
								Renate	Loll		
																				Radboud	University,	Nijmegen

Quantum	Gravity		
					made	simple,		
									but	not	too	simple

Pisa,	24	Oct		2019



Preview
The	context	of	my	talk	is	the	search	for	a	theory	of	quantum	gravity	
beyond	perturba4on	theory	and	the	ongoing	research	program	of	
Causal	Dynamical	TriangulaIons	(CDT)	addressing	the	problem.	My	
main	message	is	that	the	dynamical	character	of	space2me	geometry	
and	the	absence	of	an	a	priori	fixed	background,	combined	with	
otherwise	standard	tools	from	QFT,	have	led	and	are	sIll	leading	to	
completely	new	insights	on	the	possible	nature	of	quantum	gravity.		
		
My	presentaIon	will	address	
!• 	moIvaIon	and	context	(is	it	all	“speculaIve	physics”?)	
!• 	laUce	gravity	and	CDT	in	a	nutshell	(“simple	but	not	too	simple”)	
!• 	incorporaIng	coordinate	invariance	and	causal	structure		
		• 	quantum	signatures	and	recovery/emergence	of	classicality		



Life	in	the	Century	of	Gravity
• 	urgent:	complete	our	quantum	gravity	theories	to	make	reliable	
predicIons,	minimizing	free	parameters	and	ad	hoc	assumpIons			
!• 	my	route:	tackle	quantum	gravity	and	geometry	directly	in	a	non-
perturbaIve,	Planckian	regime	(no	appeal	to	duality/dicIonaries)	

!• 	the	beauty	of	classical	GR:	
				“theory	of	spaceIme”,	captured	
					by	its	curvature	properIes	
!• 	given	the	central	role	of	curvature		
					classically,	is	it	also	true	that			
!
							nonperturb.	quantum	gravity	=	theory	of	quantum	curvature?	
!
• 	It	is	unclear	a	priori	whether	one	can	make	much	sense	of	such	a	
proposiIon.	However,	we	have	recently	demonstrated	how	one	may	
define	and	measure	quantum	Ricci	curvature	in	quantum	gravity.

(©User:Johnstone,	Wikipedia) (©R.	Hurt/Caltech-JPL/EPA)
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Some	ques@ons	for	quantum	gravity

triangulated	model	of	quantum	space

•		What	is	the	quantum	microstructure	of	
spaceIme?	Can	we	use	it	to	explain	the	observed	
large-scale	de	Siier	nature	of	our	universe,	or	
perhaps	the	origin	of	dark	energy?	

now

Big	Bang 13.7	bn	years	ago	

Ime

•		What	was	the	quantum	behaviour	of	
spaceIme	in	the	“even	earlier”	universe?	
•		Are	space	and	Ime,	and	principles	like	
causality	or	locality	fundamental	or	merely	
emergent	on	macroscopic	scales?

•		Can	we	derive	gravitaIonal	airacIon	from	
first-principles	quantum	dynamics	@	ℓPl?	



Going	beyond	classical	and	perturba@ve	gravity
classical:	gμν(x)	≈	ημν	,	i.e.	flat	Minkowski	metric	on	
sufficiently	small	scales	(gμν	is	a	Lorentzian	metric)	
!classical,	linearized:	gμν(x)	=	ημν	+	hμν(x),	|hμν|≪	1,	
e.g.	gravitational	waves	far	away	from	source		
																																																									̂																					 		̂	perturbaIve	quantum	gravity:	gμν(x)	=	ημν	+	hμν(x),	
but	this	theory	is	non-renormalizable,	i.e.	not	useful	
near	the	Planck	scale	ℓPl.	
!nonperturbaIve	quantum	gravity:	what	becomes	of	
spaceIme	and	the	degrees	of	freedom	of	gravity	at	
ℓPl	?:	quantum	foam,	worm	holes?	Unlike	in	d=2,	
nonperturbaIve	systems	of	quantum	geometry	in	
higher	dimensions	are	largely	uncharted	territory.	
Our	classical	geometric	intuiIon	is	not	a	good	
guide.	Unexpected	things	can	and	do	happen!

zooming	in	on	a	piece	
of	empty	spaceIme

Which	aspects	of	class.	geometry/gravity	survive?	How	to	explore	this	regime?

nonperturbaIve,	Planckian

semiclassical

classical



•	Classically,	smooth	manifolds	(M,gμν)	
provide	powerful	and	extremely	
convenient	models	of	spacetime.	
!•	geometric	properIes	encoded	in	the	

