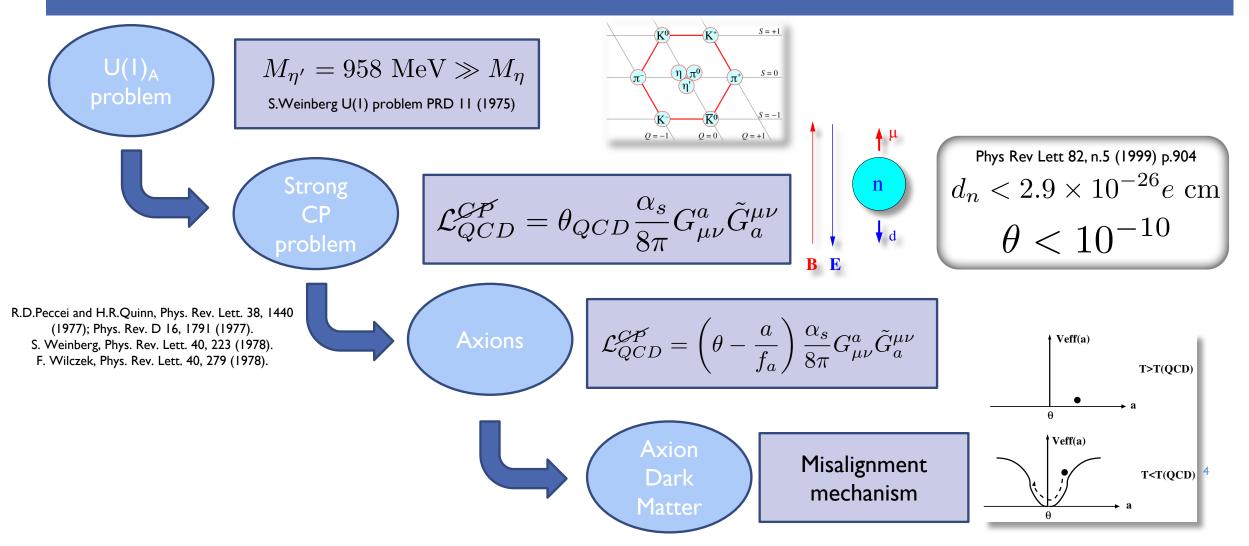

SEARCH FOR AXION AND AXION-LIKE-PARTICLES AT LNF

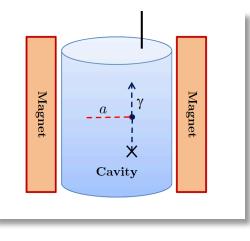
CLAUDIO GATTI, LABORATORI NAZIONALI DI FRASCATI - INFN

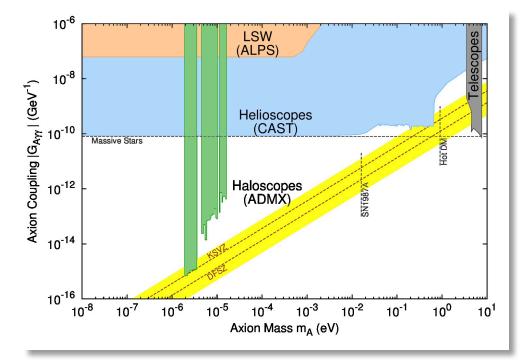
56th Scientific Committee Meeting, LNF November 5th 2018

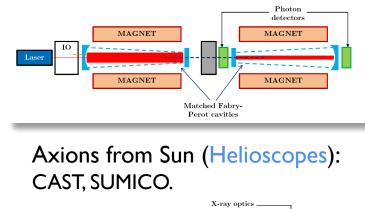
- Introduction on Axions and Axion Dark-Matter
- Axion Research at LNF
- a) COLD Lab @ LNF
- b) QUAX
- c) SIMP
- d) KLASH
- Publications
- Collaborations
- Conclusion

