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GR, a beautiful but  
weird theory…

Singularities 

Critical phenomena in gravitational collapse 

Horizon thermodynamics 

The “dark ingredients” of our universe? 

Spacetime thermodynamics: Einstein equations as equations of state. 

Thermodynamics interpretation of Einstein equations 

Faster than light and Time travel solutions 

AdS/CFT duality, holographic behaviour 

Gravity/fluid duality

Albeit we “use” GR everyday (e.g. GPS) still it has some 
tantalising features and it has resisted so far any attempt to 
be quantised…



Gravity as an emergent phenomenon?

Emergent gravity idea: quantizing the metric or the connections does 
not help because perhaps these are not fundamental objects but 

collective variables of more fundamental structures.

 GR ⇒ Hydrodynamics 
 Metric as a collective variable 
 All the sub-Planckian physics is low energy physics 
 Spacetime as a condensate of some more fundamental objects 
 Spacetime symmetries as emergent symmetries 
 Singularities as phase transitions (big bang as geometrogenesis) 
 Cosmological constant as deviation from the real ground state

Many models are nowadays resorting to emergent gravity scenarios 

Causal sets  
Quantum graphity models 
Group field theories condensates scenarios 
AdS/CFT scenarios where the CFT is considered primary 
Gravity as an entropic force ideas 
Condensed matter analogues of gravity
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Analogue gravity: 
a toy model of emergent spacetimes



Analogue models of gravity

 Dielectric media  
 Acoustic in moving fluids  

 Gravity waves 
 High-refractive index dielectric fluids: “slow light”  

 Optic Fibers analogues 
 Quasi-particle excitations: fermionic or bosonic quasi-particles in He3 

 Non-linear electrodynamics 
 “Solid states black holes” 

 Perturbation in Bose-Einstein condensates  
 Graphene C.Barcelo, S.L and M.Visser, 

  “Analogue gravity” 
  Living Rev.Rel.8,12 (2005-2011).

An analogue system of gravity is a generic dynamical system where the propagation of linearised 
perturbations can be described via hyperbolic equations of motion on some curved spacetime  

possibly characterized be one single metric element for all the perturbations.
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analogue models

Hydrodynamical models 
Theorem: linearised perturbations on a inviscid, 

irrotational fluid with barotropic EOS  
move like fields on a curved spacetime
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p = pressure, η =  dynamic viscosity,  ζ =  bulk viscosity, 
Φ = potential of external driving force (gravity included)

Linearize the above Eq.s around some background
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ρ(t, x) = ρ0(t, x) + ερ1(t, x)
p(t, x) = p0(t, x) + εp1(t, x)
ψ(t, x) =ψ0(t, x) + εψ1(t,x)

Basic Assumptions
IDEAL PERFECT 

FLUID   
Irrotational Flow 

  Barotropic 
 Viscosity free flow
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A paradigmatic example: Acoustic Gravity
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This looks messy but if we introduce the “acoustic metric”
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Unruh ’81,  
Visser ’98 

But see also White ‘73
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And combine then so to get a second order field equation

We get
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∂µ −ggµν∂νψ1( ) = 0 This is the same equation as  for a scalar field moving in curved 
spacetime, possibility to simulate FRW and Black Holes!  

Analysis can be generalised to relativistic fluids=>Disformal geometries

Unruh ’81,  
Visser ’98 

But see also White ‘73
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We get



A BEC is quantum system of N interacting bosons in which most of them 
lie in the same single-particle quantum state  

(T<Tc~100 nK, Natoms~105÷106) 

It is described by a many-body Hamiltonian which in the limit of dilute condensates gives a non-linear 
Schrödinger equation

This is still a very complicate system, so let’s adopt a mean field approximation

(a=s-wave scattering length) 

i� ⇥

⇥t
�̂ = � �2

2m
⇥2�̂ � µ�̂ + �|�̂|2�̂.

€ 

Mean field approximation :  ˆ Ψ t,x( ) =ψ t,x( ) + ˆ χ t,x( )    where   ψ t,x( )
2

= nc t,x( ) = N /V

ψ t,x( ) = ˆ Ψ t,x( ) = classical wave function of the BEC ,       ˆ χ t,x( )  = excited atoms

The ground state is the vacuum for the collective excitations of the condensate (quasi-particles) but this an inequivalent 
state w.r.t. the atomic vacuum. They are linked by Bogoliubov transformations.

A concrete example: BEC analogue gravity



Bose-Einstein condensate:  
an example of analogue emergent spacetime
By direct substitution of the mean field ansatz in the non-linear Schrödinger equation gives

These are the so called Bogoliubov-de Gennes equations 
The first one encodes the BEC background dynamics 

The second one encodes the dynamics for the quantum excitations 

The equations are coupled via the so called anomalous mass m and density ñ. Which we shall neglect for the moment… 

Background dynamics

Excitations dynamics
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Let’s consider quantum perturbations over the 
BEC background and adopt the “quantum acoustic 

representation’' (Bogoliubov transformation) 

for the perturbations one gets the 
system of equations

Where D2 is a represents a second-order differential 
operator: the linearized quantum potential
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Acoustic metric and  
the fate of Lorentz invariance

For very long wavelengths the terms coming from the 
linearized quantum potential D2 can be neglected. 

The so obtained metric is again the acoustic metric 
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If instead of neglecting the quantum potential we adopt the eikonal approximation 
(high-momentum approximation) we find, as expected, deviations from the Lorentz 

invariant physics of the low energy phonons.

This (Bogoliubov) dispersion relation (experimentally observed) actually interpolates between two 
different regimes depending on the value of  the fluctuations wavelength  

λ=2π/|k| with respect to  
the “acoustic Planck wavelength”  

λC=h/(2mcs)=πξ  with  ξ=healing length of  BEC=1/(8πρa)1/2

 For λ»λC one gets the standard phonon dispersion relation ω≈c|k| 

 For λ«λC one gets instead the dispersion relation for an individual gas particle ω≈(ħ2k2)/(2m)
(breakdown of  the continuous medium approximation)

E.g. the dispersion relation for 
the BEC quasi-particles is



Spin-off, Quantum gravity phenomenology:  
Planck scale Lorentz violation as a topic example

Suggestions for Lorentz violation searches came from several QG models and are tight to the presence of a 
fundamental length scale

 String theory tensor VEVs (Kostelecky-Samuel 1989, ...) 
 Cosmological varying moduli (Damour-Polyakov 1994) 

 Spacetime foam scenarios (Ellis, Mavromatos, Nanopoulos 1992, Amelino-Camelia et al. 1997-1998) 
 Some semiclassical spin-network calculations in Loop QG (Gambini-Pullin  1999) 

 Einstein-Aether Gravity (Gasperini 1987, Jacobson-Mattingly 2000, …) 
 Some non-commutative geometry calculations (Carroll et al. 2001) 

 Some brane-world backgrounds (Burgess et al. 2002)  
 Ghost condensate in EFT (Cheng, Luty, Mukohyama, Thaler 2006) 

 Horava-Lifshiftz Gravity (Horava 2009, …)
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A common prediction of these models is that the Lorentz breaking in the UV 
leads to a Planck suppressed modified dispersion relation.
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2 p ≈ mν~1 eV p≈me=0.5  MeV p≈mp=0.938  GeV

3 ~1 GeV ~10 TeV ~1 PeV

4 ~100 TeV ~100 PeV ~3 EeV
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Phenomenology? One needs a dynamical framework ⇒ 
Model via Effective Field Theory with Lorentz breaking 

(Standard Model Extension to LIV operators, CPT even or Odd)
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Astrophysical tests
•  Cosmological variation of  couplings, CMB  
•  Cumulative effects in astrophysics 
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•  Reactions affected by “speeds limits”: synchrotron radiation 
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Feedback on QG models

SL, CQG Topic Review 2013



Lesson 1 
Analogue Black Holes and the 

Robustness of Hawking radiation



Analogue Black holes

A moving fluid will tip 
the “sound cones” as 

it moves.
Supersonic flow will 

tip the cone past the 
vertical.

A moving fluid can form 
“trapped regions” when 
supersonic flow will tip 

the cone past the 
vertical.

v



Classical analogues: Gravity waves

Let’s consider gravity waves on an inviscid, irrotational flow   
of a barotropic fluid under the influence of gravity. The Bernoulli’s and continuity 
equations imply that in the long wavelength limit (shallow basin) surface wave 

propagate on an effective geometry

Schutzhold, Unruh. Phys.Rev.D66:044019,2002. 

! = v · k±

s✓
gk +

�

⇢
k3

◆
tanh(kh)For arbitrary wavelength the dispersion relation is non-relativistic and 

goes from linear to “subluminal” to “superluminal”. Badulin (1983)

✦ Original idea: send non-dispersive pulses (solitons) through a optical fiber. 
Each pulse modifies the optical properties of the fiber due to the Kerr effect:

✦ the effective refractive index of the fiber, n0, gains an additional contribution 
δn that is proportional to the instantaneous pulse intensity I at position z and 

time t.
✦ launch a continuous wave of light, a probe, that follows the pulse with slightly 

higher group velocity, attempting to overtake it
✦ As the probe approaches the pulse it slows down so much so that for some 

frequency it cannot “enter” the pulse. The rear front acts like a white horizon.
✦ Similarly probe light insight the pulse cannot escape from it, so the front of the 

pulse acts like a black horizon.

Quantum analogues: Fiber optics analogues



BHs in BEC

Carusotto, Fagnocchi, Recati, Balbinot, Fabbri.
New J. Phys.10, 103001 (2008)

See also Macher, Parentani: arXiv:0905.3634

L.J. Garay, J.R. Anglin, J.I. Cirac, P. Zoller.  
Phys.Rev.Lett. 85 (2000) 4643-4647  

Phys.Rev. A63 (2001) 023611 

Use a Feshbach resonance to control the scattering length and 
hence the speed of sound, in order to create an analogue 
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Figure 2 | The analogue black hole.  a, The 1D Bose-Einstein condensate, which traps 

phonons in the region to the right of the horizon.  The average over the ensemble is shown.  b,  

The profile of a.  Blue and red indicate the regions outside and inside the black hole where the 

Hawking/partner correlations are observed.  The green curve in the inset is half a gray soliton12.  

c,  The profile of the condensate without the step potential, obtained from an average of 1400 

images.  d,  The position of the step potential as a function of time.  The black line is used for 

observing Hawking radiation.  The green curve is used for generating waves. 

 

Jeff Steinhauer  
Nature Phys. 12 (2016) 959 

Use a sweeping one step potential to generate a BEC “waterfall”.

Carlos Barcelo, SL, Matt Visser. 
Int.J.Mod.Phys. A18 (2003) 3735.



The transplanckian problem

Since this is a static geometry, the relationship between the Hawking temperature and surface
gravity may be verified in the usual fast-track manner – using the Wick rotation trick to analytically
continue to Euclidean space [245]. If you don’t like Euclidean signature techniques (which are in
any case only applicable to equilibrium situations) you should go back to the original Hawking
derivations [270, 271].8

We should emphasize that the formula for the Hawking temperature contains both the surface
gravity gH and the speed of sound cH at the horizon [624]. Specifically

kTH =
!gH
2πcH

. (63)

In view of the explicit formula for gH above, this can also be written as

kTH =
!

2π

∂|c− v|
∂n

∣∣∣∣
H

, (64)

which is closer to the original form provided by Unruh [607] (which corresponds to c being constant).
Purely on dimensional grounds it is a spatial derivative of velocity (which has the same engineering
dimension as frequency) that is the determining factor in specifying the physically-normalised
Hawking temperature. (Since there is a strong tendency in classical general relativity to adopt
units such that c → 1, and even in these analogue models it is common to adopt units such that
cH → 1, this has the potential to lead to some confusion. If you choose units to measure the
surface gravity as a physical acceleration, then it is the quantity gH/cH , which has the dimensions
of frequency that governs the Hawking flux [624].)

One final comment to wrap up this section: The coordinate transform we used to put the
acoustic metric into the explicitly static form is perfectly good mathematics, and from the general
relativity point of view is even a simplification. However, from the point of view of the underlying
Newtonian physics of the fluid, this is a rather bizarre way of deliberately de-synchronizing your
clocks to take a perfectly reasonable region – the boundary of the region of supersonic flow –
and push it out to “time” plus infinity. From the fluid dynamics point of view this coordinate
transformation is correct but perverse, and it is easier to keep a good grasp on the physics by
staying with the original Newtonian time coordinate.

Stationary (non-static) acoustic spacetimes: If the fluid flow does not satisfy the integra-
bility condition, which allows us to introduce an explicitly static coordinate system, then defining
the surface gravity is a little trickier.

Recall that by construction the acoustic apparent horizon is, in general, defined to be a two-
surface for which the normal component of the fluid velocity is everywhere equal to the local speed
of sound, whereas the acoustic event horizon (absolute horizon) is characterised by the boundary
of those null geodesics (phonons) that do not escape to infinity. In the stationary case these
notions coincide, and it is still true that the horizon is a null surface, and that the horizon can be
ruled by an appropriate set of null curves. Suppose we have somehow isolated the location of the
acoustic horizon, then, in the vicinity of the horizon, we can split up the fluid flow into normal
and tangential components

v = v⊥ + v‖; where v⊥ = v⊥ n̂. (65)

Here (and for the rest of this particular section) it is essential that we use the natural Newtonian
time coordinate inherited from the background Newtonian physics of the fluid. In addition n̂ is

8 There are a few potential subtleties in the derivation of the existence of Hawking radiation, which we are, for
the time being, glossing over; see Section 5.1 for details.
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Hawking radiation is based on the extrapolation of standard QFT in CS up to 
transplanckian frequencies. 

It seems to relate far UV physics to IR at infinity. 
Question: is HR robust against UV physics features?



Robustness of Hawking radiation in Black hole 
analogues: Theory

It turned out that Hawking Radiation is robust against LIV (see e.g. 
Parentani et al. papers), however you also can get (controllable) 

instabilities such as “black hole laser effect” 
(superluminal relation in compact supersonic region or vice versa. see  

e.g. Jacobson-Corley and Parentani-Finazzi. 
See Jeff’s talk tomorrow for observational evidence)

From Jacobson-Parentani: Sci. Am. 2005

Some facts:
In static spacetimes Hawking radiation robustness is generally 

assured if there is a separation of scales: κBH<<Λ where 
Λ=K*F(vint−asym)  for superluminal disp.rel. 

For subliminal |vint−asym|<κBH/K.

Indeed in this cases κBH stays in this case constant for a wide range 
of k in spite of the modified dispersion relation.

the quantity that really fixes the Hawking temperature is an average 
of the spatial derivative of the velocity profile on a region across the 

horizon whose size is related to the UV LIV scale: the horizon 
becomes thick

Key point for HR is also vacuum condition at particle creation 
region for freely falling observers (which are carrying with them the 

preferred frame associated to LIV)
White hole-Cauchy horizons UV instabilities are regularised by LIV 

although at the price of new, slow, IR instabilities (undulation).

!2 = c2s
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Classical analogues: Gravity waves
Analogue system used for detection of classical wave conversion analogue of Hawking effect  

G. Rousseaux et al. 2008 
S.Weinfurtner, E.W. Tedford, M. C. J. Penrice, W. G. Unruh, and G. A. Lawrence. Phys.Rev.Lett. 106 (2011) 021302 

Application to detection of Analogue Superradiance 
SISSA-Nottingham experiment: an analogue of superradiant scattering (PI: S. Weinfurtner)

Mauricio Richartz, Angus Prain, SL, Silke Weinfurtner. 
Class.Quant.Grav. 30 (2013) 085009  and arXiv:1411.1662 

Observation: Weinfurtner et al. Nature Phys. 13 (2017)

Vancouver Experiment 

SISSA-Nottingham Experiment

F. Belgiorno et al, Phys. Rev. Lett. 105, 203901 (2010). reported the use of 
ultrashort laser pulse filaments to create a traveling RIP in a transparent 
dielectric medium (fused silica glass)  They observed photon emission in the 
expected energy window. While surely relevant, the interpretation of the result 
as Hawking radiation is still subject of debate 

(see e.g. SL, Prain, Visser, Phys.Rev. D85 (2012) 084014 and Schutzhold, 
Unruh, Phys.Rev.Lett. 107 (2011) 149401 - Phys.Rev. D86 (2012) 064006)

Quantum analogues: Fiber optics 
analogues



Classical analogues: Gravity waves
Analogue system used for detection of classical wave conversion analogue of Hawking effect  

G. Rousseaux et al. 2008 
S.Weinfurtner, E.W. Tedford, M. C. J. Penrice, W. G. Unruh, and G. A. Lawrence. Phys.Rev.Lett. 106 (2011) 021302 

Application to detection of Analogue Superradiance 
SISSA-Nottingham experiment: an analogue of superradiant scattering (PI: S. Weinfurtner)

Mauricio Richartz, Angus Prain, SL, Silke Weinfurtner. 
Class.Quant.Grav. 30 (2013) 085009  and arXiv:1411.1662 

Observation: Weinfurtner et al. Nature Phys. 13 (2017)

Vancouver Experiment 

SISSA-Nottingham Experiment

More recently: Leonhardt and collaborators, claim first detection of first stimulated emission.  
Observation of stimulated Hawking radiation in an optical analogue By Jonathan Drori, Yuval 

Rosenberg, David Bermudez, Yaron Silberberg, Ulf Leonhardt. 
arXiv:1808.09244 [gr-qc]. 

Physical Review Letters 122, 1 (2019) 010404. 

F. Belgiorno et al, Phys. Rev. Lett. 105, 203901 (2010). reported the use of 
ultrashort laser pulse filaments to create a traveling RIP in a transparent 
dielectric medium (fused silica glass)  They observed photon emission in the 
expected energy window. While surely relevant, the interpretation of the result 
as Hawking radiation is still subject of debate 

(see e.g. SL, Prain, Visser, Phys.Rev. D85 (2012) 084014 and Schutzhold, 
Unruh, Phys.Rev.Lett. 107 (2011) 149401 - Phys.Rev. D86 (2012) 064006)

Quantum analogues: Fiber optics 
analogues



Recent observation of a characteristic instability for compact ergo regions  
J. Steinhauer. Nature Physics (2014).  