Riemann	curvature	tensor	Rκλμν(x)
differenIable	manifold	M	and	a	coordinate	chart	

!•	However,	this	descripIon	comes	with	an	enormous	redundancy,	
the	“freedom	to	choose	coordinates”	without	affecIng	the	physics.		
!•		The	“gauge”	group	of	GR	is	the	infinite-dim.	group	of	coordinate	

transformaIons	(diffeomorphisms)	on	M.	The	key	challenges	of	
quantum	gravity	are	how	to	implement	this	symmetry	and	describe	
physics	in	terms	of	coordinate-invariant	quantum	observables.	
!•		In	terms	of	implemenIng	local	gauge	symmetry,	CDT	for	quantum	

gravity	is	the	analogue	of	laUce	gauge	FT	for	QCD,	but	even	beier!	

GeFng	rid	of	local	“gauge”	degrees	of	freedom	



PuFng	gravity	on	the	laFce,	but	correctly	
• 	following	the	extremely	successful	example	of	QCD,	we	explore	the	
nonperturbaIve	regime	quanItaIvely	by	“laFce	quantum	gravity”			
!• 	laUce	gauge	field	configuraIons	à	la	Wilson	(PRD	10	(1974)	2445)	
are	replaced	by	piecewise	flat	geometries	(triangulaIons)	à	la	
Regge	(Nuovo	Cim.	19	(1961)	558)		

!
!
!
!
!
!
!• 	modern	implementaIon:	Causal	Dynamical	Triangula@ons	(CDT),	
a	nonperturbaIve,	background-independent,	manifestly	
coordinate-invariant	path	integral,	regularized	on	dynamical	laUces		

!• N.B.:	nontrivial	scaling	limit	needed,	no	“fundamental	discreteness”	

(©
	G
.	B

er
gn
er
,	J
en

a)

triangulated	model	of	quantum	space



CDT	is	‘as	simple	as	possible,	but	not	simpler’,	with	nontrivial	results.	
!In	absence	of	experiments	and	observaIons	to	guide	us,	Monte	Carlo	
simulaIons	help	to	‘keep	us	honest’	and	produce	quanItaIve	results.	
!As	one	would	expect	in	standard	QFT,	the	theory	has	divergences	in	
the	limit	as	the	UV	regulator	is	removed,	which	must	be	renormalized.	

CDT	Quantum	Gravity
is	a	promising	nonperturb.	candidate	theory	of	quantum	gravity	that	
					(a)	uses	a	minimalist	set	of	ingredients	and	prior	assumpIons,		
			(b)	uses	only	standard	tools	from	QFT,	stat	mech,	criIcal	systems,				
			(c)	comes	with	a	quanItaIve	reality	check:	computaIonal	tools,			
			(d)	gets	a	few	things	right	previous	approaches	did	not.

REVIEWS:	J.	Ambjørn,	A.	Görlich,	J.	Jurkiewicz	&	RL,	Phys.	Rep.	519	
(2012)	127	[arXiv:	1203.3591]);	NEW:	RL,	arXiv:1905.08669

N.B.:	interes@ng	Pisa	contribu@ons	from	M.	D’Elia	and	collaborators



Can	we	really	describe	Planckian	physics?
In	the	absence	of	experimental	verificaIon,	isn’t	nonperturbaIve	
quantum	gravity	one	giant	free	lunch	at	the	Planck	scale?

•		No,	because	the	classical	limit	(GR)	must	come	out	right!		
!•		In	other	approaches,	classical	limit	is	not	known/computable.	
!•		not	so	in	Causal	Dynamical	Triangula@ons!	
!•		It	uses	Iny,	4D	triangular	building																																																			

																	blocks	to	approximate	and		
																	compute	a	quantum	super-	
															posiIon	of	curved	spaceImes.		
!•		To	obtain	results	compaIble	with	the																																							
classical	theory,	the	gluing	rules	must																																									
implement	a	well-defined	causal																																																				
(light	cone)	structure.	Causal	structure	and	‘@me’	do	not	emerge.

part	of	a	causal	triangulaIon	in	d=3



cosmological	constantNewton’s	constant

My	magic	wand:	Feynman	path	integral,	
!“Sum	over	Histories”

•		quantum	superposiIon	applied	to	spaceIme	itself	
•		each	“path”	is	a	four-dimensional,	curved	spaceIme	geometry	g,	
which	can	be	thought	of	as	a	three-dimensional,	spaIal	geometry	
developing	in	Ime	
•		the	challenge	is	to	make	the	path	integral	Z(GN,Λ)	into	a	well-
defined,	computable	quantity;	this	is	exactly	what	CDT	does	

Z(GN ,⇤) =

Z

spacetimes
g2G

Dg eiS
EH[g]

Einstein-Hilbert	acIon



The	Emergence	of	Classicality	from		
Causal	Dynamical	Triangula@ons	(CDT)

From	pure	quantum	excitaIons,	CDT	generates	a	
spaceIme	with	semiclassical	properIes	dyna-
mically,	without	using	a	background	metric.	