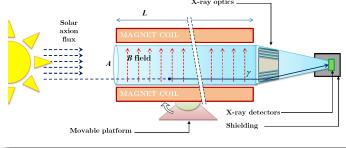

OUTLINE

INTRODUCTION

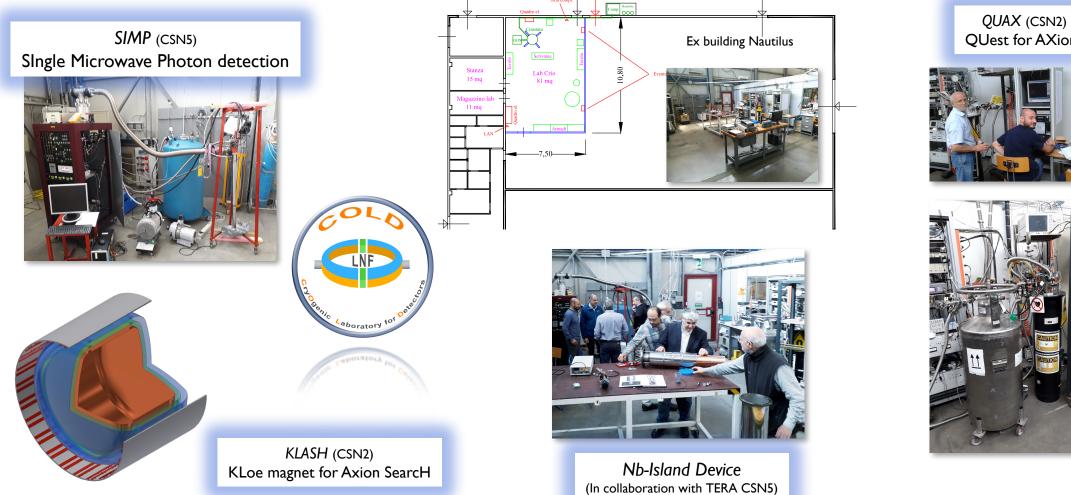



AXIONS in one slide


Axion Searches



Laboratory searches (LSW): PVLAS, ALPS, CROWS, OSQAR.

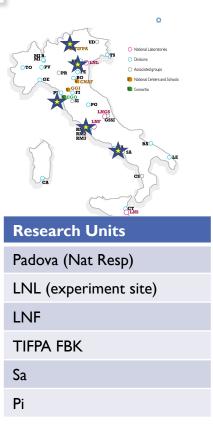

A recent review: Irastorza Redondo Arxiv:1801.08127

AXION RESEARCH AT LNF

CryOgenic Laboratory for Detectors

QUest for AXions

7

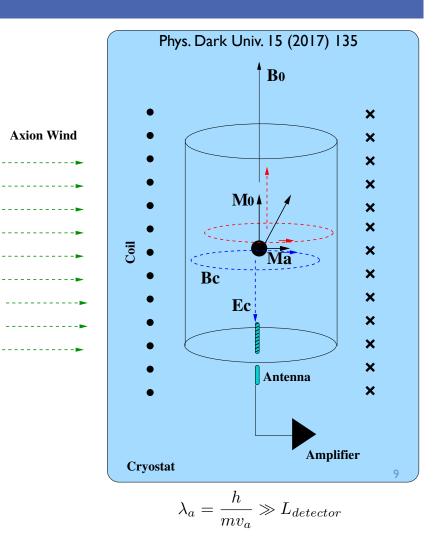

QUAX: Quest for Axions

Quax: 3 years R&D (2017-2019) funded by CSN2 (total budget about 300 k€).

LNF 2019	FTE
C Gatti (R, Loc Resp)	0.5
D Di Gioacchino (R)	0.5
C Ligi (T)	0.2
D Alesini (PT)	0.1
G Lamanna (Uni Pi)	0.1
G Maccarrone (PR)	0.3
D Babusci (PR)	0.3
D Moricciani (R)	0.3
S Tocci (Research fellow)	1.0
A Rettaroli (PhD student)	1.0
Tot	4.3

QUAX: Quest for Axions

Quax Experimental Scheme Use Electron Spin Resonance to absorb energy from Axion Wind and re-emit it as e.m. radiation.


$$i\hbar\frac{\delta\phi}{\delta t} = \left[-\frac{\hbar^2}{2m}\nabla^2 - \frac{g_p\hbar}{2m}\sigma\cdot\nabla a\right]\phi$$

$$B_0 = \frac{m_a c^2}{\gamma \hbar} = 1.7 \left(\frac{m_a}{200 \mu \text{eV}}\right) \text{ T}$$

$$\frac{\omega_a}{2\pi} = 48 \left(\frac{m_a}{200 \mu \text{eV}} \right) \text{ GHz}$$
 Axion frequency