Even more recently first claim of Hawking detection (J. Steinhauer. 2015)  and 
Nature 569# 7758 (2019) 688-691 

See Jeff’s and Muñoz De Novi Talks Tomorrow!

Tentative detection via density-density correlations

So does BH thermodynamics survive 
without Lorentz invariance?  

This is interesting even if you do not 
believe Lorentz invariance can be 

broken in the UV.  
Where thermodynamics comes from in 

Gravitational Theories? 
Interesting stuff from Einstein-

Aether, Horava Black holes…

Hawking Radiation signature in  
density-density correlation.  

BEC simulation. Carusotto et al.

 

 

Fig. 3.  Observation of Hawking/partner pairs.  The horizon is at the origin.  The dark bands 
emanating from the horizon are the correlations between the Hawking and partner particles.  The 
solid line shows the angle of equal times from the horizon, found in Fig. 4.  The Fourier 
transform along the dashed line measures the entanglement of the Hawking pairs.  

 

Fig. 4 shows the profile of the correlation band along the dashed line of Fig. 2.  The fact that the 
profile has finite area gives information about the spectrum of the Hawking radiation.  We find 
that the Fourier transform of the profile gives ۃ ෠ܾ௞ಹೃ ෠ܾ௞ುۄ, where ෠ܾ௞ಹೃ  is the annihilation operator 

for a Hawking particle with wavenumber ݇ுோ localized outside the black hole, and ෠ܾ௞ು is the 
annihilation operator for a partner particle localized inside the black hole [11].  The relation is 
[11] 

൫ܷ௞ಹೃ + ௞ܸಹೃ൯൫ܷ௞ು + ௞ܸು൯ۃ ෠ܾ௞ಹೃ ෠ܾ௞ುۄ = ට
௖౥౫౪ି௩౥౫౪
௩౟౤ି௖౟౤

+ ௩౟౤ି௖౟౤
௖౥౫౪ି௩౥౫౪

 FTൣܩ(ଶ)(ݔ,  Ԣ)൧  (1)ݔ

where ௜ܷ and  ௜ܸ are the Bogoliubov coefficients for the phonon quasiparticles, which are 
completely determined by ߦ௜݇௜.  the Fourier transform is of Fig. 4 where ݔ is in units of ߦ, giving 
a function of ݇ in units of ିߦଵ.  Here, we have neglected the phonons which occur due to the 
finite temperature of the condensate.  These phonons are negligible in our system [10].  

(in, out) 

(out, in) 
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Hawking radiation in Black hole analogues:  
Observation in BEC
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Figure 2.  The profile of the analogue black hole.  a.  The density.  The average of the 7400 runs 
of the experiment is shown.  The circle indicates the horizon.  The inset illustrates the step 
potential and the flow.  b.  The speed of sound by (3).  c.  The predicted Hawking temperature by 
(1).  Each point is computed from the average of 5 runs of the experiment.  The green and blue 
curves are the first and second terms in (1), respectively.  The black curve is the predicted 
Hawking temperature, the sum of the two terms. 

 

 

The experimental apparatus is that of Ref. 35, but with many improvements.  One such 
improvement is a magnetic field environment with lower noise, as a result of improved power 
supplies which activate the 6 sets of magnetic field coils.  This is important since static magnetic 
field gradients apply forces to the condensate via the Zeeman shift.  Since the condensate is 
rather decompressed and weakly trapped in the axial direction, it is very sensitive to such 
gradients.  In addition, 5 out of each 200 runs serve as reference images.  For these images the 
step potential is not applied and the power of the focused laser trap is reduced, which further 
increases the sensitivity to an axial magnetic field gradient or to a tilt resulting in a gravitational 
gradient.  The axial center of the reference images is found, and any axial shift is corrected by a 
slight fractional adjustment (൑ 3 ൈ 10ି4) of the current in one of the axial magnetic field coils.    
In addition, the optics has been improved, with reduced aberrations.  This includes the optics for 
creating and translating the waterfall potential, as well as for imaging.  Specifically, the system 
of lenses has been redesigned, and the acousto-optic modulator used to translate the waterfall 
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Observation of thermal Hawking radiation and its 
temperature in an analogue black hole
Juan Ramón Muñoz de Nova1, Katrine Golubkov1, Victor I. Kolobov1 & Jeff Steinhauer1*

The entropy of a black hole1 and Hawking radiation2 should have the 
same temperature given by the surface gravity, within a numerical 
factor of the order of unity. In addition, Hawking radiation should 
have a thermal spectrum, which creates an information paradox3,4. 
However, the thermality should be limited by greybody factors5, at 
the very least6. It has been proposed that the physics of Hawking 
radiation could be verified in an analogue system7, an idea that has 
been carefully studied and developed theoretically8–18. Classical 
white-hole analogues have been investigated experimentally19–21, 
and other analogue systems have been presented22,23. The theoretical 
works and our long-term study of this subject15,24–27 enabled us to 
observe spontaneous Hawking radiation in an analogue black hole28. 
The observed correlation spectrum showed thermality at the lowest 
and highest energies, but the overall spectrum was not of the thermal 
form, and no temperature could be ascribed to it. Theoretical 
studies of our observation made predictions about the thermality 
and Hawking temperature29–33. Here we construct an analogue 
black hole with improvements compared with our previous setup, 
such as reduced magnetic field noise, enhanced mechanical and 
thermal stability and redesigned optics. We find that the correlation 
spectrum of Hawking radiation agrees well with a thermal spectrum, 
and its temperature is given by the surface gravity, confirming the 
predictions of Hawking’s theory. The Hawking radiation observed is 
in the regime of linear dispersion, in analogy with a real black hole, 
and the radiation inside the black hole is composed of negative-
energy partner modes only, as predicted.

Our analogue black hole consists of a flowing Bose–Einstein  
condensate. The flow velocity vout in the region x < 0 is less than the 
speed of sound cout, as indicated in Fig. 1a. This region corresponds to 
the outside of a black hole. For x > 0, the flow is supersonic (vin > cin), 
corresponding to the inside of the black hole. In this region, the sound 
cones are tilted to the extent that all phonons travel inward, away 
from the sonic horizon at x = 0. In other words, a phonon travelling 
towards the horizon in the ‘free-falling’ frame (the frame comoving  
with the flow) travels away from the horizon in the laboratory frame. 
The phonon is unable to reach the horizon, in analogy with a particle 
inside a black hole.

For an analogue black hole, the Hawking temperature is given by 
ħg/2πc (ref. 7), where the analogue surface gravity for an effectively 
one-dimensional flow is g = c(dv/dx – dc/dx) (ref. 9), and where the 
derivatives and speed of sound c are evaluated at the sonic horizon. 
For a stationary and effectively one-dimensional flow, nv is a constant, 
where n is the one-dimensional density. We can thus write the Hawking 
temperature TH as

=−
π


 +





=

k T ħ c
n

n
x

c
x2

d
d

d
d (1)

x
B H

0

where kB is Boltzmann’s constant. Equation (1) is the predicted  
temperature of the Hawking radiation in an analogue black hole. We 
evaluate it using the measured c(x) and n(x). It is derived using a linear 
dispersion relation, in analogy with massless particles emanating from 

a real black hole. In a Bose–Einstein condensate, the dispersion relation 
is linear in the low-energy limit. Thus, we should create an analogue 
black hole with sufficiently low Hawking temperature that the radiation 
is in the linear regime of the dispersion relation. We can then test 
whether the emitted Hawking radiation obeys the prediction of equa-
tion (1). There are several theoretical works suggesting that this should 
be the case. Using previous analytical results for a system similar to this 
experiment13, we find that equation (1) gives an accurate prediction for 
! .k T mc0 14B H out

2 , where m is the mass of the atom. We will show that 
the experiment is within this limit. Parentani and colleagues29 studied 
our previous experiment28, and concluded that the spectrum should 
be accurately Planckian, and that the temperature should agree with 
the relativistic prediction of equation (1) to within 10%. Coutant and 
Weinfurtner30 also studied the previous work and found that the tem-
perature is expected to be close to Hawking’s prediction, equation (1).

We test Hawking’s prediction by measuring the spectrum of corre-
lations between the Hawking and partner modes, ⟨ ⟩b bˆ ˆ

H P , where b̂H 
and b̂P are the annihilation operators for the Hawking and partner 
modes, respectively. Fortunately, ⟨ ⟩b bˆ ˆ

H P  is largely free of background 
correlations. It represents correlations between the inside and outside 
of the black hole, where Hawking radiation is posited to be the domi-
nant source of such correlations. By contrast, any source of excitations 
can add to the background of the population ⟨ ⟩b bˆ ˆ

H
†

H . Indeed, the back-
ground of ⟨ ⟩b bˆ ˆ

H
†

H  represents the difficulty in observing Hawking  
radiation from a real black hole. Since we work in the regime of low 
Hawking temperature and linear dispersion, there is negligible coupling 
to the mode copropagating with the flow12,29. Thus, we can use the 
2 ×  2 Bogoliubov transformation considered by Hawking2, 

α β= ++ −b b bˆ ˆ ˆ
H

†
 and α β= +− +b b bˆ ˆ ˆ

P
†
, where +b̂  and −b̂  are annihilation 

operators for the positive- and negative-energy incoming modes, 
respectively, and where |α|2 = |β|2 + 1 and ∣ ∣β = / −ω/1 (e 1)ħ k T2 B H . This 
immediately gives ⟨ ⟩ αβ=b bˆ ˆ

H P  in the vacuum of incoming modes. 
We can thus compare our measurement of ∣ ⟨ ⟩ ∣b bˆ ˆ

H P
2
 to (|β|2 + 1)|β|2, 

where |β|2 is the Planck distribution at the predicted Hawking temper-
ature, equation (1).

The Hawking radiation is observed via the density–density correla-
tion function10,11 ⟨ ⟩ξ ξ δ δ= /′ ′G x x n n n x n x( , ) ( ) ( )(2)

out in out in , where 
nout(in) is the density outside (inside) the black hole, ξout(in) = ħ/mcout(in), 
and x and x′ are in units of the healing length ξ ξ ξ= out in  = 1.8 µm. 
We previously found15 that ⟨ ⟩b bˆ ˆ

H P  is readily extracted from G(2)(x, x′) 
by the relation

⟨ ⟩ ∫
ξ ξ

= ′ ′′S b b
L L

x x G x xˆ ˆ d d e e ( , ) (2)ik x ik x
0 H P

out in

out in

(2)H P

where Lout(in) is the length of the outside (inside) region, and kH and kP 
are the wavenumbers of the Hawking and partner modes respectively, 
in units of ξ−1. The integral is performed over the region in the  
correlation function bounded by −Lout/ξ < x < 0 and 0 < x′ < Lin/ξ. 
The zero-temperature static structure factor is given by 
= + +S U V U V( )( )k k k k0 H H P P

, where Ui and Vi are the Bogoliubov  
1Department of Physics, Technion – Israel Institute of Technology, Haifa, Israel. *e-mail: jeffs@physics.technion.ac.il
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factor of the order of unity. In addition, Hawking radiation should 
have a thermal spectrum, which creates an information paradox3,4. 
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white-hole analogues have been investigated experimentally19–21, 
and other analogue systems have been presented22,23. The theoretical 
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and Hawking temperature29–33. Here we construct an analogue 
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such as reduced magnetic field noise, enhanced mechanical and 
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spectrum of Hawking radiation agrees well with a thermal spectrum, 
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predictions of Hawking’s theory. The Hawking radiation observed is 
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and the radiation inside the black hole is composed of negative-
energy partner modes only, as predicted.
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from the sonic horizon at x = 0. In other words, a phonon travelling 
towards the horizon in the ‘free-falling’ frame (the frame comoving  
with the flow) travels away from the horizon in the laboratory frame. 
The phonon is unable to reach the horizon, in analogy with a particle 
inside a black hole.

For an analogue black hole, the Hawking temperature is given by 
ħg/2πc (ref. 7), where the analogue surface gravity for an effectively 
one-dimensional flow is g = c(dv/dx – dc/dx) (ref. 9), and where the 
derivatives and speed of sound c are evaluated at the sonic horizon. 
For a stationary and effectively one-dimensional flow, nv is a constant, 
where n is the one-dimensional density. We can thus write the Hawking 
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where kB is Boltzmann’s constant. Equation (1) is the predicted  
temperature of the Hawking radiation in an analogue black hole. We 
evaluate it using the measured c(x) and n(x). It is derived using a linear 
dispersion relation, in analogy with massless particles emanating from 

a real black hole. In a Bose–Einstein condensate, the dispersion relation 
is linear in the low-energy limit. Thus, we should create an analogue 
black hole with sufficiently low Hawking temperature that the radiation 
is in the linear regime of the dispersion relation. We can then test 
whether the emitted Hawking radiation obeys the prediction of equa-
tion (1). There are several theoretical works suggesting that this should 
be the case. Using previous analytical results for a system similar to this 
experiment13, we find that equation (1) gives an accurate prediction for 
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our previous experiment28, and concluded that the spectrum should 
be accurately Planckian, and that the temperature should agree with 
the relativistic prediction of equation (1) to within 10%. Coutant and 
Weinfurtner30 also studied the previous work and found that the tem-
perature is expected to be close to Hawking’s prediction, equation (1).
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H P  is largely free of background 
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of the black hole, where Hawking radiation is posited to be the domi-
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where |β|2 is the Planck distribution at the predicted Hawking temper-
ature, equation (1).
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where Lout(in) is the length of the outside (inside) region, and kH and kP 
are the wavenumbers of the Hawking and partner modes respectively, 
in units of ξ−1. The integral is performed over the region in the  
correlation function bounded by −Lout/ξ < x < 0 and 0 < x′ < Lin/ξ. 
The zero-temperature static structure factor is given by 
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Fig. 3.  Observation of Hawking/partner pairs.  The horizon is at the origin.  The dark bands 
emanating from the horizon are the correlations between the Hawking and partner particles.  The 
solid line shows the angle of equal times from the horizon, found in Fig. 4.  The Fourier 
transform along the dashed line measures the entanglement of the Hawking pairs.  

 

Fig. 4 shows the profile of the correlation band along the dashed line of Fig. 2.  The fact that the 
profile has finite area gives information about the spectrum of the Hawking radiation.  We find 
that the Fourier transform of the profile gives ۃ ෠ܾ௞ಹೃ ෠ܾ௞ುۄ, where ෠ܾ௞ಹೃ  is the annihilation operator 

for a Hawking particle with wavenumber ݇ுோ localized outside the black hole, and ෠ܾ௞ು is the 
annihilation operator for a partner particle localized inside the black hole [11].  The relation is 
[11] 
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where ௜ܷ and  ௜ܸ are the Bogoliubov coefficients for the phonon quasiparticles, which are 
completely determined by ߦ௜݇௜.  the Fourier transform is of Fig. 4 where ݔ is in units of ߦ, giving 
a function of ݇ in units of ିߦଵ.  Here, we have neglected the phonons which occur due to the 
finite temperature of the condensate.  These phonons are negligible in our system [10].  
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Figure 2.  The profile of the analogue black hole.  a.  The density.  The average of the 7400 runs 
of the experiment is shown.  The circle indicates the horizon.  The inset illustrates the step 
potential and the flow.  b.  The speed of sound by (3).  c.  The predicted Hawking temperature by 
(1).  Each point is computed from the average of 5 runs of the experiment.  The green and blue 
curves are the first and second terms in (1), respectively.  The black curve is the predicted 
Hawking temperature, the sum of the two terms. 

 

 

The experimental apparatus is that of Ref. 35, but with many improvements.  One such 
improvement is a magnetic field environment with lower noise, as a result of improved power 
supplies which activate the 6 sets of magnetic field coils.  This is important since static magnetic 
field gradients apply forces to the condensate via the Zeeman shift.  Since the condensate is 
rather decompressed and weakly trapped in the axial direction, it is very sensitive to such 
gradients.  In addition, 5 out of each 200 runs serve as reference images.  For these images the 
step potential is not applied and the power of the focused laser trap is reduced, which further 
increases the sensitivity to an axial magnetic field gradient or to a tilt resulting in a gravitational 
gradient.  The axial center of the reference images is found, and any axial shift is corrected by a 
slight fractional adjustment (൑ 3 ൈ 10ି4) of the current in one of the axial magnetic field coils.    
In addition, the optics has been improved, with reduced aberrations.  This includes the optics for 
creating and translating the waterfall potential, as well as for imaging.  Specifically, the system 
of lenses has been redesigned, and the acousto-optic modulator used to translate the waterfall 

LETTER
https://doi.org/10.1038/s41586-019-1241-0

Observation of thermal Hawking radiation and its 
temperature in an analogue black hole
Juan Ramón Muñoz de Nova1, Katrine Golubkov1, Victor I. Kolobov1 & Jeff Steinhauer1*

The entropy of a black hole1 and Hawking radiation2 should have the 
same temperature given by the surface gravity, within a numerical 
factor of the order of unity. In addition, Hawking radiation should 
have a thermal spectrum, which creates an information paradox3,4. 
However, the thermality should be limited by greybody factors5, at 
the very least6. It has been proposed that the physics of Hawking 
radiation could be verified in an analogue system7, an idea that has 
been carefully studied and developed theoretically8–18. Classical 
white-hole analogues have been investigated experimentally19–21, 
and other analogue systems have been presented22,23. The theoretical 
works and our long-term study of this subject15,24–27 enabled us to 
observe spontaneous Hawking radiation in an analogue black hole28. 
The observed correlation spectrum showed thermality at the lowest 
and highest energies, but the overall spectrum was not of the thermal 
form, and no temperature could be ascribed to it. Theoretical 
studies of our observation made predictions about the thermality 
and Hawking temperature29–33. Here we construct an analogue 
black hole with improvements compared with our previous setup, 
such as reduced magnetic field noise, enhanced mechanical and 
thermal stability and redesigned optics. We find that the correlation 
spectrum of Hawking radiation agrees well with a thermal spectrum, 
and its temperature is given by the surface gravity, confirming the 
predictions of Hawking’s theory. The Hawking radiation observed is 
in the regime of linear dispersion, in analogy with a real black hole, 
and the radiation inside the black hole is composed of negative-
energy partner modes only, as predicted.

