observation of a Dipolar Quantum Gas with Metastable Supersolid
Properties

L. Tanzi, E. Lucioni, F. Fama, J. Catani, A. Fioretti, C. Gabbanini, R. N. Bisset, L. Santos, and G. Modugno
Phys. Rev. Lett. 122, 130405 - Published 3 April 2019
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PhYSICS See Viewpoint: Dipolar Quantum Gases go Supersolid
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F. Bottcher et al, Transient supersolid properties in an array of
dipolar quantum droplets, Phys. Rev. X9, 011051 (2019)
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L. Chomaz et al., Long-lived and transient supersolid
behaviors in dipolar quantum gases, Phys. Rev. X 9,
021012 (2019).



Symmetry breaking and Goldstone modes

A gapless Goldstone mode arises each time that an underlying symmetry is
spontaneously broken.

rs=0.503
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Superfluid: gauge symmetry
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Supersolid: gauge symmetry
and translational symmetry

(0]

c)

2 20 /\ Solid: translational symmetry
20 - 7
10 &

0 0.2 0.4 0.6 0.8
ka/2n

S. Saccani, S. Moroni and M. Boninsegni, Excitation spectrum of a supersolid. Phys. Rev. Lett. 108, 175301 (2012).




Trapped system: normal modes

How to observe symmetry breaking in a trapped system?

Phonon wavelengths are bound by the system size.
Momentum and sound velocity are not well defined in a non-homogeneous

system.

Answer:
Phonons can be mapped to the compressional modes of the system.

The lowest achievable energy at finite momentum is lifted.
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Normal modes

BEC in the Thomas-Fermi regime: hydrodynamic equations for an ideal liquid.

on S. Stringari, Phys. Rev. Lett. 77, 2360 (1997)
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Experiment: axial breathing mode in the BEC regime

Quench of the ™
scattering length |
through Feshbach
resonances
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Theory: axial breathing mode in the SS regime

Numerical simulations at T=0 and no losses:
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Beating of the axial breathing mode in the supersolid!

Due to the coupling of the two sound modes, the beating is visible only for very

small amplitudes (<5%).
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Theory by S. Roccuzzo, A. Recati and S. Stringari



Experimental observations
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spontaneously excited at the
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Oscillation amplitude: 10%
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L. Tanzi et al, Nature 574, 382 (2019)



Theory: nature of the modes
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Symmetry breaking in a supersolid
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L. Tanzi, S. Roccuzzo et al., Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas,
Nature 574, 382 (2019)
Complementary experiments in Stuttgart (Nature 574, 386 (2019)) and Innsbruck (Phys. Rev. Lett. 123, 050402).



Nonclassical rotational inertia in supersolids

VOLUME 25, NUMBER 22 PHYSICAL REVIEW LETTERS 30 NovEMBER 1970

Can a Solid Be ““Superfluid™?

A. J. Leggett
School of Mathematical and Physical Sciences, Universily of Sussex, Falmev, Brighton, Sussex, England
(Received 15 September 1970)
It is suggested that the property of nonclassical rotational inertia possessed by super-
fluid liquid helium may be shared by some solids. In particular, nonclassical rotational
inertia very probably occurs if the solid is Bose-condensed as recently proposed by
Chester. Anomalous macroscopic effects are then predicted. However, the associated

superfluid fraction is shown to be very small (probably £107%) even at T'=0, so that these
effects could well have been missed. Direct tests are proposed.

Due to irrotationality, the moment of inertia of a cylindrically symmetric superfluid is O.

mmmm) Torsional oscillator measurements in solid He | 7
>
The momentum of inertia defines the superfluid fraction:

I = (1_f5)1rig

Leggett finds that independently from the shape of the density (py= pV/N):
fo= ([ ax——
= X
> Po(x)
1 for standard SF-> fo =1
= 0 at the edge of the Brillouin zone fora SS-> f,< 1
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Scissors mode: theory

VOLUME 83, NUMBER 22 PHYSICAL REVIEW LETTERS 29 NOVEMBER 1999

Scissors Mode and Superfluidity of a Trapped Bose-Einstein Condensed Gas

D. Guéry-Odelin and S. Stringari

Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo, Italy
(Received 16 July 1999)

We investigate the oscillation of a dilute atomic gas generated by a sudden rotation of the confining
trap (scissors mode). This oscillation reveals the effects of superfluidity exhibited by a Bose-Einstein
condensate. The scissors mode 1s also mvestigated in a classical gas above 7. in various collisional
regimes. The crucial difference with respect to the superfluid case arises from the occurrence of low
frequency components, which are responsible for the rigid value of the moment of inertia. Different
experimental procedures to excite the scissors mode are discussed.
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* Similar to the torsion oscillator, but now each atom is suspended to a «torsion
spring», so the mass distribution cancels out!

2
* InaBEC: wi, = (w2 + w?)

2
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* In fact, for a nondipolar BEC in an elliptic geometry: = % = (y—x)z
Irig (wf+w})
Experimental observation by Marago et al., PRL 84, 2056 (2000)



The objective

Measure the scissor frequency. Combine Stringari’s and Leggett’s theory results
to obtain the nonclassical rotational inertia and superfluid fraction of the
dipolar supersolid:

* moment of inertia from the scissors mode frequency
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e superfluid fraction from the moment of inertia
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* the measured ps from the oscillations can be compared to that expected
from the density modulation
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Scissors mode: experiment

The x-y scissors mode (in the plane
perpendicular to B) can be excited by a quench
of the strength of two optical traps.

