THE BLACK HOLES OF THE GRAVITATIONAL UNIVERSE

MONICA COLPI

Department of Physics G. Occhialini, University of Milano Bicocca, Italy *Amaldi Research Centre Roma, 17 Gennaio 2019*

LVC 2018

Fulvio RICCI +

LIGO-VIRGO

Event	m_1/M_\odot	m_2/M_\odot	${\cal M}/{ m M}_{\odot}$	$\chi_{ ext{eff}}$	$M_{\rm f}/{ m M}_{\odot}$	a_{f}	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\text{peak}}/(\text{erg s}^{-1})$	$d_L/{\rm Mpc}$	Z.	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01^{+0.12}_{-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430^{+150}_{-170}	$0.09^{+0.03}_{-0.03}$	180
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} \times 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09 \\ -0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} \times 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04 \\ -0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04\substack{+0.17\\-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9} \times 10^{56}$	960^{+430}_{-410}	$0.19\substack{+0.07 \\ -0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3} \times 10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36\substack{+0.21 \\ -0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5} \times 10^{56}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19 \\ -0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8\substack{+5.2\\-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4_{-3.7}^{+5.2}$	$0.70\substack{+0.08 \\ -0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9} \times 10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05 \\ -0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3\substack{+2.9\\-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07\substack{+0.12 \\ -0.11}$	$53.4_{-2.4}^{+3.2}$	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} \times 10^{56}$	580^{+160}_{-210}	$0.12^{+0.03}_{-0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00\substack{+0.02\\-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$	$59.8_{-3.8}^{+4.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} \times 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07 \\ -0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4_{-7.1}^{+6.3}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08 \\ -0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9} \times 10^{56}$	1850^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$	1651

wider black holes mass spectrum - lower metallicity

- LIGO-VIRGO With these historical discoveries, the strongest evidence of the existence of "STELLAR BLACK HOLES" for which we have a "leading order theory" on the physics of their formation
- era of precision in experimental gravity

··· next run O3 ··· to detect (BH,NS) mergers

log(relative number) pair instability gap **RGG118** SgA* **S500**14+813 $10^9 \ 10^{10} \ 10^{11}$ 102 103 104 106 108 101 105 107 M/M_{\odot}

STELLAR ORIGIN BLACK HOLES

SUPERMASSIVE BLACK HOLES

EM Observations

- Existence of AGN QSOs powered by accretion onto supermassive black holes of millions to billions suns
- Black Hole masses correlate with physical properties of galaxies —M-sigma relation — feedback from the AGN
- Less massive black holes live in less massive galaxies correlation is highly scattered - nuclear star clusters
- Local census of supermassive black holes in spheroids
- Combining data from the unresolved X-ray background with those on the local census of silent black holes we learned supermassive black holes have grown mainly by radiatively efficient accretion during the last e-folding time below z~3 during the peak of the star formation rate
- Supermassive black holes weighing billion suns (QSOs) are in place @ z~7

- Supermassive black holes come to birth "light"
- Concept of "SEEDS" "intermediate mass" black holes forming at high redshifts in high-sigma density peaks under extreme conditions (low or null metallicities)
- "seeds" are "transitional objects" single epoch forming —grow through (merger induced) accretion and mergers
- Accretion & mergers erase information on their birth properties
- To recover their properties with need to have access to a huge cosmological volume — observe @z>10
- EM low accretion luminosities

- Luminosity gives only lower limit on the mass
- Correlated studies in the optical to infer the mass from the dynamics of the BLR

Athena white paper 2013

Importance to measure their masses

unanswered questions

- HOW did supermassive black holes form? From the gravitational collapse of a yet unknown class of compact objects with mass in the hundred thousands?
- Is there a deep PHYSICAL LINK between STELLAR and SUPERMASSIVE black holes? (only "stars" form black holes of any mass scale through accretion and mergers)
- WHEN WHERE did the seeds form? (cosmology)
- HOW did they evolve mass & spins ? (structure formation)

• "high redshift"

"low metallicity environments"

How to detect "seeds"?
How to track their growth?

BLACK HOLE GROWTH DURING GALAXY ASSEMBLY COSMOLOGICAL DRIVEN MERGERS

cosmologica redshift

LISA cosmic horizon for massive black holes is the entire universe

• Accretion might alone explain high z QSOs but accretion is likely modulated by halo-halo mergers - halo dynamics leads to black hole binary formation

Seed black holes in the cosmological context

 distribution in redshift of light (selected as the most massive black hole present in a halo) and heavy seeds

Valiante+2016

MERGER TREE OF HIGH z QSOs

dot= halo+halo merger with two nuclear light seeds merging

Black Holes in the Gravitational Universe

Waterfall plot for non spinning black holes: PhenomC ET_D sensitivity curve + LISA

- Key role of Einstein Telescope
- Detecting 'failed seeds" will be a challenge
- the only avenue to unveil the 'seed' and weight their mass !

courtesy of S. Fairhurst

- How do black holes pair ?
- How fast do they coalesce?
- Rates?