Our analogue black hole consists of a flowing Bose–Einstein  
condensate. The flow velocity vout in the region x < 0 is less than the 
speed of sound cout, as indicated in Fig. 1a. This region corresponds to 
the outside of a black hole. For x > 0, the flow is supersonic (vin > cin), 
corresponding to the inside of the black hole. In this region, the sound 
cones are tilted to the extent that all phonons travel inward, away 
from the sonic horizon at x = 0. In other words, a phonon travelling 
towards the horizon in the ‘free-falling’ frame (the frame comoving  
with the flow) travels away from the horizon in the laboratory frame. 
The phonon is unable to reach the horizon, in analogy with a particle 
inside a black hole.

For an analogue black hole, the Hawking temperature is given by 
ħg/2πc (ref. 7), where the analogue surface gravity for an effectively 
one-dimensional flow is g = c(dv/dx – dc/dx) (ref. 9), and where the 
derivatives and speed of sound c are evaluated at the sonic horizon. 
For a stationary and effectively one-dimensional flow, nv is a constant, 
where n is the one-dimensional density. We can thus write the Hawking 
temperature TH as

=−
π
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
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
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where kB is Boltzmann’s constant. Equation (1) is the predicted  
temperature of the Hawking radiation in an analogue black hole. We 
evaluate it using the measured c(x) and n(x). It is derived using a linear 
dispersion relation, in analogy with massless particles emanating from 

a real black hole. In a Bose–Einstein condensate, the dispersion relation 
is linear in the low-energy limit. Thus, we should create an analogue 
black hole with sufficiently low Hawking temperature that the radiation 
is in the linear regime of the dispersion relation. We can then test 
whether the emitted Hawking radiation obeys the prediction of equa-
tion (1). There are several theoretical works suggesting that this should 
be the case. Using previous analytical results for a system similar to this 
experiment13, we find that equation (1) gives an accurate prediction for 
! .k T mc0 14B H out

2 , where m is the mass of the atom. We will show that 
the experiment is within this limit. Parentani and colleagues29 studied 
our previous experiment28, and concluded that the spectrum should 
be accurately Planckian, and that the temperature should agree with 
the relativistic prediction of equation (1) to within 10%. Coutant and 
Weinfurtner30 also studied the previous work and found that the tem-
perature is expected to be close to Hawking’s prediction, equation (1).

We test Hawking’s prediction by measuring the spectrum of corre-
lations between the Hawking and partner modes, ⟨ ⟩b bˆ ˆ

H P , where b̂H 
and b̂P are the annihilation operators for the Hawking and partner 
modes, respectively. Fortunately, ⟨ ⟩b bˆ ˆ

H P  is largely free of background 
correlations. It represents correlations between the inside and outside 
of the black hole, where Hawking radiation is posited to be the domi-
nant source of such correlations. By contrast, any source of excitations 
can add to the background of the population ⟨ ⟩b bˆ ˆ

H
†

H . Indeed, the back-
ground of ⟨ ⟩b bˆ ˆ

H
†

H  represents the difficulty in observing Hawking  
radiation from a real black hole. Since we work in the regime of low 
Hawking temperature and linear dispersion, there is negligible coupling 
to the mode copropagating with the flow12,29. Thus, we can use the 
2 ×  2 Bogoliubov transformation considered by Hawking2, 

α β= ++ −b b bˆ ˆ ˆ
H

†
 and α β= +− +b b bˆ ˆ ˆ

P
†
, where +b̂  and −b̂  are annihilation 

operators for the positive- and negative-energy incoming modes, 
respectively, and where |α|2 = |β|2 + 1 and ∣ ∣β = / −ω/1 (e 1)ħ k T2 B H . This 
immediately gives ⟨ ⟩ αβ=b bˆ ˆ

H P  in the vacuum of incoming modes. 
We can thus compare our measurement of ∣ ⟨ ⟩ ∣b bˆ ˆ

H P
2
 to (|β|2 + 1)|β|2, 

where |β|2 is the Planck distribution at the predicted Hawking temper-
ature, equation (1).

The Hawking radiation is observed via the density–density correla-
tion function10,11 ⟨ ⟩ξ ξ δ δ= /′ ′G x x n n n x n x( , ) ( ) ( )(2)

out in out in , where 
nout(in) is the density outside (inside) the black hole, ξout(in) = ħ/mcout(in), 
and x and x′ are in units of the healing length ξ ξ ξ= out in  = 1.8 µm. 
We previously found15 that ⟨ ⟩b bˆ ˆ

H P  is readily extracted from G(2)(x, x′) 
by the relation

⟨ ⟩ ∫
ξ ξ

= ′ ′′S b b
L L

x x G x xˆ ˆ d d e e ( , ) (2)ik x ik x
0 H P

out in

out in

(2)H P

where Lout(in) is the length of the outside (inside) region, and kH and kP 
are the wavenumbers of the Hawking and partner modes respectively, 
in units of ξ−1. The integral is performed over the region in the  
correlation function bounded by −Lout/ξ < x < 0 and 0 < x′ < Lin/ξ. 
The zero-temperature static structure factor is given by 
= + +S U V U V( )( )k k k k0 H H P P

, where Ui and Vi are the Bogoliubov  
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The entropy of a black hole1 and Hawking radiation2 should have the 
same temperature given by the surface gravity, within a numerical 
factor of the order of unity. In addition, Hawking radiation should 
have a thermal spectrum, which creates an information paradox3,4. 
However, the thermality should be limited by greybody factors5, at 
the very least6. It has been proposed that the physics of Hawking 
radiation could be verified in an analogue system7, an idea that has 
been carefully studied and developed theoretically8–18. Classical 
white-hole analogues have been investigated experimentally19–21, 
and other analogue systems have been presented22,23. The theoretical 
works and our long-term study of this subject15,24–27 enabled us to 
observe spontaneous Hawking radiation in an analogue black hole28. 
The observed correlation spectrum showed thermality at the lowest 
and highest energies, but the overall spectrum was not of the thermal 
form, and no temperature could be ascribed to it. Theoretical 
studies of our observation made predictions about the thermality 
and Hawking temperature29–33. Here we construct an analogue 
black hole with improvements compared with our previous setup, 
such as reduced magnetic field noise, enhanced mechanical and 
thermal stability and redesigned optics. We find that the correlation 
spectrum of Hawking radiation agrees well with a thermal spectrum, 
and its temperature is given by the surface gravity, confirming the 
predictions of Hawking’s theory. The Hawking radiation observed is 
in the regime of linear dispersion, in analogy with a real black hole, 
and the radiation inside the black hole is composed of negative-
energy partner modes only, as predicted.

Our analogue black hole consists of a flowing Bose–Einstein  
condensate. The flow velocity vout in the region x < 0 is less than the 
speed of sound cout, as indicated in Fig. 1a. This region corresponds to 
the outside of a black hole. For x > 0, the flow is supersonic (vin > cin), 
corresponding to the inside of the black hole. In this region, the sound 
cones are tilted to the extent that all phonons travel inward, away 
from the sonic horizon at x = 0. In other words, a phonon travelling 
towards the horizon in the ‘free-falling’ frame (the frame comoving  
with the flow) travels away from the horizon in the laboratory frame. 
The phonon is unable to reach the horizon, in analogy with a particle 
inside a black hole.

For an analogue black hole, the Hawking temperature is given by 
ħg/2πc (ref. 7), where the analogue surface gravity for an effectively 
one-dimensional flow is g = c(dv/dx – dc/dx) (ref. 9), and where the 
derivatives and speed of sound c are evaluated at the sonic horizon. 
For a stationary and effectively one-dimensional flow, nv is a constant, 
where n is the one-dimensional density. We can thus write the Hawking 
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where kB is Boltzmann’s constant. Equation (1) is the predicted  
temperature of the Hawking radiation in an analogue black hole. We 
evaluate it using the measured c(x) and n(x). It is derived using a linear 
dispersion relation, in analogy with massless particles emanating from 

a real black hole. In a Bose–Einstein condensate, the dispersion relation 
is linear in the low-energy limit. Thus, we should create an analogue 
black hole with sufficiently low Hawking temperature that the radiation 
is in the linear regime of the dispersion relation. We can then test 
whether the emitted Hawking radiation obeys the prediction of equa-
tion (1). There are several theoretical works suggesting that this should 
be the case. Using previous analytical results for a system similar to this 
experiment13, we find that equation (1) gives an accurate prediction for 
! .k T mc0 14B H out

2 , where m is the mass of the atom. We will show that 
the experiment is within this limit. Parentani and colleagues29 studied 
our previous experiment28, and concluded that the spectrum should 
be accurately Planckian, and that the temperature should agree with 
the relativistic prediction of equation (1) to within 10%. Coutant and 
Weinfurtner30 also studied the previous work and found that the tem-
perature is expected to be close to Hawking’s prediction, equation (1).

We test Hawking’s prediction by measuring the spectrum of corre-
lations between the Hawking and partner modes, ⟨ ⟩b bˆ ˆ

H P , where b̂H 
and b̂P are the annihilation operators for the Hawking and partner 
modes, respectively. Fortunately, ⟨ ⟩b bˆ ˆ

H P  is largely free of background 
correlations. It represents correlations between the inside and outside 
of the black hole, where Hawking radiation is posited to be the domi-
nant source of such correlations. By contrast, any source of excitations 
can add to the background of the population ⟨ ⟩b bˆ ˆ

H
†

H . Indeed, the back-
ground of ⟨ ⟩b bˆ ˆ
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H  represents the difficulty in observing Hawking  
radiation from a real black hole. Since we work in the regime of low 
Hawking temperature and linear dispersion, there is negligible coupling 
to the mode copropagating with the flow12,29. Thus, we can use the 
2 ×  2 Bogoliubov transformation considered by Hawking2, 
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immediately gives ⟨ ⟩ αβ=b bˆ ˆ

H P  in the vacuum of incoming modes. 
We can thus compare our measurement of ∣ ⟨ ⟩ ∣b bˆ ˆ

H P
2
 to (|β|2 + 1)|β|2, 

where |β|2 is the Planck distribution at the predicted Hawking temper-
ature, equation (1).

The Hawking radiation is observed via the density–density correla-
tion function10,11 ⟨ ⟩ξ ξ δ δ= /′ ′G x x n n n x n x( , ) ( ) ( )(2)

out in out in , where 
nout(in) is the density outside (inside) the black hole, ξout(in) = ħ/mcout(in), 
and x and x′ are in units of the healing length ξ ξ ξ= out in  = 1.8 µm. 
We previously found15 that ⟨ ⟩b bˆ ˆ
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where Lout(in) is the length of the outside (inside) region, and kH and kP 
are the wavenumbers of the Hawking and partner modes respectively, 
in units of ξ−1. The integral is performed over the region in the  
correlation function bounded by −Lout/ξ < x < 0 and 0 < x′ < Lin/ξ. 
The zero-temperature static structure factor is given by 
= + +S U V U V( )( )k k k k0 H H P P

, where Ui and Vi are the Bogoliubov  
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Information loss in analogue black holes

The information loss problem:  
an analogue gravity perspective  
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Analogue gravity in BEC introduces a classical background 
(the wave function of the condensate) and describe the 

propagation of quantum fields (the quasi-particles) over it. 
In this sense it is the analogue of QFT in a curved spacetime.

However, nothing forbids in analogue gravity  
to simulate singularities  

(as a regions where the hydrodynamic approximation does not hold) 
and even an evaporation process  

But from the point of view of BEC the singularity is at most a region 
where the hydrodynamical limit is not legitimate  

(if one does not “kicks out atoms”). 
Hence the evaporation process must be unitary preserving. 

In this cases how the evolution is held unitary? 

It seems that a necessary step is to be able to retain a quantum 
description of the condensate atoms in order to not have an obvious 
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Beyond Bogoliubov:  
Natural Orbitals

The mean field (Bogoliubov) approximation normally used in BEC is not the only way to express the 
condensation, i.e., the fact that a macroscopic number of particles occupies the same state.  

Indeed, the condensation phenomenon can be also defined considering the properties of the 2-point correlation 
functions: a method allowing to retain the information about the quantum nature of the atoms in the BEC. 

The 2-point correlation function is the expectation value on the quantum state of an operator composed of the 
creation of a particle in a position x after the destruction of a particle in a different position y, and of course it 
can be diagonalised as the orthonormal functions fI, eigenfunctions of the 2-point correlation function, are 

known as natural orbitals (Penrose-Osanger 1954).
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If the condensate is homogeneous the superfluid velocity vanishes, the coupling is homogeneous
in space (el = l), the number density r0 is constant in time, and the only relevant behavior of the
condensate wave function is in the time-dependent phase q0. Furthermore, in this case there is also
no need to neglect the quantum pressure term in Equation (14), as it will be handled easily after
Fourier-transforming and it will simply introduce a modified dispersion relation—directly derived
from the Bogoliubov spectrum.

If the condensate has an initial uniform number density but is not homogeneous—meaning that
the initial phase depends on the position—the evolution will introduce inhomogeneities in the density
r0, as described by the continuity equation Equation (11), and the initial configuration will be deformed
in time. However, as long as r2q0 is small, also the variations of r0 are small as well: while there is not
a nontrivial stationary analogue metric, the scale of the inhomogeneities will define a timescale for
which one could safely assume stationarity. Furthermore, the presence of an external potential Vext(x)
in the Hamiltonian, via a term of the form

R
dxVext (x) f† (x) f (x), would play a role in the dynamical

equation for q0, leaving invariant those for r0, r1, and q1.

3. Time-Dependent Natural Orbitals

The mean-field approximation presented in the previous section is a solid and consistent
formulation for studying weakly interacting BEC [22]. It requires, however, that the quantum state
has peculiar features which need to be taken into account. In analogue gravity, these assumptions are
tacitly considered, but as they play a crucial role for our treatment, we present a discussion of them in
some detail to lay down the ground and the formalism in view of next sections.

As is well known [22], the mean-field approximation, consisting in substituting the operator f(x)
with its expectation value hf (x)i, is strictly valid when the state considered is coherent, meaning it is
an eigenstate of the atomic field operator f:

f (x) |cohi = hf (x)i |cohi . (24)

For states satisfying this equation, the Gross–Pitaevskii Equation (6) is exact (whereas Equation (7)
is still a linearized approximation). Note that the coherent states |cohi are not eigenstates of the number
operator, but they are rather quantum superpositions of states with different number of atoms. This
is necessary because f is an operator that—in the nonrelativistic limit—destroys a particle. We also
observe that the notion of coherent state is valid instantaneously, but it may be in general not preserved
along the evolution in presence of an interaction.

The redefinition of the field operator, as in Equation (4), provides a description where the physical
degrees of freedom are concealed: the new degrees of freedom are not the excited atoms, but the
quantized fluctuations over a coherent state. Formally, this is a simple and totally legit redefinition,
but for our discussion, we stress that the quanta created by the operator df do not have a direct
interpretation as atoms.

Given the above discussion, it is useful to remember that coherent states are not the only states to
express the condensation, i.e., the fact that a macroscopic number of particles occupies the same state.
As it is stated in the Penrose–Onsager criterion for off-diagonal long-range-order [23,24], the condensation
phenomenon is best defined considering the properties of the 2-point correlation functions.

The 2-point correlation function is the expectation value on the quantum state of an operator
composed of the creation of a particle in a position x after the destruction of a particle in a
different position y:

⌦
f† (x) f (y)

↵
. As, by definition, the 2-point correlation function is Hermitian,

hf† (y) f (x)i =
⌦
f† (x) f (y)

↵
, it can always be diagonalized as

D
f† (x) f (y)

E
= Â

I
hNIi f I (x) f I (y) , (25)
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with Z
dx fI (x) f J (x) = dI J . (26)

The orthonormal functions f I , eigenfunctions of the 2-point correlation function, are known as
the natural orbitals, and define a complete basis for the 1-particle Hilbert space. In the case of a
time-dependent Hamiltonian (or during the dynamics), they are in turn time-dependent. As for the
field operator, to simplify the notation, we will not always explicitly write the time dependence of f I .

The eigenvalues hNIi are the occupation numbers of these wave functions. The sum of these
eigenvalues gives the total number of particles in the state (or the mean value, in the case of
superposition of quantum states with different number of particles):

hNi = Â
I
hNIi . (27)

The time-dependent orbitals define creation and destruction operators, and consequently
the relative number operators (having as expectation values the eigenvalues of the 2-point
correlation function):

aI =
Z

dx fI (x) f (x) , (28)
h

aI , a†
J

i
= dI J , (29)

h
aI , aJ

i
= 0 , (30)

NI = a†
I aI . (31)

The state is called “condensate” [23] when one of these occupation numbers is macroscopic
(comparable with the total number of particles) and the others are small when compared to it.

In the weakly interacting limit, the condensed fraction hN0i / hNi is approximately equal to 1,
and the depletion factor ÂI 6=0 hNIi / hNi is negligible. This requirement is satisfied by coherent states
that define perfect condensates, as the 2-point correlation functions are a product of the mean-field
and its conjugate:

hcoh| f† (x) f (y) |cohi = hf (x)i hf (y)i , (32)

with

f0 (x) = hN0i
�1/2

hf (x)i , (33)

hN0i =
Z

dyhf (y)i hf (y)i , (34)
⌦

NI 6=0
↵

= 0 . (35)

Therefore, in this case, the set of time-dependent orbitals is given by the proper normalization
of the mean-field function with a completion that is the basis for the subspace of the Hilbert space
orthogonal to the mean-field. The latter set can be redefined arbitrarily, as the only nonvanishing
eigenvalue of the 2-point correlation function is the one relative to mean-field function. The
fact that there is a nonvanishing macroscopic eigenvalue implies that there is total condensation,
i.e., hN0i / hNi = 1.