Since the deviation between SF and SS behaviour depends on the fraction of system
which contributes to the NCRI, proportional to (1-€'%), we choose a more symmetric
geometry to observe a large deviation in the measure of I/I,,:

w, ~ 20 Hz wy, =~ 40 Hz



Scissors mode: BEC regime

BEC regime: @, =2n x43.7 (1.1) Hz = /wf, + w? preliminary data

The angle evolution is
determined with a 2D fit

Supersolid regime: @, . =271 x 36 (6) Hz ~ 0.8 /wjz, + wZ

1'_?:{! 11;4} II;D IEI'D 21;0 22I'D
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Superfluid fraction from scissors frequency
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Superfluid fraction from density distribution

We can qualitatively reconstruct the in-trap density distribution from the time-of-flight
distributions (assuming no distortion at the release from the trap).

simulated experimental
Po(ky) ”‘: | Apeak _ 0.2
0.4L T AC
fs = (j dx ! ) 1= 30%
po(x) | L — po(x)

same order of magnitude

preliminary data, analysis in progress




Conclusions and outlook

Evidence of a phase-coherent, density modulated phase with two broken
symmetries confirms the supersolid nature of the observed phase.

In progress:  first measurements of nonclassical rotational inertia and superfluid
fraction

Other manifestations of superfluidity:
* Existence of a critical velocity
* Existence of quantized vortices

Towards a «solid-state supersolid»:
* Homogeneous and larger systems.
* 2D systems.
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Inelastic decay

Atom-number decay due to three-body recombination
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Sound modes and symmetry breaking

QUANTUM THEORY OF DEFECTS IN CRYSTALS

A. F. ANDREEV and I. M. LIFSHITZ
Institute of Physical Problems, U.S.S.R. Academy of Sciences
Submitted January 15, 1969
Zh. Eksp. Teor. Fiz, 56, 2057-2068 (June, 1969)

At sufficiently low temperatures localized defects or impurities change into excitations that move
practically freely through a crystal. As a result instead of the ordinary diffusion of defects, there
arises a flow of a liquid consisting of ‘‘defectons’’ and ‘‘impuritons.’’ It is shown that at absolute
zero in crystals with a large amplitude of the zero-point oscillations (for example, in crystals of
the solid helium type) zero-point defectons may exist, as a result of which the number of sites of an
ideal crystal lattice may not coincide with the number of atoms. The thermodynamic and acoustic
properties of crystals containing zero-point defectons are discussed. Such a crystal is neither a
solid nor a liquid. Two kinds of motion are possible in it; one possesses the properties of motion in
an elastic solid, the second possesses the properties of motion in a liquid. Under certain conditions
the ‘‘liquid’’ type of crystal motion possesses the property of superfluidity. Similar effects should
also be observed in quasiequilibrium states containing a given number of defectons.

... we obtain an equation for the acoustic vibrations of a crystal ... and
oscillations of the crystal density with fixed lattice sites...



Normal modes in a dipolar BEC

Lowest-lying normal modes from the hydrodynamic equations (without LHY):
van Bijnen et al, Phys. Rev. A 82, 033612 (2010)

0 0.2 0.4 0.6 0.8 1 1.2

4 —

Eqa = Agq/as



Experiment: BEC regime

Superfluid symmetry breaking: the axial breathing mode frequency is very
different from that of a classical gas.
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The frequency shift of the BEC mode is a well known effect due to interaction with
the thermal component.



Torsional oscillator measurements on solid He
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Probable observation of a supersolid Helium phase, Kim and Chan, Nature 427, 225 (2004).
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When considering the elastic deformations of
He under rotation no NCRI is observed!
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Absence of superfluidity of solid Helium in porous Vycor glass, Kim and Chan, Phys. Rev. Lett. 109, 155301 (2012);
Review: Balibar, Nature 464, 176 (2010); Torsion oscillator theory: Maris and Balibar, J. Low Temp. Phys. 162, 12
(2011).



Rotating BECs

Rotating BECs is also possible:

Rotating harmonic traps

Phys. Rev. Lett. 84, 806 (2000), ...

Toroidal traps

Phys. Rev. Lett. 110, 025302 (2013), ...

... but a much simpler alternative exists: the scissors mode



Supersolids in superfluid quantum gases?

Gaseous Bose-Einstein condensates (superfluidity) +
Engineered “long-range” interactions (density modulation)

Cluster supersolids benefit from
bosonic enhancement

Pomerau and Rica, Phys. Rev. Lett. 72, 2426 (1994)

Proposals based on:

* Rydberg atoms with soft-core interactions

e spin-orbit coupled atoms (observed in J.R. Li et al., Nature 543 (2017))

* atoms in optical cavities (observed in J. Leonard et al., Nature 543 (2017))
e strongly dipolar atoms



Scissors mode: experiment

The scissors mode of a classical gas (a) and a BEC

N (a) (b) are qualitatively different.
%-a- The BEC is fully superfluid (ps/p = 1), so the
: “superfluid fraction” changes only because of the

thermal component at T>0.
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Observation of the scissors mode and evidence of superfluidity of a trapped BEC, Marago et al., Phys. Rev.
Lett. 84, 2056 (2000).