DC field

 $\gamma = e/m_e$

QUAX R&D

$$P_{out} = 3.8 \times 10^{-26} \left(\frac{m_a}{200 \mu \text{eV}}\right)^3 \left(\frac{V_s}{100 \text{cm}^3}\right) \left(\frac{n_s}{2 \times 10^{28} / \text{m}^3}\right) \left(\frac{\tau_{min}}{2 \mu \text{s}}\right) \text{ W}$$

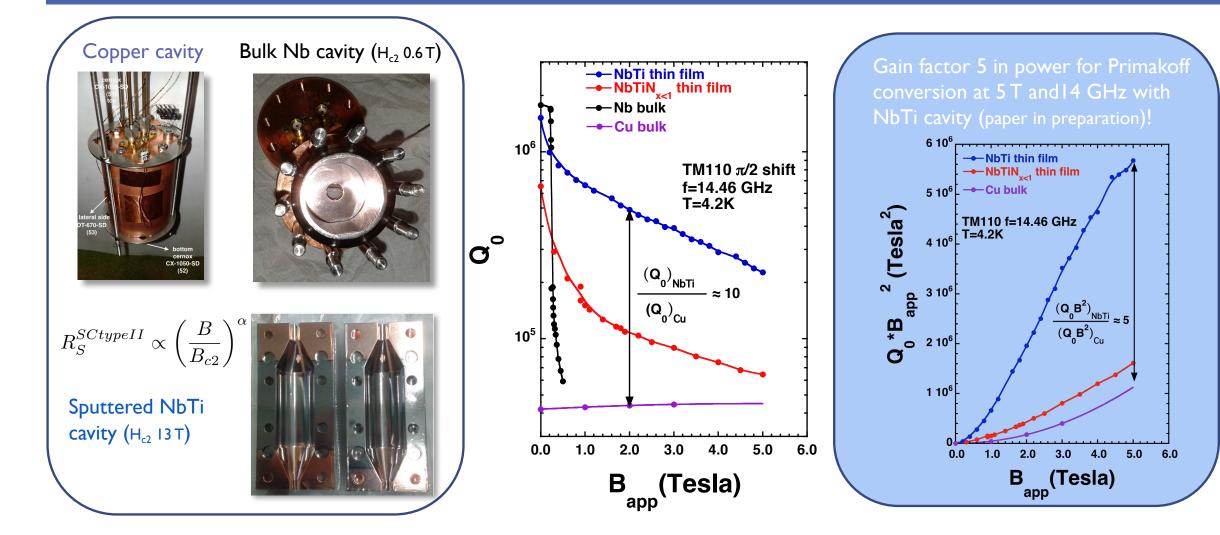
$$P_{out} = 3.8 \times 10^{-26} \text{ W}$$
Single microwave
photon counter
$$T_B = \frac{1}{\omega_a} \frac{B_0}{\delta B_0} \sim 1 \mu \text{s} \left(\frac{10 \text{GHz}}{\omega_a}\right) \left(\frac{10^{-5}}{\delta B/B}\right)$$

$$M_B = \frac{1}{\omega_a} \frac{B_0}{\delta B_0} \sim 1 \mu \text{s} \left(\frac{10 \text{GHz}}{\omega_a}\right) \left(\frac{10^{-5}}{\delta B/B}\right)$$