3.1. Time-Dependent Orbitals Formalism

It is important to understand how we can study the condensate state even if we are not considering
coherent states and how the description is related to the mean-field approximation. In this framework,
we shall see that the mean-field approximation is not a strictly necessary theoretical requirement for
analogue gravity.

The eigenvalues ⟨NI⟩ are the occupation numbers of these wave functions. The sum of these eigenvalues gives 
the total number of particles in the state.  

The natural orbitals, fI and define a complete basis for the 1-particle Hilbert space and can be used to define 
destruction and creation operators. 
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Therefore, in this case, the set of time-dependent orbitals is given by the proper normalization
of the mean-field function with a completion that is the basis for the subspace of the Hilbert space
orthogonal to the mean-field. The latter set can be redefined arbitrarily, as the only nonvanishing
eigenvalue of the 2-point correlation function is the one relative to mean-field function. The
fact that there is a nonvanishing macroscopic eigenvalue implies that there is total condensation,
i.e., hN0i / hNi = 1.

3.1. Time-Dependent Orbitals Formalism

It is important to understand how we can study the condensate state even if we are not considering
coherent states and how the description is related to the mean-field approximation. In this framework,
we shall see that the mean-field approximation is not a strictly necessary theoretical requirement for
analogue gravity.
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for all the details!



Beyond Bogoliubov:  
Number preserving formalism

In the mean field approximation the field δφ describes the quantum fluctuations over the mean-field wave 
function instead of atoms.  

When considering states with fixed number of atoms, and therefore not coherent states, it is better to 
consider different operators to study the fluctuations.  

One can follow the intuition that the fluctuation represents a shift of a single atom from the condensate to 
the excited fraction and vice versa.  

Let’s take as reference state for the condensate a0, it is a straightforward procedure to define the number-
conserving operators αI̸, one for each excited wave function, according to the relations 

Now the excited part is not given by translation of the field,  
but number conserving fluctuations + projection, while the condensate 

one is proportional to f0 

  

Analogue Gravity with number conservation
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New definition for the excited part: not given by translation of 
the field, but number conserving fluctuations + projection

There is the same functional dependence from the solution of 
the Gross-Pitaevskii equation

and therefore the same acoustic metric, following the steps of 
the Madelung representation

Crucial point: it is possible to show that within reasonable approximations the fluctuations equation 
of motion have the same functional form of those in the usual mean field approximation. 
Hence, it can be shown that Analogue gravity continues to hold also in this formalism. 
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approximations anyway [20,26]. Indeed, neglecting the commutation relations for a0 would always
imply the impossibility to describe the correlations between quasi-particles and condensate, even when
going beyond the Bogoliubov approximation (e.g., by adding terms with three quasi-particle operators).
Including such terms, in a growing level of accuracy (and complexity), the main difference would be
that the true quasi-particles of the systems do no longer coincide with the Bogoliubov ones. From
a practical point of view, this makes clearly a (possibly) huge quantitative difference for the energy
spectrum, correlations between quasi-particles, transport properties and observables. Nevertheless,
this does not touch at heart that the quantum nature of the condensate is not retained. A discussion
of the terms one can include beyond Bogoliubov approximation, and the resulting hierarchy of
approximations, is presented in the work by the authors of [26]. Here, our point is rather of principle,
i.e., the investigation of the consequences of retaining the operator nature of a0. Therefore, we used the
standard Bogoliubov approximation, improved via the introduction of number-conserving operators.

If we consider the ladder operators aI , satisfying by definition the relations in Equations (29)–(30),
and keep as reference the state a0 for the condensate, it is a straightforward procedure to define the
number-conserving operators aI 6=0, one for each excited wave function, according to the relations

aI = N�1/2
0 a†

0aI , (58)
h
aI , a†

J

i
= dI J 8I, J 6= 0 , (59)

h
aI , aJ

i
= 0 8I, J 6= 0 . (60)

The degree relative to the condensate is absorbed into the definition, from the hypothesis of
number conservation. These relations hold for I, J 6= 0, and obviously there is no number-conserving
ladder operator relative to the condensed state. The operators aI are not a complete set of operators to
describe the whole Fock space, but they span any subspace of given number of total atoms. To move
from one another it would be necessary to include the operator a0.

This restriction to a subspace of the Fock space is analogous to what is implicitly done in the
mean-field approximation, where one considers the subspace of states which are coherent with respect
to the action of the destruction operator associated to the mean-field function.

In this set-up, we need to relate the excited part described by f1 to the usual translated field df,
and obtain an equation for its dynamics related to the Bogoliubov–de Gennes equation. To do so, we
need to study the linearization of the dynamics of the operator f1, combined with the proper operator
providing the number conservation

N�1/2
0 a†

0f1 = N�1/2
0 a†

0 (f � f0)

= Â
I 6=0

f IaI . (61)

As long as the approximations needed to write a closed dynamical equation for f1 are compatible
with those under which the equation for the dynamics of f0 resembles the Gross–Pitaevskii equation,
i.e., as long as the time derivative of the operators aI can be written as a combination of the aI
themselves, we can expect to have a set-up for analogue gravity. In fact, in this case, the functional
form of the dynamical equations of the system will allow following the standard steps of the derivation
reviewed in Section 2.

Therefore, we consider the order of magnitude of the various contributions to the time derivative
of

⇣
N�1/2

0 a†
0f1

⌘
. We have already discussed the time evolution of the function f0: from the latter

it depends the evolution of the operator a0, since it is the projection along f0 of the full field operator f.

Entropy 2019, 21, 940 11 of 29

approximations anyway [20,26]. Indeed, neglecting the commutation relations for a0 would always
imply the impossibility to describe the correlations between quasi-particles and condensate, even when
going beyond the Bogoliubov approximation (e.g., by adding terms with three quasi-particle operators).
Including such terms, in a growing level of accuracy (and complexity), the main difference would be
that the true quasi-particles of the systems do no longer coincide with the Bogoliubov ones. From
a practical point of view, this makes clearly a (possibly) huge quantitative difference for the energy
spectrum, correlations between quasi-particles, transport properties and observables. Nevertheless,
this does not touch at heart that the quantum nature of the condensate is not retained. A discussion
of the terms one can include beyond Bogoliubov approximation, and the resulting hierarchy of
approximations, is presented in the work by the authors of [26]. Here, our point is rather of principle,
i.e., the investigation of the consequences of retaining the operator nature of a0. Therefore, we used the
standard Bogoliubov approximation, improved via the introduction of number-conserving operators.

If we consider the ladder operators aI , satisfying by definition the relations in Equations (29)–(30),
and keep as reference the state a0 for the condensate, it is a straightforward procedure to define the
number-conserving operators aI 6=0, one for each excited wave function, according to the relations

aI = N�1/2
0 a†

0aI , (58)
h
aI , a†

J

i
= dI J 8I, J 6= 0 , (59)

h
aI , aJ

i
= 0 8I, J 6= 0 . (60)

The degree relative to the condensate is absorbed into the definition, from the hypothesis of
number conservation. These relations hold for I, J 6= 0, and obviously there is no number-conserving
ladder operator relative to the condensed state. The operators aI are not a complete set of operators to
describe the whole Fock space, but they span any subspace of given number of total atoms. To move
from one another it would be necessary to include the operator a0.

This restriction to a subspace of the Fock space is analogous to what is implicitly done in the
mean-field approximation, where one considers the subspace of states which are coherent with respect
to the action of the destruction operator associated to the mean-field function.

In this set-up, we need to relate the excited part described by f1 to the usual translated field df,
and obtain an equation for its dynamics related to the Bogoliubov–de Gennes equation. To do so, we
need to study the linearization of the dynamics of the operator f1, combined with the proper operator
providing the number conservation

N�1/2
0 a†

0f1 = N�1/2
0 a†

0 (f � f0)

= Â
I 6=0

f IaI . (61)

As long as the approximations needed to write a closed dynamical equation for f1 are compatible
with those under which the equation for the dynamics of f0 resembles the Gross–Pitaevskii equation,
i.e., as long as the time derivative of the operators aI can be written as a combination of the aI
themselves, we can expect to have a set-up for analogue gravity. In fact, in this case, the functional
form of the dynamical equations of the system will allow following the standard steps of the derivation
reviewed in Section 2.

Therefore, we consider the order of magnitude of the various contributions to the time derivative
of

⇣
N�1/2

0 a†
0f1

⌘
. We have already discussed the time evolution of the function f0: from the latter

it depends the evolution of the operator a0, since it is the projection along f0 of the full field operator f.

See G. Tricella’s talk tomorrow for all the details!



Analogue Cosmological particle creation
Hawking radiation is harder to get 

Cosmological particle creation (dynamical Casimir effect) is much easier but still captures the basic physics. 
We simulate that with a tunable interaction (e.g. Feshbach resonance)
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Bogoliubov approximation, if there one denotes by gk the quasi-particles one has that the gk are a
combination of the atom operators ak, a�k of the form gk = ukak + vka†

�k [20]. Correspondingly, in the
number-conserving formalism the quasi-particle operators ck are a combination of the atom operators
dfk ⌘ ak, df�k ⌘ a�k):

ck |ini ⌘0 8k 6= 0 . (104)

To realize this initial condition, we should impose constraints, in principle, on every
correlation function. We focus on the 2-point correlation functions

⌦
df†df

↵
and hdfdfi. In particular,

the first of the two determines the number of atoms with momentum k in the initial state:
D

df†
k dfk

E
=

D
a†

k a0N�1
0 a†

0ak

E
=

D
a†

k ak

E
= hNki . (105)

In order for the state to be condensed with respect to the state with momentum 0, it must be
that hNki ⌧ hN0i = r0V. When the vacuum condition Equation (104) holds, the 2-point correlation
functions can be easily evaluated to be

D
df†

k dfk0
E

=

0

BB@
1
2

k2

2m + lr0r
k2
2m

⇣
k2
2m + 2lr0

⌘ �
1
2

1

CCA dk,k0

⇡
1
4

s
2lr0

k2
2m

dk,k0 , (106)

hdf�kdfk0 i = �
e2iq0

4
2lr0r

k2
2m

⇣
k2
2m + 2lr0

⌘ dk,k0

⇡ �e2iq0
D

df†
k dfk0

E
, (107)

where in the last line we have used k2

2m ⌧ 2lr0, the limit in which the quasi-particles propagate in
accordance with the analogue metric Equation (91), and one has to keep into account that the phase of
the condensate is time dependent and consequently the last correlator is oscillating.

We now see that the conditions of condensation hNki ⌧ hN0i and of low-momenta translate into

2lr0

16 hN0i
2 ⌧

k2

2m
⌧ 2lr0 . (108)

The range of momenta that should be considered is, therefore, set by the number of condensate
atoms, the physical dimension of the atomic system, and the strength of the 2-body interaction.

The operators qk satisfying Equation (90)—describing the excitations of quasi-particles over
a BEC—are analogous to the components of a scalar quantum field in a cosmological spacetime.
In particular, if we consider a cosmological metric given in the usual form of

gµndxµdxn = �dt2 + a2dijdxidxj , (109)
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the analogy is realized for a specific relation between the coupling l (t) and the scale factor a (t), which
then induces the relation between the laboratory time t and the cosmological time t. These relations
are given by

a (t (t)) =

✓
r0

ml (t)

◆1/4 1
C

, (110)

dt =
r0

ma (t (t))
1

C2 dt , (111)

for an arbitrary constant C.
In cosmology, the evolution of the scale factor leads to the production of particles by cosmological

particle creation, as implied by the Bogoliubov transformation relating the operators which, at early
and late times, create and destroy the quanta we recognize as particles. The same happens for the
quasi-particles over the condensate, as discussed in Section 6, because the coupling l is time-dependent
and the definition itself of quasi-particles changes from initial to final time. The ladder operators
associated to these quasi-particles are related to each other by the Bogoliubov transformation
introduced in Equation (101), fully defined by the parameters Qk and jk (which must also satisfy
Equations (102) and (103)).

6.2. Scattering Operator

The exact expressions of Qk and jk depend on the behavior of l (t), which is a function of the
cosmological scale parameter, and is therefore different for each cosmological model. They can in
general be evaluated with the well-established methods used in quantum field theory in curved
spacetimes [32]. In general, it is found that cosh Qk > 1, as the value cosh Qk = 1 (i.e., sinh Qk = 0) is
restricted to the case in which l is a constant for the whole evolution, and the analogue spacetime is
simply flat.

The unitary operator describing the evolution from initial to final time is U (tout, tin) when
tout ! +• and tin ! �•, and the operator, U, is the scattering operator, S. This is exactly the operator
acting on the quasi-particles, defining the Bogoliubov transformation in which we are interested

c0k = S†ckS . (112)

The behavior of c0k, describing the quasi-particles at late times, can therefore be understood from
the behavior of the initial quasi-particle operators ck when the expression of the scattering operator
is known. In particular, the phenomenon of cosmological particle creation is quantified considering
the expectation value of the number operator of quasi-particles at late times in the vacuum state as
defined by early times operators [32].

Consider as initial state the vacuum of quasi-particles at early times, satisfying the condition
Equation (104). It is analogous to a Minkowski vacuum, and the evolution of the coupling l (t) induces
a change in the definition of quasi-particles. We find that, of course, the state is not a vacuum with
respect to the final quasi-particles c0. It is

S†c†
k ckS = c0†k c0k =

⇣
cosh Qkc†

k + sinh Qke�ijk c�k

⌘ ⇣
cosh Qkck + sinh Qkeijk c†

�k

⌘
(113)

and D
S†c†

k ckS
E

= sinh2 Qk

D
c�kc†

�k

E
= sinh2 Qk > 0 . (114)

We are interested in the effect that the evolution of the quasi-particles have on the atoms.
The system is fully characterized by the initial conditions and the Bogoliubov transformation: we have
the initial occupation numbers, the range of momenta which we should consider, and the relation
between initial and final quasi-particles.

The initial state is the quasi-particle vacuum  
which implies e.g. in terms of the two point correlators of number-conserving operators  

(quasi-particle ops and number conserving ops are related via a Bogoliubov transformation)
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What is most significant is that the quasi-particle dynamics affects the occupation number of
the atoms. Considering that for sufficiently large t we are already in the final regime, the field takes
the following values,

dfk (t ! �•) = ir1/2
0 eiq0(t) 1

Nk

⇣
(Fk + 1) e�iwktck � (Fk � 1) eiwktc†

�k

⌘
(115)

dfk (t ! +•) = ir1/2
0 eiq0(t) 1

N 0

k

⇣�
F

0

k + 1
�

e�iw0

ktc0k �
�
F

0

k � 1
�

eiw0

ktc0†
�k

⌘
(116)

where Fk ⌘
wk

k2
2m +2lr0

and F 0

k ⌘
w0

k
k2
2m +2l0r0

, with w0

k =

r
k2
2m

⇣
k2
2m + 2l0r0

⌘
. One finds

D
df†

k (t) dfk (t)
E

=
k2

2m + l0r0

2w0

k
cosh (2Qk) �

1
2

+
l0r0 sinh (2Qk)

2w0

k
cos

�
2w0

kt � jk
�

. (117)

In Equation (117), the last term is oscillating symmetrically around 0—meaning that the atoms
will leave and rejoin the condensate periodically in time—whereas the first two are stationary.

An increase in the value of the coupling l therefore has deep consequences. It appears explicitly
in the prefactor and more importantly it affects the hyperbolic functions cosh Qk > 1, which implies
that the mean value is larger than the initial one, differing from the equilibrium value corresponding
to the vacuum of quasi-particles.

This result is significant because it explicitly shows that the quasi-particle dynamics influences
the underlying structure of atomic particles. Even assuming that the backreaction of the quasi-particles
on the condensate is negligible for the dynamics of the quasi-particles themselves, the mechanism
of extraction of atoms from the condensate fraction is effective and increases the depletion (as also
found in the standard Bogoliubov approach). This extraction mechanism can be evaluated in terms
of operators describing the quasi-particles, that can be defined a posteriori, without notion of the
operators describing the atoms.

The fact that analogue gravity can be reproduced in condensates independently from the use
of coherent states enhances the validity of the discussion. It is not strictly necessary that we have a
coherent state to simulate the effects of curvature with quasi-particles, but, in the more general case of
condensation, the condensed wave function provides a support for the propagation of quasi-particles.
From an analogue gravity point of view, its intrinsic role is that of seeding the emergence of the
analogue scalar field [2].

7. Squeezing and Quantum State Structure

The Bogoliubov transformation in Equation (101) leading to the quasi-particle production
describes the action of the scattering operator on the ladder operators, relating the operators at
early and late times. The linearity of this transformation is obtained by the linearity of the dynamical
equation for the quasi-particles, which is particularly simple in the case of homogeneous condensate.

The scattering operator S is unitary by definition, as it is easily checked by its action on the
operators ck. Its full expression can be found from the Bogoliubov transformation, finding the
generators of the transformation when the arguments of the hyperbolic functions, the parameters Qk,
are infinitesimal:

S†ckS = c0k = cosh Qkck + sinh Qkeijk c†
�k . (118)

It follows

S = exp

 
1
2 Â

k 6=0

⇣
�e�ijk ckc�k + eijk c†

k c†
�k

⌘
Qk

!
. (119)

The scattering operator is particularly simple and takes the peculiar expression that is required
for producing squeezed states. This is the general functional expression that is found in cosmological
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In Equation (117), the last term is oscillating symmetrically around 0—meaning that the atoms
will leave and rejoin the condensate periodically in time—whereas the first two are stationary.

An increase in the value of the coupling l therefore has deep consequences. It appears explicitly
in the prefactor and more importantly it affects the hyperbolic functions cosh Qk > 1, which implies
that the mean value is larger than the initial one, differing from the equilibrium value corresponding
to the vacuum of quasi-particles.