!•		crucial	role	of	causal	structure	
•		nontrivial	phase	structure,	with	“classical”	phases	
•		second-order	phase	transiIons	(unique)	
•		scale-dependent	spaceIme	dimension	(2	→	4)	
•		applicability	of	renormalizaIon	group	methods

Other	key	results/proper@es:

how	to	obtain	a	macroscopic		
universe	with	a	de	Si:er	shape:

from	a	superposiIon	of	
“wild”	path	integral	histories:

Everything	we	have	learned	about	“quantum		
space@me”	in	CDT	QG	comes	from	measuring		
a	few	quantum	observables.
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Nonperturba@ve	“geometry”	behaves	strangely
Isn’t	it	obvious	that	by	gluing	together	four-dimensional	building	blocks,	
one	will	obtain	a	(quantum)	spaceIme	of	dimension	4?		
!No.	Generically	it	does	not	happen	when	quantum	fluctuaIons	are	large.	
!This	was	only	gradually	understood,	using	computer	“experiments”.	In	DT	
models	prior	to	CDT,	one	of	two	things	happened	to	“quantum	geometry”:

it	polymerized	(small	GNbare),	dH	=	2	 it	crumpled	(large	GNbare),	dH	=	∞

This	degenerate	behaviour	is	generic	for	(Euclidean)	DT	in	dimension	d	>	2.	
Branched	polymers	are	a	generic	finding	of	stat	mech	models	of	QG.	
!
Causal	DT	was	invented	to	cure	this	problem	and	appears	to	do	so!	

Hausdorff	
dimension



Totally	unexpected:	spaceIme	dimension,	a	“pregeometric”	property,	
becomes	dynamical	in	the	presence	of	large	curvature	fluctuaIons.	
!The	absence	of	any	regime	where	the	dimension	at	large	scales	is	equal	
to	4	is	enough	to	rule	out	a	candidate	theory	of	quantum	gravity!	

Dimension	is	not	what	it	used	to	be	…

Besides	the	Hausdorff	dimension,	one	can	also	measure	the	quantum	
geometry’s	spectral	dimension	(by	seUng	up	a	diffusion	process).	
!In	CDT	quantum	gravity,	one	first	observed	the	phenomenon	of	
“dynamical	dimensional	reducIon”,	where	within	measuring	accuracy	the	
spectral	dimension	changes	from	d	=	4	on	large	to	d	=	2	on	short	scales!

“Dimension”	in	nonperturbaIve	quantum	gravity	is	no	longer	fixed			
		a	priori,	but	reflects	a	parIcular	quantum	dynamics.	It	is	not	pre-		
		determined	by	the	dimensionality	of	the	building	blocks	used.	



Summary	&	Outlook
We	live	in	the	“Century	of	Gravity”,	with	Quantum	Gravity	as	an	
outstanding	challenge.		
!NonperturbaIve	quantum	gravity	can	be	studied	in	a	laFce	seUng,	
in	close	analogy	with	laUce	QCD,	but	taking	into	account	the	
dynamical	nature	of	geometry,	as	exemplified	by	CDT.		
!Causal	Dynamical	Triangula@ons	is	a	conceptually	simple	and	
compuIonally	accessible	candidate	theory	of	quantum	gravity,	
which	has	been	making	significant	strides	towards	a	full-fledged	
quantum	theory.						
!It	provides	a	highly	nontrivial	example	of	the	emergence	of	classical	
geometric	properIes,	and	also	exhibits	true	quantum	signatures.	
!We	are	working	hard	on	making	this	candidate	theory	more	
complete,	and	to	eventually	predict	observable	effects.



 Thank you!