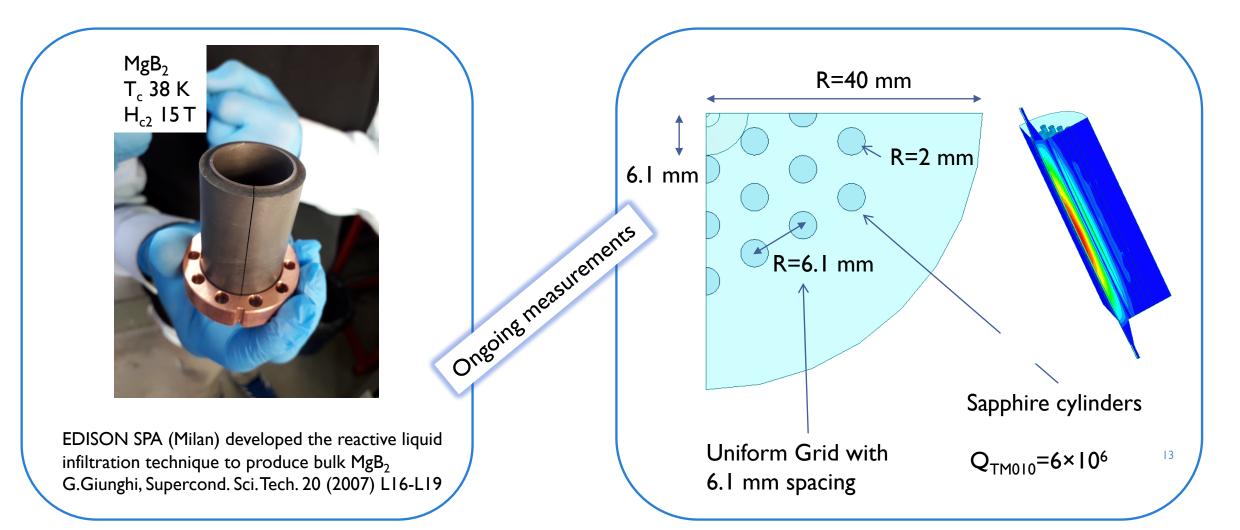
$$M_B = \frac{1}{\omega_a} \frac{B_0}{\delta B_0} \sim 1 \mu \text{s} \left(\frac{10 \text{GHz}}{\omega_a}\right) \left(\frac{10^{-5}}{\delta B/B}\right)$$

$$M_B = \frac{1}{\omega_a} \frac{B_0}{\delta B_0} \sim 1 \mu \text{s} \left(\frac{10 \text{GHz}}{\omega_a}\right) \left(\frac{10^{-5}}{\delta B/B}\right)$$

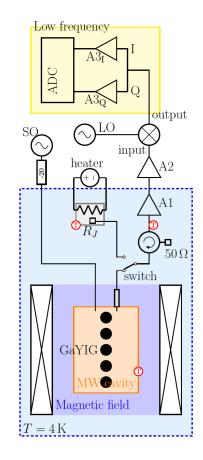
$$\tau_c = \frac{Q}{\omega_a} \sim 10 \mu \mathrm{s} \left(\frac{10 \mathrm{GHz}}{\omega_a}\right) \left(\frac{Q}{10^6}\right)$$



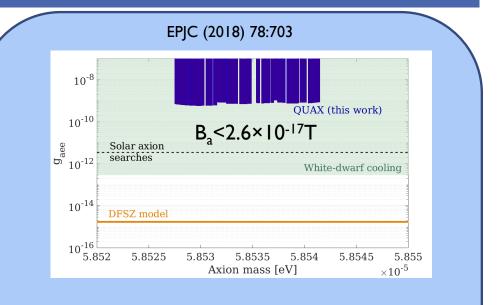
Resonant cavities with high Q~10⁶ operated at 100mK in a magnetic field ~2T


10

QUAX R&D


QUAX R&D: High-Q RF-Cavities operating in B field

QUAX R&D: Type II SC and Photonic Band Gap RF-Cavities



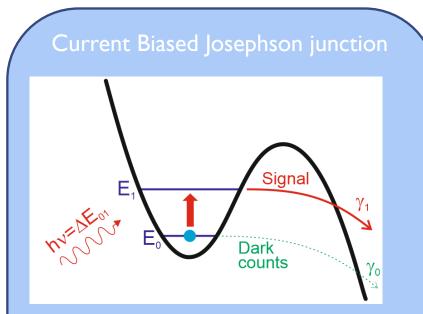
First Operation of a Ferromagnetic Axion Haloscope at $m_a = 58 \mu eV$

Experimental Setup	
В [Т]	0.5
N. of GaYIG Sphere (diameter =1 mm)	5
n _s [spin/m ³]	2.1×10 ²⁸
τ _{min} [μs]	0.11
Frequency [GHz]	13.98
Cu-cavity Q (mode TM110)	50,000
T _{cavity} [K]	5.0

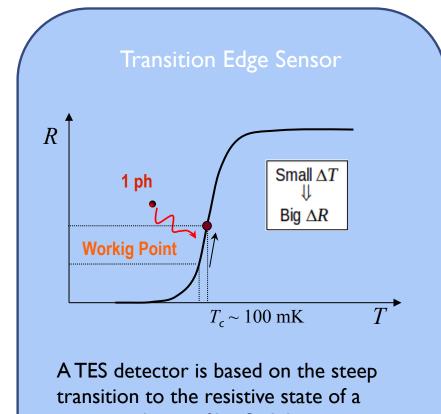
QUAX demonstrator succesfully put in operation!