This result is significant because it explicitly shows that the quasi-particle dynamics influences
the underlying structure of atomic particles. Even assuming that the backreaction of the quasi-particles
on the condensate is negligible for the dynamics of the quasi-particles themselves, the mechanism
of extraction of atoms from the condensate fraction is effective and increases the depletion (as also
found in the standard Bogoliubov approach). This extraction mechanism can be evaluated in terms
of operators describing the quasi-particles, that can be defined a posteriori, without notion of the
operators describing the atoms.

The fact that analogue gravity can be reproduced in condensates independently from the use
of coherent states enhances the validity of the discussion. It is not strictly necessary that we have a
coherent state to simulate the effects of curvature with quasi-particles, but, in the more general case of
condensation, the condensed wave function provides a support for the propagation of quasi-particles.
From an analogue gravity point of view, its intrinsic role is that of seeding the emergence of the
analogue scalar field [2].

7. Squeezing and Quantum State Structure

The Bogoliubov transformation in Equation (101) leading to the quasi-particle production
describes the action of the scattering operator on the ladder operators, relating the operators at
early and late times. The linearity of this transformation is obtained by the linearity of the dynamical
equation for the quasi-particles, which is particularly simple in the case of homogeneous condensate.

The scattering operator S is unitary by definition, as it is easily checked by its action on the
operators ck. Its full expression can be found from the Bogoliubov transformation, finding the
generators of the transformation when the arguments of the hyperbolic functions, the parameters Qk,
are infinitesimal:

S†ckS = c0

k = cosh Qkck + sinh Qkeijk c†
�k . (118)

It follows

S = exp

 
1
2 Â

k 6=0

⇣
�e�ijk ckc�k + eijk c†

k c†
�k

⌘
Qk

!
. (119)

The scattering operator is particularly simple and takes the peculiar expression that is required
for producing squeezed states. This is the general functional expression that is found in cosmological
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condensate periodically in time—whereas the first two are stationary.  
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Bogoliubov approximation, if there one denotes by gk the quasi-particles one has that the gk are a
combination of the atom operators ak, a�k of the form gk = ukak + vka†

�k [20]. Correspondingly, in the
number-conserving formalism the quasi-particle operators ck are a combination of the atom operators
dfk ⌘ ak, df�k ⌘ a�k):

ck |ini ⌘0 8k 6= 0 . (104)

To realize this initial condition, we should impose constraints, in principle, on every
correlation function. We focus on the 2-point correlation functions

⌦
df†df

↵
and hdfdfi. In particular,

the first of the two determines the number of atoms with momentum k in the initial state:
D

df†
k dfk

E
=

D
a†

k a0N�1
0 a†

0ak

E
=

D
a†

k ak

E
= hNki . (105)

In order for the state to be condensed with respect to the state with momentum 0, it must be
that hNki ⌧ hN0i = r0V. When the vacuum condition Equation (104) holds, the 2-point correlation
functions can be easily evaluated to be

D
df†

k dfk0

E
=

0

BB@
1
2

k2

2m + lr0r
k2
2m

⇣
k2
2m + 2lr0
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1

CCA dk,k0

⇡
1
4

s
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k2
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dk,k0 , (106)

hdf�kdfk0 i = �
e2iq0

4
2lr0r

k2
2m

⇣
k2
2m + 2lr0

⌘ dk,k0

⇡ �e2iq0
D

df†
k dfk0

E
, (107)

where in the last line we have used k2

2m ⌧ 2lr0, the limit in which the quasi-particles propagate in
accordance with the analogue metric Equation (91), and one has to keep into account that the phase of
the condensate is time dependent and consequently the last correlator is oscillating.

We now see that the conditions of condensation hNki ⌧ hN0i and of low-momenta translate into

2lr0

16 hN0i
2 ⌧

k2

2m
⌧ 2lr0 . (108)

The range of momenta that should be considered is, therefore, set by the number of condensate
atoms, the physical dimension of the atomic system, and the strength of the 2-body interaction.

The operators qk satisfying Equation (90)—describing the excitations of quasi-particles over
a BEC—are analogous to the components of a scalar quantum field in a cosmological spacetime.
In particular, if we consider a cosmological metric given in the usual form of

gµndxµdxn = �dt2 + a2dijdxidxj , (109)

At late times the first one becomes

Attend G. Tricella’s talk tomorrow 
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the analogy is realised for a specific relation between the coupling λ (t) and the scale
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What is most significant is that the quasi-particle dynamics affects the occupation number of
the atoms. Considering that for sufficiently large t we are already in the final regime, the field takes
the following values,

dfk (t ! �•) = ir1/2
0 eiq0(t) 1

Nk

⇣
(Fk + 1) e�iwktck � (Fk � 1) eiwktc†

�k

⌘
(115)

dfk (t ! +•) = ir1/2
0 eiq0(t) 1
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F

0

k + 1
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k � 1
�

eiw0

ktc0†
�k

⌘
(116)
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2m + 2l0r0

⌘
. One finds

D
df†

k (t) dfk (t)
E
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1
2
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l0r0 sinh (2Qk)
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k
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In Equation (117), the last term is oscillating symmetrically around 0—meaning that the atoms
will leave and rejoin the condensate periodically in time—whereas the first two are stationary.

An increase in the value of the coupling l therefore has deep consequences. It appears explicitly
in the prefactor and more importantly it affects the hyperbolic functions cosh Qk > 1, which implies
that the mean value is larger than the initial one, differing from the equilibrium value corresponding
to the vacuum of quasi-particles.

This result is significant because it explicitly shows that the quasi-particle dynamics influences
the underlying structure of atomic particles. Even assuming that the backreaction of the quasi-particles
on the condensate is negligible for the dynamics of the quasi-particles themselves, the mechanism
of extraction of atoms from the condensate fraction is effective and increases the depletion (as also
found in the standard Bogoliubov approach). This extraction mechanism can be evaluated in terms
of operators describing the quasi-particles, that can be defined a posteriori, without notion of the
operators describing the atoms.

The fact that analogue gravity can be reproduced in condensates independently from the use
of coherent states enhances the validity of the discussion. It is not strictly necessary that we have a
coherent state to simulate the effects of curvature with quasi-particles, but, in the more general case of
condensation, the condensed wave function provides a support for the propagation of quasi-particles.
From an analogue gravity point of view, its intrinsic role is that of seeding the emergence of the
analogue scalar field [2].

7. Squeezing and Quantum State Structure

The Bogoliubov transformation in Equation (101) leading to the quasi-particle production
describes the action of the scattering operator on the ladder operators, relating the operators at
early and late times. The linearity of this transformation is obtained by the linearity of the dynamical
equation for the quasi-particles, which is particularly simple in the case of homogeneous condensate.

The scattering operator S is unitary by definition, as it is easily checked by its action on the
operators ck. Its full expression can be found from the Bogoliubov transformation, finding the
generators of the transformation when the arguments of the hyperbolic functions, the parameters Qk,
are infinitesimal:

S†ckS = c0

k = cosh Qkck + sinh Qkeijk c†
�k . (118)

It follows

S = exp
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2 Â
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⇣
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k c†
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⌘
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!
. (119)

The scattering operator is particularly simple and takes the peculiar expression that is required
for producing squeezed states. This is the general functional expression that is found in cosmological

 This is the general functional expression that is found in cosmological  particle creation and in its analogue 
gravity counterparts, whether they are realized in the usual Bogoliubov framework or in its number-

conserving reformulation.  
The time-independent operators ck depend on the condensate operator a0 and can be defined as 

compositions of number-conserving atom operators δφk (t) and δφ−† 
k (t) 
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The process of particle creation can be seen as an extraction of atoms from the condensate  
This dynamics produces (at any time) non-zero (1/N0 supppressed) correlators between the 

condensate atoms and the quasi-particles because the operators a0 and a0
† do not commute with the 

creation of coupled quasi-particles c†
kc†

−k, which is described by the combination of the operators 
δφ†

kδφk, δφ†
kδφ†

−k and δφkδφ−k 
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where |∆ia should be interpreted as the vacuum of excited atoms.
From Equation (127), it is clear that in the basis of atom occupation number, the quasi-particle

vacuum is a complicated superposition of states with different number of atoms in the condensed
1-particle state (and a corresponding number of coupled excited atoms, in pairs of opposite momenta).
Every correlation function is therefore dependent on the entanglement of this many-body atomic state.

This feature is enhanced by the dynamics, as can be observed from the scattering operator in
Equation (119) relating early and late times. The scattering operator acts on atom pairs and the creation
of quasi-particles affects the approximated vacuum differently depending on the number of atoms
occupying the condensed 1-particle state. The creation of more pairs modifies further the superposition
of the entangled atomic states depending on the total number of atoms and the initial number of
excited atoms.

We can observe this from the action of the condensed state ladder operator, which does not
commute with the the creation of coupled quasi-particles c†

k c†
�k, which is described by the combination

of the operators df†
k dfk, df†

k df†
�k, and dfkdf�k. The ladder operator a†

0 commutes with the first, but not
with the others:

⇣
df†

k dfk

⌘
a†

0 = a†
0

⇣
df†

k dfk

⌘
, (128)

⇣
df†

k df†
�k

⌘n
a†

0 = a†
0

⇣
df†

k df†
�k

⌘n
✓

N0 + 1
N0 + 1 � 2n

◆1/2
, (129)

(dfkdf�k)n a†
0 = a†

0 (dfkdf�k)n
✓

N0 + 1
N0 + 1 + 2n

◆1/2
. (130)

The operators a0 and a†
0 do not commute with the number-conserving atomic ladder operators,

and therefore the creation of couples and the correlation functions, up to any order, will present
corrections of order 1/N to the values that could be expected in the usual Bogoliubov description.
Such corrections appear in correlation functions between quasi-particle operators and for correlations
between quasi-particles and condensate atoms. This is equivalent to saying that a condensed state,
which is generally not coherent, will present deviations from the expected correlation functions
predicted by the Bogoliubov theory, due to both the interaction and the features of the initial state itself
(through contributions coming from connected expectation values).

7.2. Entanglement Structure in Number-Conserving formalism

Within the Bogoliubov description discussed in Section 3, the mean-field approximation for the
condensate is most adequate for states close to coherence, thus allowing a separate analysis for the
mean-field. The field operator is split in the mean-field function hfi and the fluctuation operator df,
which is assumed not to affect the mean-field through backreaction. Therefore, the states in this picture
can be written as

|hfiim f ⌦
���df, df†

E

a Bog
, (131)

meaning that the state belongs to the product of two Hilbert spaces: the mean-field defined on
one and the fluctuations on the other, with df and df† ladder operators acting only on the second.
The Bogoliubov transformation from atom operators to quasi-particles allows to rewrite the state as
shown in Equation (127). The transformation only affects its second part:

|hNiim f ⌦ |∆iqp Bog = |hNiim f ⌦ Â
lr

alr |l, ria Bog . (132)

With such transformation, the condensed part of the state is kept separate from the superposition
of coupled atoms (which here are denoted l and r for brevity) forming the excited part, a separation, that



Main Lessons
As expected when describing the particle creation on the full Fock space (condensate+QP), there 

isn’t any unitarity breaking, and the purity of the state is preserved.  
The particle creation unavoidably creates entanglement of the quasi-particles with the atoms in the 

condensate: even if the initial state factories the final one won’t

In cases such as the cosmological particle creation, where the phenomenon happens on the whole 
spacetime, N is the (large) number of atoms in the whole condensate, and thus the correlations between the 

substratum and the quasi-particles are negligible.  

In the black hole case, a finite region of spacetime is associated to the particle creation, thus N is not only 
finite but decreases as a consequence of the evaporation making the correlators between geometry and 

Hawking quanta more and more non-negligible at late stages of the BH evaporation.  

 The Bogoliubov limit corresponds to taking the quantum degrees of freedom of the geometry as classical. 
This is not per se a unitarity violating operation, as it is equivalent to effectively recover the factorization of the 

above mentioned state. Indeed, the squeezing operator so recovered is unitarity preserving.  

 However, the two descriptions are no longer practically equivalent when a region of quantum gravitational 
evolution is somehow simulated.  

This strongly suggests that the information loss can only be addressed in a full quantum gravity description 
able to keep track of the correlations between quantum matter fields and geometrical quantum degrees of 

freedom underlying spacetime in QG.  
(However AG miss Diffeo invariance which is another important ingredient. See e.g. Jacobson-Nguyen 2019)
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is maintained during the evolution in the Bogoliubov description. Also, the Bogoliubov transformation
from early-times quasi-particles to late-times quasi-particles affects only the second part

|hNiim f ⌦ Â
lr

alr |l, ria Bog ) |hNiim f ⌦ Â
lr

a0lr |l, ria Bog . (133)

In the number-conserving framework there is not such a splitting of the Fock space, and there
is no separation between the two parts of the state. In this case, the best approximation for the
quasi–particle vacuum is given by a superposition of coupled excitations of the atom operators, but the
total number of atoms cannot be factored out:

|N; ∆iqp ⇡ Â
lr

alr |N � l � r, l, ria . (134)

The term in the RHS is a superposition of states with N total atoms, of which N � l � r are in the
condensed 1-particle state, and the others occupy excited atomic states and are coupled with each other
analogously to the previous Equation (132) (the difference being the truncation of the sum, required
for a sufficiently large number of excited atoms, implying a different normalization).

The evolution does not split the Hilbert space, and the final state will be a different superposition
of atomic states:

Â
lr

alr |N, l, ria ) Â
lr

a0lr
⇣

1 + O

⇣
N�1

⌘⌘
|N � l � r, l, ria . (135)

We remark that in the RHS the final state must include corrections of order 1/N with respect
to the Bogoliubov prediction, due to the fully quantum behavior of the condensate ladder operators.
These are small corrections, but we expect that the difference from the Bogoliubov prediction will be
relevant when considering many-point correlation functions.

Moreover, these corrections remark the fact that states with different number of atoms in the
condensate are transformed differently. If we consider a superposition of states of the type in
Equation (134) with different total atom numbers so to reproduce the state in Equation (132), therefore
replicating the splitting of the state, we would find that the evolution produces a final state with
a different structure, because every state in the superposition evolves differently. Therefore, also
assuming that the initial state could be written as

Â
N

e�N/2
p

N!
|N; ∆iqp ⇡ |hNiim f ⌦ |∆iqp Boq , (136)

anyway, the final state would unavoidably have different features:

Â
N

e�N/2
p

N! Â
lr

a0lr
⇣

1 + O

⇣
N�1

⌘⌘
|N � l � r, l, ria 6= |hNiim f ⌦ Â

lr
a0lr |l, ria Bog . (137)

We remark that our point is qualitative. Indeed, it is true that also in the weakly interacting limit
the contribution coming from the interaction of Bogoliubov quasi-particles may be quantitatively larger
than the O

�
N�1� term in Equation (137). However, even if one treats the operator a0 as a number

disregarding its quantum nature, then one cannot have the above discussed entanglement. In that case,
the Hilbert space does not have a sector associated to the condensed part and no correlation between
the condensate and the quasi-particles is present. To have them one has to keep the quantum nature of
a0, and its contribution to the Hilbert space.

Alternatively, let us suppose to have an interacting theory of bosons for which no interactions
between quasi-particles are present (as in principle one could devise and engineer similar models
based on solvable interacting bosonic systems [33]). Even in that case one would have a qualitative
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|hNiim f ⌦ Â
lr

alr |l, ria Bog ) |hNiim f ⌦ Â
lr

a0

lr |l, ria Bog . (133)

In the number-conserving framework there is not such a splitting of the Fock space, and there
is no separation between the two parts of the state. In this case, the best approximation for the
quasi–particle vacuum is given by a superposition of coupled excitations of the atom operators, but the
total number of atoms cannot be factored out:

|N; ∆iqp ⇡ Â
lr

alr |N � l � r, l, ria . (134)

The term in the RHS is a superposition of states with N total atoms, of which N � l � r are in the
condensed 1-particle state, and the others occupy excited atomic states and are coupled with each other
analogously to the previous Equation (132) (the difference being the truncation of the sum, required
for a sufficiently large number of excited atoms, implying a different normalization).

The evolution does not split the Hilbert space, and the final state will be a different superposition
of atomic states:

Â
lr

alr |N, l, ria ) Â
lr

a0

lr

⇣
1 + O

⇣
N�1

⌘⌘
|N � l � r, l, ria . (135)

We remark that in the RHS the final state must include corrections of order 1/N with respect
to the Bogoliubov prediction, due to the fully quantum behavior of the condensate ladder operators.
These are small corrections, but we expect that the difference from the Bogoliubov prediction will be
relevant when considering many-point correlation functions.

Moreover, these corrections remark the fact that states with different number of atoms in the
condensate are transformed differently. If we consider a superposition of states of the type in
Equation (134) with different total atom numbers so to reproduce the state in Equation (132), therefore
replicating the splitting of the state, we would find that the evolution produces a final state with
a different structure, because every state in the superposition evolves differently. Therefore, also
assuming that the initial state could be written as

Â
N

e�N/2
p

N!
|N; ∆iqp ⇡ |hNiim f ⌦ |∆iqp Boq , (136)

anyway, the final state would unavoidably have different features:

Â
N

e�N/2
p

N! Â
lr

a0

lr

⇣
1 + O

⇣
N�1

⌘⌘
|N � l � r, l, ria 6= |hNiim f ⌦ Â

lr
a0

lr |l, ria Bog . (137)

We remark that our point is qualitative. Indeed, it is true that also in the weakly interacting limit
the contribution coming from the interaction of Bogoliubov quasi-particles may be quantitatively larger
than the O

�
N�1�

term in Equation (137). However, even if one treats the operator a0 as a number
disregarding its quantum nature, then one cannot have the above discussed entanglement. In that case,
the Hilbert space does not have a sector associated to the condensed part and no correlation between
the condensate and the quasi-particles is present. To have them one has to keep the quantum nature of
a0, and its contribution to the Hilbert space.