- black holes are minuscule
- coalescing binary black holes are minuscule

$$R_{\rm G} = \frac{2GM}{c^2} = 0.1 \left(\frac{M_{\rm BH}}{10^6 \, M_{\odot}}\right) \,\mu \text{parsec}$$
$$t_{\rm coal} = \frac{5}{256} \frac{c^5}{G^3} \mathcal{G}(e) (1 - e^2)^{7/2} \frac{a^4}{\nu \, M_{\rm B}^3}$$
$$\nu = \frac{\mu}{M} = \frac{q}{(1+q)^2} \qquad M_{\rm B} = M_{\rm BH,1} + M_{\rm BH,2}$$

z = 15 $t_{\rm cosmic} = 0.27 {\rm Gyr}$	$M_{\rm B} = 10^5 M_{\odot}$	$M_{\rm B} = 10^6 M_{\odot}$
$a_{ m GW}$	$ u^{1/4} 2.5 \times 10^4 R_{\rm G} $ $ 0.25 \mathrm{mparsec} $	$ u^{1/4} 1.4 \times 10^4 R_{\rm G} $ 1.4 mparsec

Portrait of an isolated gas-rich major (1:4) merger

Clock: time "zero"

 $M_{\rm BH, primary} = 3 \times 10^6 M_{\odot}$ $M_{\rm halo} = 2.2 \times 10^{11} M_{\odot}; M_{\rm bulge} = 2 \times 10^9 M_{\odot}$ $M_{\rm disc,*} = 6 \times 10^9 M_{\odot}; M_{\rm disc, gas} = 3 \times 10^9 M_{\odot}$

$$\mathbf{F}_{\mathrm{DF}}^{\mathrm{stars}} = -4\pi \ln \Lambda G^2 M_{\mathrm{BH}}^2 \rho_* \mathcal{F}\left(\frac{V_{\mathrm{BH,orb}}}{\sigma_*}\right) \frac{\mathbf{V}_{\mathrm{BH,orb}}}{V_{\mathrm{BH,orb}}^3}$$

$$a_{\text{binary}} \sim \frac{GM_{\text{B}}}{\sigma^2} \sim 1 \left(\frac{M_{\text{B}}}{10^6 \,\text{M}_{\odot}}\right) \left(\frac{50 \,\text{km}\,\text{s}^{-1}}{\sigma}\right)^2 \text{ parsec}$$

Portrait of a cosmological merger

 $m_1^{\rm BH} = 10^8 \, {\rm M}_{\odot}$ $m_2^{\rm BH} = 3 \times 10^7 \,{\rm M}_{\odot}$

Khan, Mayer, Fiacconi 2016

spirals undergoing a major merger (1:3.6 mass ratio) on a llar dies inclined by 67 degrees

> $M_{2,*} \sim 10^{10} M_{\odot}$ $M_{1,*} \sim 3.6 \times 10^{10} \, M_{\odot}$ $M_{\rm halo} \sim 10^{13} \, M_{\odot} @ z = 0$

- gas inflows in the inner 500 pc from cosmological streams are conducive to an intense burst of star formation around the secondary black hole
- the black holes are surrounded by a stellar cusp which enhances their "effective mass" - the orbital decay is governed by dynamical friction of the stellar cusps
- the binary hardens by the slingshot mechanisms with individual stars impugning on the binary form low-angular momentum orbits in a triaxial potential. The binary mergers 10 Myrs after the merger of the stellar cusps

Black hole dynamics in massive circum-nuclear gas discs on ~(100 - 1)pc

- fragmentation from inside out occurs on a timescale smaller than the orbital decay time
- dense gaseous clumps form, interact, merge to form fewer and larger clump, and migrate to the centre
- clumps can have masses comparable or larger than the black hole masses
- high density contrast leading to a completely different dynamics

Souza Lima+2016, del Valle+2015, Fiacconi+2013

Type II migration in a circum-binary disc

 black holes deposit orbital angular momentum exciting both leading and trailing spiral waves opening a gap of size twice the size of the binary separation

> Kocsis+ 2007,2012; MacFadyen+2008; Roedig et al. 2011,12,14; D'Orazio et al. 2013; Farris et al. 2015; Dunhill et al. 2015; Tang et al. 2017; Maureira-Fredes 2018; Dotti+2015

Courtesy by Zoltan Haiman +2017

1.0 1.1 1.2

1.3

0.9

0.8

time (Gyr)

Pfister+ 2019 submitted

- z=9 zoom -in simulation of merging halos
- stars have a stabilizing role in the dynamics of black holes
- in high z mergers also the stellar distribution create e fluctuating background which randomize the black hole dynamicst

10

10-

10⁻² ∟ 0.4

0.5

0.6

0.7

need of sufficient "heavy seeds"

- Inside a relic asymmetric galaxy
- Stalling of the binary due to loss of stars
- Triple interaction with a third black holes
- Kozai resonances
- Chaotic three body interaction

Bonetti+2018

summary

- Detecting coalescing binary black holes across cosmic ages and over a wide range of masses, which implies detecting low and high frequency gravitational waves will lead to a deep understanding on the origin and evolution of the black holes of the universe
- understanding the nature of massive black holes is of extreme importance
- the two main avenues light versus heavy—- may not be the only possible and we need to critically study formation and dynamical processes to establish their role
- only LISA and III generation of ground based telescopes will let us understand black holes
- the gravitational universe promises many discoveries