- Next improvements (sensitivity gain 10²):
 - L. Larger sample volume
 - 2. Longer relaxation time
 - 3. Ultra cryogenic temperature
 - 4. Quantum limited amplifier (JPA).

SIMP: SIngle Microwave Photon detection


LNF 2019	FTE
C Gatti (R, Nat Resp)	0.5
D Di Gioacchino (R)	0.5
C Ligi (T)	0.3
D Alesini (PT)	0.1
G Felici (DR)	0.1
B Buonomo (T)	0.3
L Foggetta (T)	0.2
A Gallo (DT)	0.1
G Castellano (PR CNR)	0.1
F Chiarello (R CNR)	0.3
F Mattioli (R CNR)	0.3
G Torrioli (R CNR)	0.3
Tot	3.1

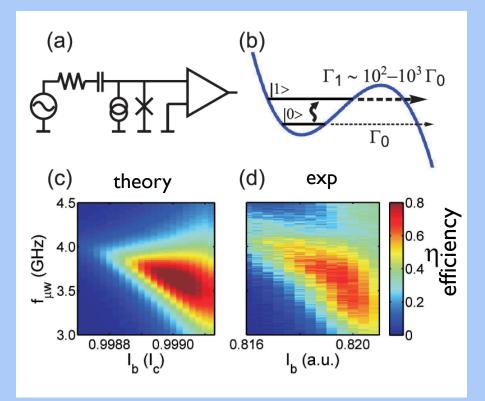
SIMP: 3 years R&D (2019-2021) funded by CSN5 (total budget about 300 k€)



Unità	FTE	Device
LNF	2.1	CBJJ
INFN Pi	1.3	TES
INFN Sa	I	CBJJ
TIFPA-FBK	0.6	TES
CNR Nano NEST	1.6	TES
CNR IFN	I	CBJJ
INRIM	0.6	TES
тот	8.2	

SIMP: Towards the Detection of Single Microwave Photons (10-100 GHz)

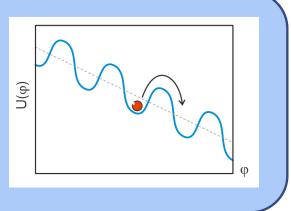
Following absorption of a photon, the voltage at the terminals of the Josephson junction passes from a null value to a few hundred microvolts, until the junction is reset.

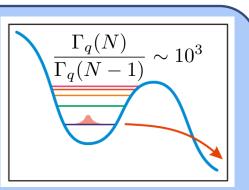


superconducting film. Stability is guaranteed by thermo-electric effect.

CBJJ

State of Art

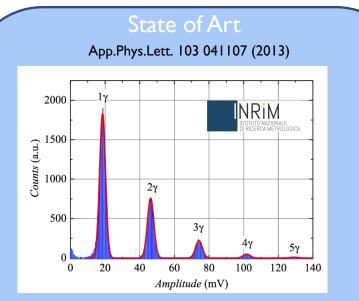

Al-AlOx-Al 1000 μm^2 junction


Chen et al. PRL 107, 217401 (2011)

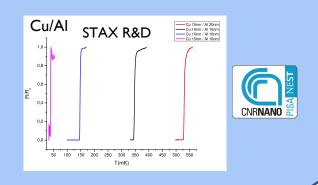
Thermal activation process

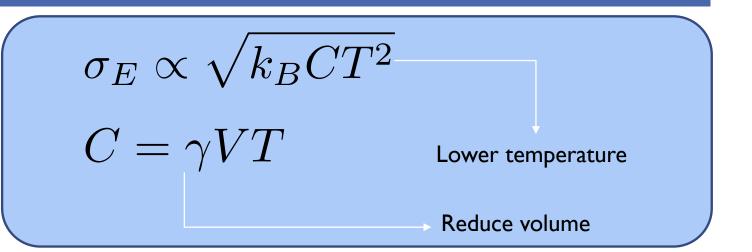
$$\Gamma_t = \frac{\omega_0}{2\pi} a_t \exp\left(-\frac{\Delta U}{k_B T}\right)$$