Alternatively, let us suppose to have an interacting theory of bosons for which no interactions
between quasi-particles are present (as in principle one could devise and engineer similar models
based on solvable interacting bosonic systems [33]). Even in that case one would have a qualitative
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Lesson 3  
Analogue models of emergent gravity and 

the Cosmological constant 



The cosmological constant problem in analogue/emergent gravity

However, is this the relevant energy of the vacuum for an analogue gravity system?
 We can basically apply an argument firstly proposed by G. Volovik…

Let us consider the EFT associated to phonons in BEC

In general

Not knowing about the physics beyond the “healing scale” we would cut-off the system at ξ=healing length of BEC and hence get a 
huge cosmological constant=(1/ξ)4 V

BUT

Evac = ��|Hphon|�⇥Hphon = ~
�X

k

�k

✓
a†

kai +
1
2

◆

Indeed for a many-body system like BEC the dynamics is generated by the grand-canonical Hamiltonian so it is its phononic vacuum 
expectation value that should provide the correct vacuum energy density

Ground state: no phonons

Evac = h⌦| [Hatoms � µNatoms] |⌦i/V µ = chemical potential

Using the Gibbs-Duhem relation 

one easily see that at T=0 (no phonons) 

E � TS � µN = �pV

Evac = �p

For a finite condensate p≠0 and will in general depend on Volume/Surface terms of order of the energy required to pull 
atoms out of the condensate ~μ. 
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Indeed for a many-body system like BEC the dynamics is generated by the grand-canonical Hamiltonian so it is its phononic vacuum 
expectation value that should provide the correct vacuum energy density

Ground state: no phonons

Evac = h⌦| [Hatoms � µNatoms] |⌦i/V µ = chemical potential

Using the Gibbs-Duhem relation 

one easily see that at T=0 (no phonons) 

E � TS � µN = �pV

Evac = �p

For a finite condensate p≠0 and will in general depend on Volume/Surface terms of order of the energy required to pull 
atoms out of the condensate ~μ. 

But can we see this at work in a concrete model? Back to BEC…



A toy model for emergent gravity: non-relativistic BEC

So let’s go back to the mean field approximation of BEC and focus
on the BdG equation for the background:

 Can this be encoding some form of gravitational dynamics?

 If yes it must be some form of Newtonian gravity (non relativistic equation)

 But, in order to have any chance to see this, we need to have some massive field

i~ ⇤

⇤t
⇥(t,x) =

✓
� ~2

2m
r2 + Vext(x) + �nc

◆
⇥(t,x)+� (2ñ⇥(t,x) + m̃⇥(t,x))

F. Girelli, S.L.,L.Sindoni
Phys.Rev.D78:084013,2008
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So let’s go back to the mean field approximation of BEC and focus
on the BdG equation for the background:

 Can this be encoding some form of gravitational dynamics?

 If yes it must be some form of Newtonian gravity (non relativistic equation)

 But, in order to have any chance to see this, we need to have some massive field

One way to get this is to introduce a soft U(1) breaking term 
(i.e. from massless Goldstone bosons to massive pseudo-Goldstone bosons)

It can be checked that the extra term gives massive phonons
which at low momenta propagate on the standard acoustic geometry of 

BEC

We assume –μ<λ<<μ (soft breaking).
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Note: this kind of  symm breaking is actually experimentally realized in magnon (quantized spin wave)  
BEC in 3He-B (see e.g. related work by G.Volovik)
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Non-relativistic BEC gravitational potential

Results

1. It is possible to show by looking at the Newtonian limit of the acoustic geometry 
that the gravitational potential is encoded in density perturbations

2.  By adopting the ansatz

and looking at the Hamiltonian for the quasi-particles in the non relativistic 
limit, one can actually show that the analogue of the gravitational potential is

So we would now like to cast the equation for the a stationary, homogeneous, condensate background in a Poisson-
like form with the quasi-particles moving accordingly to the analogue gravitational potential.

where  L ⇒ range of the gravitational interaction, GN ⇒ analogue G Newton, 

Λ ⇒ analogue cosmological constant

⇤F = ⇤a = �M⇤⇥⇥grav�
⇥2 � 1

L2
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⇥grav = 4�GN⇥ + �

⇤ =
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1. It is possible to show by looking at the Newtonian limit of the acoustic geometry 
that the gravitational potential is encoded in density perturbations

2.  By adopting the ansatz

and looking at the Hamiltonian for the quasi-particles in the non relativistic 
limit, one can actually show that the analogue of the gravitational potential is

So we would now like to cast the equation for the a stationary, homogeneous, condensate background in a Poisson-
like form with the quasi-particles moving accordingly to the analogue gravitational potential.

where  L ⇒ range of the gravitational interaction, GN ⇒ analogue G Newton, 

Λ ⇒ analogue cosmological constant

This is the form the gravitational potential affecting the quasi-particle motion for a slightly 
inhomogeneous BEC. 

We now want to see if it satisfies some modified Poisson equation…
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Now, knowing what is the analogue gravitational potential, this can be cast in the 
form of a generalized Poisson equation with a (negative) cosmological constant. 

Let’s consider the equation for a static background with a source term.
The latter is given partly by a localized quasi-particle plus a vacuum contribution due to the unavoidable presence/backreaction of 
excited atoms above the condensate

�
�2

2m
⌅2 � 2(µ + ⇥)

⇥
u(x) = 2�

�
n̄(x) +

1
2
m̄(x)

⇥
+ 2�

�
ñ0 +

1
2
m̃0

⇥

where n̄(x) = ñ(x) � ñ0, m̄(x) = m̃(x) � m̃0

and ñ0 = ⇥0|⇤̂†(x)⇤̂(x)|0⇤, m̃0 = ⇥0|⇤̂(x)⇤̂(x)|0⇤
are the quasi-particle vacuum backreaction terms

non-relativistic BEC: emergent Newtonian gravity
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Weighting Lambda…

E� =
�c4s
4⇥GN

, EP =
c7s

~G2
N

, =� E�
EP

⇥ ⇤0a
3

✓
�

g⇤0

◆�5/2

.

The cosmological constant scale is suppressed by a small number 
(the dilution factor ρa3≪1) w.r.t. the analogue/emergent Planck scale! 

The (negative) cosmological constant is not the phonons ground state energy, 
neither it is the atoms grand canonical energy density h,  or energy density ε=h+μρ

It is just related to the subdominat second order correction to these latter quantities due to quantum depletion 
(the part related to the excitations) and its scale is the healing scale. 

where



Cosmological constant in emergent gravity: lessons from BECh!̂!̂i!¼
Z d3k

"0ð2#Þ3
ukvk¼

8ffiffiffiffi
#

p
ffiffiffiffiffiffiffiffiffiffi
"0a

3
q

F!!

"
$

g"0

#
; (21)

where F!!ð0Þ ¼ 1 (see Fig. 1, dot-dashed line), we obtain

" ¼ $ 20mg"0ðg"0 þ 3$Þ
3

ffiffiffiffi
#

p @2$ ffiffiffiffiffiffiffiffiffiffi
"0a

3
q

F"

"
$

g"0

#
; (22)

where F" ¼ ð2F" þ 3F!!Þ=5 (see Fig. 1, solid line).
Let us now compare the value of " either with the

ground-state grand-canonical energy density h [Eq. (11)],
which in [9] was suggested as the correct vacuum energy
corresponding to the cosmological constant, or with the
ground-state energy density % of Eq. (14). Evidently, "
does not correspond to either of them: even when taking
into account the correct behavior at small scales, the vac-
uum energy computed with the phonon EFT does not lead
to the correct value of the cosmological constant appearing

in Eq. (17). Noticeably, since" is proportional to
ffiffiffiffiffiffiffiffiffiffi
"0a

3
p

, it
can even be arbitrarily smaller both than h and than %, if the
condensate is very dilute. Furthermore, " is proportional
only to the subdominant second order correction of h or %,
which is strictly related to the depletion [see Eq. (12)].

Fundamental scales.—Several scales show up in this
system, in addition to the naive Planck scale computed
by combining @ and the emergent constants GN and cs:

LP ¼
ffiffiffiffiffiffiffiffi@c5s
GN

s
/
"
$

g"0

#$3=4
ð"0a

3Þ$1=4a: (23)

For instance, the Lorentz-violation scale LLV ¼ & /
ð"0a

3Þ$1=2a differs from LP, suggesting that the breaking
of the Lorentz symmetry might be expected at scale much
longer than the Planck length (energy much smaller than
the Planck energy), since the ratio LLV=LP / ð"0a

3Þ$1=4

increases with the diluteness of the condensate.
Note that LLV scales with "0a

3 exactly as the range of
the gravitational force [see Eq. (18)], signaling that this
model is too simple to correctly grasp all the desired
features. However, in more complicated systems [13],
this pathology can be cured, in the presence of suitable
symmetries, leading to long range potentials.

It is instructive to compare the energy density corre-
sponding to " to the Planck energy density:

E "¼ "c4s
4#GN

; EP¼
c7s@G2

N

;
E"

EP
/"0a

3

"
$

g"0

#$5=2
: (24)

The energy density associated with the analogue cosmo-
logical constant is much smaller than the values computed
from zero-point-energy calculations with a cutoff at the
Planck scale. Indeed, the ratio between these two quantities
is controlled by the diluteness parameter "0a

3.
Final remarks.—Taken at face value, this relatively

simple model displays too many crucial differences with
any realistic theory of gravity to provide conclusive

evidences. However, it displays an alternative path to the
cosmological constant, from the perspective of a micro-
scopic model. The analogue cosmological constant that we
have discussed cannot be computed as the total zero-point
energy of the condensed matter system, even when taking
into account the natural cutoff coming from the knowledge
of the microphysics [9]. In fact the value of " is related
only to the (subleading) part of the zero-point energy
proportional to the quantum depletion of the condensate.
This holds also in a spinor BEC model, since the reasoning
there is absolutely identical. The virtue of the single BEC
model is to display the key physical result without obscur-
ing it with unnecessary mathematical complications, with-
out loss of generality. Interestingly, this result finds some
support from arguments within loop quantum gravity mod-
els [18], suggesting a BCS energy gap as a (conceptually
rather different) origin for the cosmological constant.
The implications for gravity are twofold. First, there

could be no a priori reason why the cosmological constant
should be computed as the zero-point energy of the system.
More properly, its computation must inevitably pass
through the derivation of Einstein equations emerging
from the underlying microscopic system. Second, the en-
ergy scale of " can be several orders of magnitude smaller
than all the other energy scales for the presence of a very
small number, nonperturbative in origin, which cannot be
computed within the framework of an EFT dealing only
with the emergent degrees of freedom (i.e., semiclassical
gravity).
The model discussed in this Letter shows all this explic-

itly: the energy scale of" is here lowered by the diluteness
parameter of the condensate. Furthermore, our analysis
strongly supports a picture where gravity is a collective
phenomenon in a pregeometric theory. In fact, the cosmo-
logical constant puzzle is elegantly solved in those scenar-
ios. From an emergent gravity approach, the low energy
effective action (and its renormalization group flow) is
computed within a framework that has nothing to do with
quantum field theories in curved spacetime. Indeed, if we
interpreted the cosmological constant as a coupling con-
stant controlling some self-interaction of the gravitational
field, rather than as a vacuum energy, it would immediately
follow that the explanation of its value (and of its proper-
ties under renormalization) would naturally sit outside the
domain of semiclassical gravity.
For instance, in a group field theory scenario (a general-

ization to higher dimensions of matrix models for two
dimensional quantum gravity [19]), it is transparent that
the origin of the gravitational coupling constants has noth-
ing to do with ideas like ‘‘vacuum energy’’ or statements
like ‘‘energy gravitates’’, because energy itself is an emer-
gent concept. Rather, the value of " is determined by the
microphysics, and, most importantly, by the procedure to
approach the continuum semiclassical limit. In this respect,
it is conceivable that the very notion of cosmological
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This model is too simple to be realistic but still teaches us some lessons

 The analogue cosmological constant that we have discussed cannot be computed as the total zero-
point energy of the condensed matter system, even when taking into account the natural cutoff 

coming from the knowledge of the microphysics  

In fact the value of Λ is related only to the (subleading) part of the zero-point energy proportional 
to the quantum depletion of the condensate. 
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The total grand-canonical energy density is therefore

h¼ h0þh2 ¼
g!0

2

2

!
#1þ 128

15
ffiffiffiffi
"

p
ffiffiffiffiffiffiffiffiffiffi
!0a

3
q

Fh

#
#

g!0

$%
(11)

and it coincides with the well known Lee-Huang-Yang
formula [17] when # ¼ 0.

The number density operator N̂ is analogously expanded
in powers of $̂: N̂ ¼ N0 þ N̂1 þ N̂2. The density of N0 is
!0 ¼ j!0j2, hN̂1i" ¼ 0, and !2 $ hN̂2i" is

!2 ¼ !0h$̂y$̂i" ¼
Z d3k

ð2"Þ3 jvkj2

¼ 8!0

3
ffiffiffiffi
"

p
ffiffiffiffiffiffiffiffiffiffi
!0a

3
q

F!

#
#

g!0

$
; (12)

where F! satisfies F!ð0Þ ¼ 1 (see Fig. 1, dotted line).
This is the number density of noncondensed atoms (deple-
tion) and it is basically the magnitude of the fluctuations
around the mean field. Note that !0a

3 ' 1, as described
after Eq. (1).

Furthermore, when # ¼ 0, inverting the expression for
total particle density, ! ¼ !0 þ !2, one obtains, up to the

first order in
ffiffiffiffiffiffiffiffi
!a3

p

!0 ¼ !
!
1# 8

3
ffiffiffiffi
"

p
ffiffiffiffiffiffiffiffi
!a3

q %
; (13)

which is the density of condensed atoms in terms of the
total density ! and the scattering length a [17]. In this case,
% ¼ g!0, such that the energy density & (density of
hĤi" ¼ hH þ%N̂i") is

& ¼ hþ%! ¼ g!2

2

!
1þ 128

15
ffiffiffiffi
"

p
ffiffiffiffiffiffiffiffi
!a3

q %
: (14)

This is the well known Lee-Huang-Yang [17] formula for
the ground-state energy in a condensate at zero tempera-
ture. In general, when the Uð1Þ breaking term is small, this
term is expected to be the dominant contribution to the
ground-state energy of the condensate.

Analogue cosmological constant.—When the homoge-
neous condensate background is perturbed by small inho-
mogeneities, the Hamiltonian for the quasiparticles can be
written as (see [11])

Ĥ quasip: ( Mc2s #
@2r2

2M
þM#g: (15)

Ĥquasip: is the nonrelativistic Hamiltonian for particles of
mass M [see Eq. (7)] in a gravitational potential

#gðxÞ ¼
ðg!0 þ 3#Þðg!0 þ #Þ

2#m
uðxÞ (16)

and uðxÞ ¼ ½ð!0ðxÞ=!1Þ # 1*=2, where !1 is the asymp-
totic density of the condensate. Moreover, the dynamics of
the potential #g is described by a Poisson-like equation

!
r2 # 1

L2

%
#g ¼ 4"GN!p þ C$; (17)

which is the equation for a nonrelativistic short-range field
with length scale L and gravitational constant GN:

L¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16"!0a

3
p ; GN ¼ gðg!0þ 3#Þðg!0þ#Þ2

4"@2m#3=2ðg!0Þ1=2
: (18)

Despite the obvious difference between #g and the usual
Newtonian gravitational potential, we insist in calling it the
Newtonian potential because it enters the acoustic metric
exactly as the Newtonian potential enters the metric tensor
in the Newtonian limit of GR. The appearance of a short-
range interaction in Eq. (17) is an artifact of the model. In
[13] it has been shown how to obtain a long range analogue
gravitational potential in a spinor BEC. However, the
reasoning is identical in all the other relevant aspects,
and the key result is unchanged.
The source term in Eq. (17) contains both the contribu-

tion of real phonons (playing the role of matter)

!p ¼ M!0½ðh$̂y$̂i' # h$̂y$̂i"Þ
þ 1

2 Reðh$̂ $̂i' # h$̂ $̂i"Þ*; (19)

where j'i is some state of real phonons, as well as a
cosmological constant like term (present even in the ab-
sence of phonons/matter)

C$ ¼ 2g!0ðg!0 þ 3#Þðg!0 þ #Þ@2#
+ Re

!
h$̂y$̂i" þ 1

2
h$̂ $̂i"

%
: (20)

Note that the source term in the correct weak field approxi-
mation of Einstein equations is 4"GNð!þ 3p=c2Þ. For
standard nonrelativistic matter, p=c2 is usually negligible
with respect to !. However, it cannot be neglected for the
cosmological constant, since p$=c

2 ¼ #!$. As a conse-
quence C$ ¼ #2c2s$, where $ would be the GR cosmo-
logical constant. From Eq. (12) and evaluating
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FIG. 1. Fh [dashed line, Eq. (10)], F! [dotted line, Eq. (12)],
F$$ [dot-dashed line, Eq. (21)], and F$ [solid line, Eq. (22)].
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where F!!ð0Þ ¼ 1 (see Fig. 1, dot-dashed line), we obtain

" ¼ $ 20mg"0ðg"0 þ 3$Þ
3

ffiffiffiffi
#

p @2$ ffiffiffiffiffiffiffiffiffiffi
"0a

3
q

F"

"
$

g"0

#
; (22)

where F" ¼ ð2F" þ 3F!!Þ=5 (see Fig. 1, solid line).
Let us now compare the value of " either with the

ground-state grand-canonical energy density h [Eq. (11)],
which in [9] was suggested as the correct vacuum energy
corresponding to the cosmological constant, or with the
ground-state energy density % of Eq. (14). Evidently, "
does not correspond to either of them: even when taking
into account the correct behavior at small scales, the vac-
uum energy computed with the phonon EFT does not lead
to the correct value of the cosmological constant appearing

in Eq. (17). Noticeably, since" is proportional to
ffiffiffiffiffiffiffiffiffiffi
"0a

3
p

, it
can even be arbitrarily smaller both than h and than %, if the
condensate is very dilute. Furthermore, " is proportional
only to the subdominant second order correction of h or %,
which is strictly related to the depletion [see Eq. (12)].