Quantum	Gravity		
					made	simple,		
									but	not	too	simple
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Concrete,	interes@ng	open	ques@ons

Crucial	(for	any	approach	to	quantum	gravity):	find	and	measure	
further	gauge-invariant	quantum	observables,	including	the	new	
quantum	Ricci	curvature.		
!ImplemenIng	these	in	CDT	quantum	gravity,	

!➡	understand	the	physical	properIes	of	the	dynamically	generated	
vacuum	state,	and	quanIfy	how	far	its	local	geometric	properIes	are	
from	those	of	a	(semiclassical)	de	Siier	space,			
!➡	analyze	the	renormalizaIon	group	flows	(‘lines	of	constant	physics’)	
near	2nd-order	phase	transiIons,	looking	for	ultraviolet	fixed	points,	
!➡	quantum	gravity’s	holy	grail:	derive	a	true	quantum	effect	that	has	

observable	(e.g.	astrophysical)	consequences.	





Dimension	of	quantum	space@me:	a	surprise
We	can	measure	the	dimension	of	an	unknown	space	
or	medium	by	leUng	a	drop	of	ink	fall	into	it.	
!From	the	speed	with	which	the	“ink	drop”	spreads,	
one	can	determine	the	dimension	Ds	of	the	space.

dimension	Ds	of	quantum	spaceIme	as	funcIon	
of	the	distance	scale	σ	(schemaIc)

500 1000 1500 2000 2500 3000
Σ2

2.5
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DS  !Σ"

dimension of quantum spacetime, 
measured in CDT quantum gravity 

dimension of a classical spacetime

Planck scale

Ds	=	4	on	large	scales	(as	
expected),	but	Ds	≈	2	near	ℓPl	
due	to	quantum	fluctuaIons.	
!At	intermediate	scales,	the	
dimension	is	not	an	integer!		
!This	is	definitely	not	a	
classical	spaceIme.



The	challenge	of	“quantum	curvature”

,

Individual	spaceIme	geometries	(=	path	integral	histories)	in	CDT	are	
conInuous,	but	not	smooth,	and	far	from	(semi-)classical.	
! • 		Which	properIes	conInue	to	hold	on	such	spaces?		
			• 		How	can	we	make	sense	of	curvature	and	curvature	tensors?		

!• 		How	can	we	average/coarse-grain	them?			
		We	have	successfully	defined	and	tested	quantum	Ricci	curvature.		
(N.	Klitgaard	&	RL,	PRD	97	(2018)	no.4,	0460008	and	no.10,	106017,	
work	in	progress	with	J.	Brunekreef	and	N.	Klitgaard)

from	classical

to	quantum?



Introducing	quantum	Ricci	curvature
In	D	dimensions,	the	key	idea	is	to	compare	the	distance	d	between	
two	(D-1)-spheres	with	the	distance	δ	between	their	centres.	

δ
p

Sp
Sp’

p’

d
_

_

Our	variant	uses	the	average	sphere	distance	d	of	two		
spheres	of	radius	δ	whose	centres	are	a	distance	δ	apart,	 δ δ

δp p’

q
q’

The	sphere-distance	criterion:										
“On	a	metric	space	with	posi2ve	
(nega2ve)	Ricci	curvature,	the	distance	
d	of	two	nearby	spheres	Sp	and	Sp’	is	
smaller	(bigger)	than	the	distance	δ	of	
their	centres.”

_

(c.f.	Y.	Ollivier,	J.	Funct.	Anal.	256	(2009)	810)

ε ε

_

D=2

‣ 	involves	only	distance	and	volume	measurements			
!‣ 	the	direcIonal/tensorial	character	is	captured	by	the	“double	sphere”	
!‣ 	coarse-graining	is	captured	by	the	variable	scale	δ	



We	measure	the	“quantum	Ricci	curvature	Kq	at	scale	δ”,

on	the	quantum	ensemble	and	compare	it	with	the	behaviour	on	simple	
conInuum	“reference	spaces”	(constantly	curved;	ellipsoids;	cones).	
Remarkably,	for	the	highly	fractal	quantum	geometry	of	2D	quantum

Implemen@ng	quantum	Ricci	curvature
δp p’

d
_

d̄(S�
p , S�

p�)

�
= cq(1 � Kq(p, p�)), � = d(p, p�), 0 < cq < 3,

non-univ.	constant	

sphere:	Kq	>	0

flat	space:	Kq	=	0

hyperbolic	space:	Kq	<	0
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Kq	on	classical,	constantly	curved		
spaces	in	D=2	(curvature	radius	1)

gravity,	quantum	Ricci	curvature	displays		
a	robust,	sphere-like	scaling	behaviour:

hd̄/�i

#	triangles	N∈[20k,	240k];	error	bars	too	small	to	be	shown

DTlaUce	artefacts		
for	δ	<	5	

sphere	