Fundamental scales.—Several scales show up in this
system, in addition to the naive Planck scale computed
by combining @ and the emergent constants GN and cs:

LP ¼
ffiffiffiffiffiffiffiffi@c5s
GN

s
/
"
$

g"0

#$3=4
ð"0a

3Þ$1=4a: (23)

For instance, the Lorentz-violation scale LLV ¼ & /
ð"0a

3Þ$1=2a differs from LP, suggesting that the breaking
of the Lorentz symmetry might be expected at scale much
longer than the Planck length (energy much smaller than
the Planck energy), since the ratio LLV=LP / ð"0a

3Þ$1=4

increases with the diluteness of the condensate.
Note that LLV scales with "0a

3 exactly as the range of
the gravitational force [see Eq. (18)], signaling that this
model is too simple to correctly grasp all the desired
features. However, in more complicated systems [13],
this pathology can be cured, in the presence of suitable
symmetries, leading to long range potentials.

It is instructive to compare the energy density corre-
sponding to " to the Planck energy density:

E "¼ "c4s
4#GN

; EP¼
c7s@G2

N

;
E"

EP
/"0a

3

"
$

g"0

#$5=2
: (24)

The energy density associated with the analogue cosmo-
logical constant is much smaller than the values computed
from zero-point-energy calculations with a cutoff at the
Planck scale. Indeed, the ratio between these two quantities
is controlled by the diluteness parameter "0a

3.
Final remarks.—Taken at face value, this relatively

simple model displays too many crucial differences with
any realistic theory of gravity to provide conclusive

evidences. However, it displays an alternative path to the
cosmological constant, from the perspective of a micro-
scopic model. The analogue cosmological constant that we
have discussed cannot be computed as the total zero-point
energy of the condensed matter system, even when taking
into account the natural cutoff coming from the knowledge
of the microphysics [9]. In fact the value of " is related
only to the (subleading) part of the zero-point energy
proportional to the quantum depletion of the condensate.
This holds also in a spinor BEC model, since the reasoning
there is absolutely identical. The virtue of the single BEC
model is to display the key physical result without obscur-
ing it with unnecessary mathematical complications, with-
out loss of generality. Interestingly, this result finds some
support from arguments within loop quantum gravity mod-
els [18], suggesting a BCS energy gap as a (conceptually
rather different) origin for the cosmological constant.
The implications for gravity are twofold. First, there

could be no a priori reason why the cosmological constant
should be computed as the zero-point energy of the system.
More properly, its computation must inevitably pass
through the derivation of Einstein equations emerging
from the underlying microscopic system. Second, the en-
ergy scale of " can be several orders of magnitude smaller
than all the other energy scales for the presence of a very
small number, nonperturbative in origin, which cannot be
computed within the framework of an EFT dealing only
with the emergent degrees of freedom (i.e., semiclassical
gravity).
The model discussed in this Letter shows all this explic-

itly: the energy scale of" is here lowered by the diluteness
parameter of the condensate. Furthermore, our analysis
strongly supports a picture where gravity is a collective
phenomenon in a pregeometric theory. In fact, the cosmo-
logical constant puzzle is elegantly solved in those scenar-
ios. From an emergent gravity approach, the low energy
effective action (and its renormalization group flow) is
computed within a framework that has nothing to do with
quantum field theories in curved spacetime. Indeed, if we
interpreted the cosmological constant as a coupling con-
stant controlling some self-interaction of the gravitational
field, rather than as a vacuum energy, it would immediately
follow that the explanation of its value (and of its proper-
ties under renormalization) would naturally sit outside the
domain of semiclassical gravity.
For instance, in a group field theory scenario (a general-

ization to higher dimensions of matrix models for two
dimensional quantum gravity [19]), it is transparent that
the origin of the gravitational coupling constants has noth-
ing to do with ideas like ‘‘vacuum energy’’ or statements
like ‘‘energy gravitates’’, because energy itself is an emer-
gent concept. Rather, the value of " is determined by the
microphysics, and, most importantly, by the procedure to
approach the continuum semiclassical limit. In this respect,
it is conceivable that the very notion of cosmological
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The total grand-canonical energy density is therefore

h¼ h0þh2 ¼
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and it coincides with the well known Lee-Huang-Yang
formula [17] when # ¼ 0.

The number density operator N̂ is analogously expanded
in powers of $̂: N̂ ¼ N0 þ N̂1 þ N̂2. The density of N0 is
!0 ¼ j!0j2, hN̂1i" ¼ 0, and !2 $ hN̂2i" is
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; (12)

where F! satisfies F!ð0Þ ¼ 1 (see Fig. 1, dotted line).
This is the number density of noncondensed atoms (deple-
tion) and it is basically the magnitude of the fluctuations
around the mean field. Note that !0a

3 ' 1, as described
after Eq. (1).

Furthermore, when # ¼ 0, inverting the expression for
total particle density, ! ¼ !0 þ !2, one obtains, up to the

first order in
ffiffiffiffiffiffiffiffi
!a3

p

!0 ¼ !
!
1# 8

3
ffiffiffiffi
"

p
ffiffiffiffiffiffiffiffi
!a3

q %
; (13)

which is the density of condensed atoms in terms of the
total density ! and the scattering length a [17]. In this case,
% ¼ g!0, such that the energy density & (density of
hĤi" ¼ hH þ%N̂i") is

& ¼ hþ%! ¼ g!2

2

!
1þ 128

15
ffiffiffiffi
"

p
ffiffiffiffiffiffiffiffi
!a3

q %
: (14)

This is the well known Lee-Huang-Yang [17] formula for
the ground-state energy in a condensate at zero tempera-
ture. In general, when the Uð1Þ breaking term is small, this
term is expected to be the dominant contribution to the
ground-state energy of the condensate.

Analogue cosmological constant.—When the homoge-
neous condensate background is perturbed by small inho-
mogeneities, the Hamiltonian for the quasiparticles can be
written as (see [11])

Ĥ quasip: ( Mc2s #
@2r2

2M
þM#g: (15)

Ĥquasip: is the nonrelativistic Hamiltonian for particles of
mass M [see Eq. (7)] in a gravitational potential

#gðxÞ ¼
ðg!0 þ 3#Þðg!0 þ #Þ

2#m
uðxÞ (16)

and uðxÞ ¼ ½ð!0ðxÞ=!1Þ # 1*=2, where !1 is the asymp-
totic density of the condensate. Moreover, the dynamics of
the potential #g is described by a Poisson-like equation

!
r2 # 1

L2

%
#g ¼ 4"GN!p þ C$; (17)

which is the equation for a nonrelativistic short-range field
with length scale L and gravitational constant GN:

L¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16"!0a

3
p ; GN ¼ gðg!0þ 3#Þðg!0þ#Þ2

4"@2m#3=2ðg!0Þ1=2
: (18)

Despite the obvious difference between #g and the usual
Newtonian gravitational potential, we insist in calling it the
Newtonian potential because it enters the acoustic metric
exactly as the Newtonian potential enters the metric tensor
in the Newtonian limit of GR. The appearance of a short-
range interaction in Eq. (17) is an artifact of the model. In
[13] it has been shown how to obtain a long range analogue
gravitational potential in a spinor BEC. However, the
reasoning is identical in all the other relevant aspects,
and the key result is unchanged.
The source term in Eq. (17) contains both the contribu-

tion of real phonons (playing the role of matter)

!p ¼ M!0½ðh$̂y$̂i' # h$̂y$̂i"Þ
þ 1

2 Reðh$̂ $̂i' # h$̂ $̂i"Þ*; (19)

where j'i is some state of real phonons, as well as a
cosmological constant like term (present even in the ab-
sence of phonons/matter)

C$ ¼ 2g!0ðg!0 þ 3#Þðg!0 þ #Þ@2#
+ Re

!
h$̂y$̂i" þ 1

2
h$̂ $̂i"

%
: (20)

Note that the source term in the correct weak field approxi-
mation of Einstein equations is 4"GNð!þ 3p=c2Þ. For
standard nonrelativistic matter, p=c2 is usually negligible
with respect to !. However, it cannot be neglected for the
cosmological constant, since p$=c

2 ¼ #!$. As a conse-
quence C$ ¼ #2c2s$, where $ would be the GR cosmo-
logical constant. From Eq. (12) and evaluating
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FIG. 1. Fh [dashed line, Eq. (10)], F! [dotted line, Eq. (12)],
F$$ [dot-dashed line, Eq. (21)], and F$ [solid line, Eq. (22)].
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where F!!ð0Þ ¼ 1 (see Fig. 1, dot-dashed line), we obtain

" ¼ $ 20mg"0ðg"0 þ 3$Þ
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where F" ¼ ð2F" þ 3F!!Þ=5 (see Fig. 1, solid line).
Let us now compare the value of " either with the

ground-state grand-canonical energy density h [Eq. (11)],
which in [9] was suggested as the correct vacuum energy
corresponding to the cosmological constant, or with the
ground-state energy density % of Eq. (14). Evidently, "
does not correspond to either of them: even when taking
into account the correct behavior at small scales, the vac-
uum energy computed with the phonon EFT does not lead
to the correct value of the cosmological constant appearing

in Eq. (17). Noticeably, since" is proportional to
ffiffiffiffiffiffiffiffiffiffi
"0a

3
p

, it
can even be arbitrarily smaller both than h and than %, if the
condensate is very dilute. Furthermore, " is proportional
only to the subdominant second order correction of h or %,
which is strictly related to the depletion [see Eq. (12)].

Fundamental scales.—Several scales show up in this
system, in addition to the naive Planck scale computed
by combining @ and the emergent constants GN and cs:

LP ¼
ffiffiffiffiffiffiffiffi@c5s
GN

s
/
"
$

g"0

#$3=4
ð"0a

3Þ$1=4a: (23)

For instance, the Lorentz-violation scale LLV ¼ & /
ð"0a

3Þ$1=2a differs from LP, suggesting that the breaking
of the Lorentz symmetry might be expected at scale much
longer than the Planck length (energy much smaller than
the Planck energy), since the ratio LLV=LP / ð"0a

3Þ$1=4

increases with the diluteness of the condensate.
Note that LLV scales with "0a

3 exactly as the range of
the gravitational force [see Eq. (18)], signaling that this
model is too simple to correctly grasp all the desired
features. However, in more complicated systems [13],
this pathology can be cured, in the presence of suitable
symmetries, leading to long range potentials.

It is instructive to compare the energy density corre-
sponding to " to the Planck energy density:

E "¼ "c4s
4#GN

; EP¼
c7s@G2

N

;
E"

EP
/"0a

3

"
$

g"0

#$5=2
: (24)

The energy density associated with the analogue cosmo-
logical constant is much smaller than the values computed
from zero-point-energy calculations with a cutoff at the
Planck scale. Indeed, the ratio between these two quantities
is controlled by the diluteness parameter "0a

3.
Final remarks.—Taken at face value, this relatively

simple model displays too many crucial differences with
any realistic theory of gravity to provide conclusive

evidences. However, it displays an alternative path to the
cosmological constant, from the perspective of a micro-
scopic model. The analogue cosmological constant that we
have discussed cannot be computed as the total zero-point
energy of the condensed matter system, even when taking
into account the natural cutoff coming from the knowledge
of the microphysics [9]. In fact the value of " is related
only to the (subleading) part of the zero-point energy
proportional to the quantum depletion of the condensate.
This holds also in a spinor BEC model, since the reasoning
there is absolutely identical. The virtue of the single BEC
model is to display the key physical result without obscur-
ing it with unnecessary mathematical complications, with-
out loss of generality. Interestingly, this result finds some
support from arguments within loop quantum gravity mod-
els [18], suggesting a BCS energy gap as a (conceptually
rather different) origin for the cosmological constant.
The implications for gravity are twofold. First, there

could be no a priori reason why the cosmological constant
should be computed as the zero-point energy of the system.
More properly, its computation must inevitably pass
through the derivation of Einstein equations emerging
from the underlying microscopic system. Second, the en-
ergy scale of " can be several orders of magnitude smaller
than all the other energy scales for the presence of a very
small number, nonperturbative in origin, which cannot be
computed within the framework of an EFT dealing only
with the emergent degrees of freedom (i.e., semiclassical
gravity).
The model discussed in this Letter shows all this explic-

itly: the energy scale of" is here lowered by the diluteness
parameter of the condensate. Furthermore, our analysis
strongly supports a picture where gravity is a collective
phenomenon in a pregeometric theory. In fact, the cosmo-
logical constant puzzle is elegantly solved in those scenar-
ios. From an emergent gravity approach, the low energy
effective action (and its renormalization group flow) is
computed within a framework that has nothing to do with
quantum field theories in curved spacetime. Indeed, if we
interpreted the cosmological constant as a coupling con-
stant controlling some self-interaction of the gravitational
field, rather than as a vacuum energy, it would immediately
follow that the explanation of its value (and of its proper-
ties under renormalization) would naturally sit outside the
domain of semiclassical gravity.
For instance, in a group field theory scenario (a general-

ization to higher dimensions of matrix models for two
dimensional quantum gravity [19]), it is transparent that
the origin of the gravitational coupling constants has noth-
ing to do with ideas like ‘‘vacuum energy’’ or statements
like ‘‘energy gravitates’’, because energy itself is an emer-
gent concept. Rather, the value of " is determined by the
microphysics, and, most importantly, by the procedure to
approach the continuum semiclassical limit. In this respect,
it is conceivable that the very notion of cosmological
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The total grand-canonical energy density is therefore

h¼ h0þh2 ¼
g!0

2

2

!
#1þ 128

15
ffiffiffiffi
"

p
ffiffiffiffiffiffiffiffiffiffi
!0a

3
q

Fh

#
#

g!0

$%
(11)

and it coincides with the well known Lee-Huang-Yang
formula [17] when # ¼ 0.

The number density operator N̂ is analogously expanded
in powers of $̂: N̂ ¼ N0 þ N̂1 þ N̂2. The density of N0 is
!0 ¼ j!0j2, hN̂1i" ¼ 0, and !2 $ hN̂2i" is
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; (12)

where F! satisfies F!ð0Þ ¼ 1 (see Fig. 1, dotted line).
This is the number density of noncondensed atoms (deple-
tion) and it is basically the magnitude of the fluctuations
around the mean field. Note that !0a

3 ' 1, as described
after Eq. (1).

Furthermore, when # ¼ 0, inverting the expression for
total particle density, ! ¼ !0 þ !2, one obtains, up to the

first order in
ffiffiffiffiffiffiffiffi
!a3

p

!0 ¼ !
!
1# 8

3
ffiffiffiffi
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p
ffiffiffiffiffiffiffiffi
!a3

q %
; (13)

which is the density of condensed atoms in terms of the
total density ! and the scattering length a [17]. In this case,
% ¼ g!0, such that the energy density & (density of
hĤi" ¼ hH þ%N̂i") is

& ¼ hþ%! ¼ g!2

2

!
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15
ffiffiffiffi
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p
ffiffiffiffiffiffiffiffi
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q %
: (14)

This is the well known Lee-Huang-Yang [17] formula for
the ground-state energy in a condensate at zero tempera-
ture. In general, when the Uð1Þ breaking term is small, this
term is expected to be the dominant contribution to the
ground-state energy of the condensate.

Analogue cosmological constant.—When the homoge-
neous condensate background is perturbed by small inho-
mogeneities, the Hamiltonian for the quasiparticles can be
written as (see [11])

Ĥ quasip: ( Mc2s #
@2r2

2M
þM#g: (15)

Ĥquasip: is the nonrelativistic Hamiltonian for particles of
mass M [see Eq. (7)] in a gravitational potential

#gðxÞ ¼
ðg!0 þ 3#Þðg!0 þ #Þ

2#m
uðxÞ (16)

and uðxÞ ¼ ½ð!0ðxÞ=!1Þ # 1*=2, where !1 is the asymp-
totic density of the condensate. Moreover, the dynamics of
the potential #g is described by a Poisson-like equation

!
r2 # 1

L2

%
#g ¼ 4"GN!p þ C$; (17)

which is the equation for a nonrelativistic short-range field
with length scale L and gravitational constant GN:

L¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16"!0a

3
p ; GN ¼ gðg!0þ 3#Þðg!0þ#Þ2

4"@2m#3=2ðg!0Þ1=2
: (18)

Despite the obvious difference between #g and the usual
Newtonian gravitational potential, we insist in calling it the
Newtonian potential because it enters the acoustic metric
exactly as the Newtonian potential enters the metric tensor
in the Newtonian limit of GR. The appearance of a short-
range interaction in Eq. (17) is an artifact of the model. In
[13] it has been shown how to obtain a long range analogue
gravitational potential in a spinor BEC. However, the
reasoning is identical in all the other relevant aspects,
and the key result is unchanged.
The source term in Eq. (17) contains both the contribu-

tion of real phonons (playing the role of matter)

!p ¼ M!0½ðh$̂y$̂i' # h$̂y$̂i"Þ
þ 1

2 Reðh$̂ $̂i' # h$̂ $̂i"Þ*; (19)

where j'i is some state of real phonons, as well as a
cosmological constant like term (present even in the ab-
sence of phonons/matter)

C$ ¼ 2g!0ðg!0 þ 3#Þðg!0 þ #Þ@2#
+ Re

!
h$̂y$̂i" þ 1

2
h$̂ $̂i"

%
: (20)

Note that the source term in the correct weak field approxi-
mation of Einstein equations is 4"GNð!þ 3p=c2Þ. For
standard nonrelativistic matter, p=c2 is usually negligible
with respect to !. However, it cannot be neglected for the
cosmological constant, since p$=c

2 ¼ #!$. As a conse-
quence C$ ¼ #2c2s$, where $ would be the GR cosmo-
logical constant. From Eq. (12) and evaluating
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FIG. 1. Fh [dashed line, Eq. (10)], F! [dotted line, Eq. (12)],
F$$ [dot-dashed line, Eq. (21)], and F$ [solid line, Eq. (22)].
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where F!!ð0Þ ¼ 1 (see Fig. 1, dot-dashed line), we obtain
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where F" ¼ ð2F" þ 3F!!Þ=5 (see Fig. 1, solid line).
Let us now compare the value of " either with the

ground-state grand-canonical energy density h [Eq. (11)],
which in [9] was suggested as the correct vacuum energy
corresponding to the cosmological constant, or with the
ground-state energy density % of Eq. (14). Evidently, "
does not correspond to either of them: even when taking
into account the correct behavior at small scales, the vac-
uum energy computed with the phonon EFT does not lead
to the correct value of the cosmological constant appearing

in Eq. (17). Noticeably, since" is proportional to
ffiffiffiffiffiffiffiffiffiffi
"0a

3
p

, it
can even be arbitrarily smaller both than h and than %, if the
condensate is very dilute. Furthermore, " is proportional
only to the subdominant second order correction of h or %,
which is strictly related to the depletion [see Eq. (12)].

Fundamental scales.—Several scales show up in this
system, in addition to the naive Planck scale computed
by combining @ and the emergent constants GN and cs:

LP ¼
ffiffiffiffiffiffiffiffi@c5s
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s
/
"
$
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#$3=4
ð"0a

3Þ$1=4a: (23)

For instance, the Lorentz-violation scale LLV ¼ & /
ð"0a

3Þ$1=2a differs from LP, suggesting that the breaking
of the Lorentz symmetry might be expected at scale much
longer than the Planck length (energy much smaller than
the Planck energy), since the ratio LLV=LP / ð"0a

3Þ$1=4

increases with the diluteness of the condensate.
Note that LLV scales with "0a

3 exactly as the range of
the gravitational force [see Eq. (18)], signaling that this
model is too simple to correctly grasp all the desired
features. However, in more complicated systems [13],
this pathology can be cured, in the presence of suitable
symmetries, leading to long range potentials.

It is instructive to compare the energy density corre-
sponding to " to the Planck energy density:

E "¼ "c4s
4#GN

; EP¼
c7s@G2

N

;
E"

EP
/"0a

3

"
$

g"0

#$5=2
: (24)

The energy density associated with the analogue cosmo-
logical constant is much smaller than the values computed
from zero-point-energy calculations with a cutoff at the
Planck scale. Indeed, the ratio between these two quantities
is controlled by the diluteness parameter "0a

3.
Final remarks.—Taken at face value, this relatively

simple model displays too many crucial differences with
any realistic theory of gravity to provide conclusive

evidences. However, it displays an alternative path to the
cosmological constant, from the perspective of a micro-
scopic model. The analogue cosmological constant that we
have discussed cannot be computed as the total zero-point
energy of the condensed matter system, even when taking
into account the natural cutoff coming from the knowledge
of the microphysics [9]. In fact the value of " is related
only to the (subleading) part of the zero-point energy
proportional to the quantum depletion of the condensate.
This holds also in a spinor BEC model, since the reasoning
there is absolutely identical. The virtue of the single BEC
model is to display the key physical result without obscur-
ing it with unnecessary mathematical complications, with-
out loss of generality. Interestingly, this result finds some
support from arguments within loop quantum gravity mod-
els [18], suggesting a BCS energy gap as a (conceptually
rather different) origin for the cosmological constant.
The implications for gravity are twofold. First, there

could be no a priori reason why the cosmological constant
should be computed as the zero-point energy of the system.
More properly, its computation must inevitably pass
through the derivation of Einstein equations emerging
from the underlying microscopic system. Second, the en-
ergy scale of " can be several orders of magnitude smaller
than all the other energy scales for the presence of a very
small number, nonperturbative in origin, which cannot be
computed within the framework of an EFT dealing only
with the emergent degrees of freedom (i.e., semiclassical
gravity).
The model discussed in this Letter shows all this explic-

itly: the energy scale of" is here lowered by the diluteness
parameter of the condensate. Furthermore, our analysis
strongly supports a picture where gravity is a collective
phenomenon in a pregeometric theory. In fact, the cosmo-
logical constant puzzle is elegantly solved in those scenar-
ios. From an emergent gravity approach, the low energy
effective action (and its renormalization group flow) is
computed within a framework that has nothing to do with
quantum field theories in curved spacetime. Indeed, if we
interpreted the cosmological constant as a coupling con-
stant controlling some self-interaction of the gravitational
field, rather than as a vacuum energy, it would immediately
follow that the explanation of its value (and of its proper-
ties under renormalization) would naturally sit outside the
domain of semiclassical gravity.
For instance, in a group field theory scenario (a general-

ization to higher dimensions of matrix models for two
dimensional quantum gravity [19]), it is transparent that
the origin of the gravitational coupling constants has noth-
ing to do with ideas like ‘‘vacuum energy’’ or statements
like ‘‘energy gravitates’’, because energy itself is an emer-
gent concept. Rather, the value of " is determined by the
microphysics, and, most importantly, by the procedure to
approach the continuum semiclassical limit. In this respect,
it is conceivable that the very notion of cosmological
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The total grand-canonical energy density is therefore

h¼ h0þh2 ¼
g!0
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p
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3
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Fh

#
#

g!0

$%
(11)

and it coincides with the well known Lee-Huang-Yang
formula [17] when # ¼ 0.

The number density operator N̂ is analogously expanded
in powers of $̂: N̂ ¼ N0 þ N̂1 þ N̂2. The density of N0 is
!0 ¼ j!0j2, hN̂1i" ¼ 0, and !2 $ hN̂2i" is

!2 ¼ !0h$̂y$̂i" ¼
Z d3k

ð2"Þ3 jvkj2

¼ 8!0

3
ffiffiffiffi
"

p
ffiffiffiffiffiffiffiffiffiffi
!0a

3
q

F!

#
#

g!0

$
; (12)

where F! satisfies F!ð0Þ ¼ 1 (see Fig. 1, dotted line).
This is the number density of noncondensed atoms (deple-
tion) and it is basically the magnitude of the fluctuations
around the mean field. Note that !0a

3 ' 1, as described
after Eq. (1).

Furthermore, when # ¼ 0, inverting the expression for
total particle density, ! ¼ !0 þ !2, one obtains, up to the

first order in
ffiffiffiffiffiffiffiffi
!a3

p

!0 ¼ !
!
1# 8

3
ffiffiffiffi
"

p
ffiffiffiffiffiffiffiffi
!a3

q %
; (13)

which is the density of condensed atoms in terms of the
total density ! and the scattering length a [17]. In this case,
% ¼ g!0, such that the energy density & (density of
hĤi" ¼ hH þ%N̂i") is

& ¼ hþ%! ¼ g!2

2

!
1þ 128

15
ffiffiffiffi
"

p
ffiffiffiffiffiffiffiffi
!a3

q %
: (14)

This is the well known Lee-Huang-Yang [17] formula for
the ground-state energy in a condensate at zero tempera-
ture. In general, when the Uð1Þ breaking term is small, this
term is expected to be the dominant contribution to the
ground-state energy of the condensate.

Analogue cosmological constant.—When the homoge-
neous condensate background is perturbed by small inho-
mogeneities, the Hamiltonian for the quasiparticles can be
written as (see [11])

Ĥ quasip: ( Mc2s #
@2r2

2M
þM#g: (15)

Ĥquasip: is the nonrelativistic Hamiltonian for particles of
mass M [see Eq. (7)] in a gravitational potential

#gðxÞ ¼
ðg!0 þ 3#Þðg!0 þ #Þ

2#m
uðxÞ (16)

and uðxÞ ¼ ½ð!0ðxÞ=!1Þ # 1*=2, where !1 is the asymp-
totic density of the condensate. Moreover, the dynamics of
the potential #g is described by a Poisson-like equation

!
r2 # 1

L2

%
#g ¼ 4"GN!p þ C$; (17)

which is the equation for a nonrelativistic short-range field
with length scale L and gravitational constant GN:

L¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16"!0a

3
p ; GN ¼ gðg!0þ 3#Þðg!0þ#Þ2

4"@2m#3=2ðg!0Þ1=2
: (18)

Despite the obvious difference between #g and the usual
Newtonian gravitational potential, we insist in calling it the
Newtonian potential because it enters the acoustic metric
exactly as the Newtonian potential enters the metric tensor
in the Newtonian limit of GR. The appearance of a short-
range interaction in Eq. (17) is an artifact of the model. In
[13] it has been shown how to obtain a long range analogue
gravitational potential in a spinor BEC. However, the
reasoning is identical in all the other relevant aspects,
and the key result is unchanged.
The source term in Eq. (17) contains both the contribu-

tion of real phonons (playing the role of matter)

!p ¼ M!0½ðh$̂y$̂i' # h$̂y$̂i"Þ
þ 1

2 Reðh$̂ $̂i' # h$̂ $̂i"Þ*; (19)

where j'i is some state of real phonons, as well as a
cosmological constant like term (present even in the ab-
sence of phonons/matter)

C$ ¼ 2g!0ðg!0 þ 3#Þðg!0 þ #Þ@2#
+ Re

!
h$̂y$̂i" þ 1

2
h$̂ $̂i"

%
: (20)

Note that the source term in the correct weak field approxi-
mation of Einstein equations is 4"GNð!þ 3p=c2Þ. For
standard nonrelativistic matter, p=c2 is usually negligible
with respect to !. However, it cannot be neglected for the
cosmological constant, since p$=c

2 ¼ #!$. As a conse-
quence C$ ¼ #2c2s$, where $ would be the GR cosmo-
logical constant. From Eq. (12) and evaluating
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FIG. 1. Fh [dashed line, Eq. (10)], F! [dotted line, Eq. (12)],
F$$ [dot-dashed line, Eq. (21)], and F$ [solid line, Eq. (22)].
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Can we go beyond non-relativist Gravity?



Relativistic BEC and emergent LLI

Of course the BEC model is not Lorentz invariant at all scales as it is fundamentally non 
relativistic. 

What happens if one considers a BEC of Relativistic atoms?

New J.Phys. 12 (2010) 095012 
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Of course the BEC model is not Lorentz invariant at all scales as it is fundamentally non 
relativistic. 

What happens if one considers a BEC of Relativistic atoms?

Lesson from rBEC: one can have IR and UV relativistic physics but nonetheless 
Lorentz violation at intermediate scales.  

You have to understand the classical/continuous limit to be sure about LI.

New J.Phys. 12 (2010) 095012 



Emergent gravity in relativistic BEC

From the form of the e↵ective potential it is clear that at a given � if µ > m then the system

is in the broken U(1) phase and the condensate has formed. It can be shown [23] that this

phase transition is second order and the critical temperature is given by

Tc =
3

�

�
µ2

�m2
�
. (10)

Later we shall be interested in the massless limit for which the critical temperature is given

by Tc = 3µ2/�. Thus, in the massless case, a non-zero chemical potential is necessary in

order for the U(1) symmetry to be broken and the condensate to be formed at a finite

non-zero critical temperature.

III. RELATIVISTIC BEC AS AN ANALOGUE GRAVITY MODEL

A. Dynamics of the condensate: Gross–Pitævskii equation

The e↵ective Lagrangian of eq. (8) can be rewritten in terms of the complex valued fields

as

Le↵ = �⌘µ⌫@µ�
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The equation of motion for � is obtained by variation with respect to �⇤ and we get,
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◆
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We can factor out explicitly the dependence on the chemical potential and write the field as

� = 'eiµt. (13)

This gets rid of the µ dependent terms and we get

�
⇤�m2

�
'� 2�|'|2' = 0. (14)

Let us now decompose ' as ' = '0(1 +  ), where '0 is the condensed part of the field

(h'i = '0), which we take to be real, and  is the fractional fluctuation. Reality of '0

amounts to considering the condensate at rest. Note that  is complex and h i = 0. It

can be written in terms of its real and imaginary parts  =  1 + i 2. Substituting this

6

Let us again decompose φ as φ = φ0(1 + ψ), where φ0 is the condensed part of the field 
(⟨φ⟩ = φ0) and ψ is the fractional fluctuation which can be written in terms of its real 

and imaginary parts ψ = ψ1 + iψ2

gμν =φ2
0ημν

Crucial point: in some suitable regime (neutral background field, cs=c) you can 
completely mask the lorentz breaking. In this regime one finds

decomposition in eq. (14) and taking the expectation value we get the equation of motion

for the condensate

(⇤�m2)'0 � 2�'3
0 � 2�'3

0

⇥
3 h 2

1i+ h 2
2i
⇤
= 0, (15)

where we have assumed that the cross-correlation of the fluctuations vanish, i.e., h 1 2i = 0.

This is justified a posteriori by equations (19), which show that  1 and  2 do not interact

with each other at the order of approximation we are working. Eq. (15) determines the

dynamics of the condensate taking into account the backreaction of the fluctuations. It is

the relativistic generalisation of the Gross–Pitævskii equation [27].

B. Dynamics of perturbations: acoustic metric

Having determined the dynamics of the condensate we now want to calculate the equa-

tions of motion for the perturbations themselves.

To this end, we insert ' = '0(1 +  1 + i 2) in eq. (14) and expand it to linear order in

 ’s. Using the Gross–Pitævskii equation to that order and separating the real and imaginary

parts we get the equation of motion for  1 and  2,
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0 1 = 0, (16a)

⇤ 2 + 2⌘µ⌫@µ(ln'0)@⌫ 2 = 0. (16b)

We therefore see that  2 is the massless mode, which is the Goldstone boson of the broken

U(1) symmetry, while  1 is the massive mode with mass 2'0

p
�. We now define a “acoustic”

metric, which is conformal to the background Minkowski,

gµ⌫ = '2
0 ⌘µ⌫ . (17)

The relation between the d’Alembertian operators for gµ⌫ and ⌘µ⌫ is given by,
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Equations (16) can be written in terms of the d’Alembertian of gµ⌫ as

⇤g 1 � 4� 1 = 0, (19a)

⇤g 2 = 0. (19b)
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to relativity groups with two limit speeds (cs in the IR limit, c in the UV one) and the

relativity group remain always the same at any energy. This is hence an example of a

discrete model of emergent space-time where the low and high energy regime share the same

Lorentz invariance. This point is not trivial since, as far as we know, there is no toy model of

emergent spacetime in which Lorentz violation is screened in this way at the lowest order of

perturbation theory. Our case show that this can be possible at the price of some non-trivial

conditions on the background system.

V. EMERGENT GENERAL COVARIANCE

In the last section we saw that the fluctuations of the condensate, also called the quasi-

particle excitations, are oblivious of the flat background metric. They instead experience a

curved geometry dictated by the condensate and the background. On the other hand, they

back-react on the condensate through the relativistic generalization of the Gross-Pitaevskii

equation (15). It is natural to ask if it is possible to have a geometric description of the

dynamics of the condensate too?

The Ricci tensor of the acoustic metric (17) is calculated to be

Rg = �6
⇤'0

'3
0

(21)

Dividing the relativistic Gross-Pitaevskii equation by '3
0, eq. (15) can be written as

Rg �
m2

�2
+ ⇤ = hTqpi, (22)

where ⇤ := 12� is the “cosmological constant” and we have defined hTqpi := �12� [ 3 h 2
1i + h 2

2i ],

the “qp” subscript here stands for “quasiparticle” as this quantity is clearly dependent on

the presence of the excitation of our condensate.

This equation is clearly reminiscent of the Einstein–Fokker equation describing Nordström

gravity [29, 30].

R + ⇤ = 24⇡GN T, (23)

where R and T are respectively the Ricci scalar and the trace of the stress energy tensor

of matter. Unfortunately, the gravitational analogy of our equation is spoiled by the mass

term. Also we shall need to show that the above defined Tqp is indeed the trace of the SET of
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For m->0 (BEC still allowed by non zero 
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where we will take into account only the quadratic part of the action in the perturbations,

since the linear one it can be show to give no contribution using the background and pertur-
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Given this last expression one sees that the RHS of eq. (25) is given by 6G
c3 hT i and hence

our emergent Nordström gravity equation will be exactly of the form (23) if one defines
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N = G/4⇡ = ~c5/(4⇡µ2). This corresponds to an emergent analogue Planck scale MPl =
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p
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B. Cosmological Constant

A dedicated discussion is deserved by the cosmological constant term that arise in this

model due to the ��4 type of interaction. First of all is worth notice that other interaction
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11MPl = µ
p
4⇡/c2

So the cosmological constant appear to be proportional to the Plank mass squared. It is

anyway true that in the definition of the cosmological constant appears also the coupling

constant � that can be chosen to be small, meaning that we are looking at a weakly inter-

acting system. This can maybe give us the separation of scales that one could wish to find

and that was found in [20] due, in that case, to matter vacuum polarization e↵ects.

In our case the matter vacuum fluctuations contribution to the cosmological constant will

be given by
G

c3
⇤
⇥
3h 2

1i+ h 2
2i
⇤
, (30)

so that the full cosmological constant will be

⇤R ⌘ ⇤

✓
1 +

4⇡~
c2M2

Pl

⇥
3h 2

1i+ h 2
2i
⇤◆

. (31)

Note that the contribution of the vacuum fluctuations appears to be positive and not negative

as one could wish in order to diminish the “bare” cosmological constant.

Nonetheless, as in [20], is worth to analyse the ratio between the energy density associated

to the bare cosmological constant and the Planck energy density of this model. The former

is given by

✏⇤ /

✓
⇤c4

GN

◆

and the latter by

✏P /
c7

~G2
N

.

Then the ratio is given by
✏⇤
✏P

'
�~2c2

µ2
(32)

From this last expression is clear that this ratio is pretty small since it is suppressed by the

small ratio �~2/µ2.

VI. SUMMARY AND OUTLOOK

In this paper we have studied the relativistic Bose-Einstein condensation in a massless

complex scalar field theory with a quartic coupling. Below the critical temperature the U(1)

symmetry is broken and the charge resides in the non-zero value of the expectation value

of the field– the condensate. We showed that the dynamics of the condensate is described

by the relativistic generalization of the Gross-Pitaevskii equation given in eq. (15). The
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The “bare” Λ is in this case small and positive but it will generically receive a (negative) 
correction from the fraction of atoms in the non-condensate phase, the depletion factor. 

small

Nordström gravity (1913) is the only other theory in 3+1 dimensions which satisfies the Strong 
Equivalence principle.  

However, it is not truly background independent (fixed Minkowski causal structure)
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