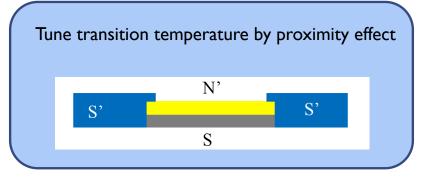
Macroscopic quantum tunneling $\Gamma_q \simeq \frac{\omega_0}{2\pi} \sqrt{\frac{7.2\Delta U}{\hbar\omega_0}} \exp\left(-\frac{7.2\Delta U}{\hbar\omega_0}\right)$ $\Delta U = 2E_j \left[\sqrt{1 - (I_0/I_c)^2} - (I_0/I_c) \arccos(I_0/I_c)\right]$

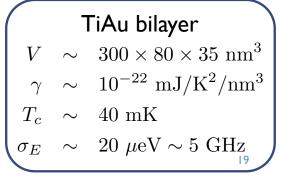


17

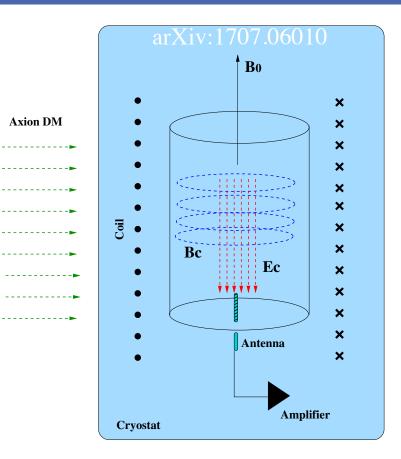

CBJJ at LNF




TES



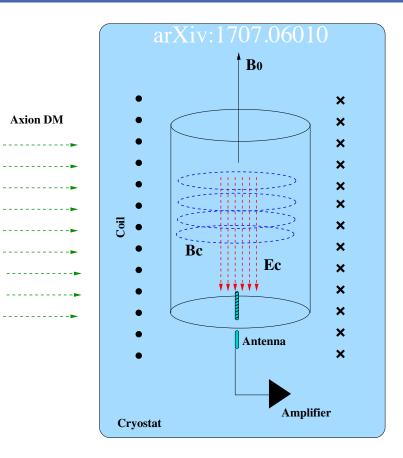
Ti/Au, Tc~ 100 mK, 800 meV photons, resolution 100 meV.



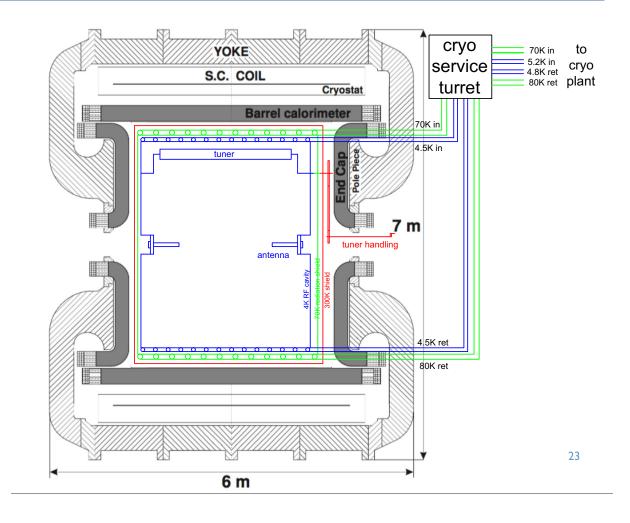
FUTURE PROJECT

The KLASH Proposal

- KLASH KLoe magnet for Axions SearcH
- Proposal of a large Haloscope
- Search of galactic axions in the mass range 0.3-1 μeV
- Large volume RF Cavity (33 m³)
- Moderate magnetic field (0.6 T)
- Copper rf cavity Q~600,000
- T 4.5 K


Experiment	ω B ² V Q _L (rad T ² m ³ /s) (×10 ¹⁵)
The KLASH	I
ADMX	4
HAYSTAC	0.05


The KLASH Proposal

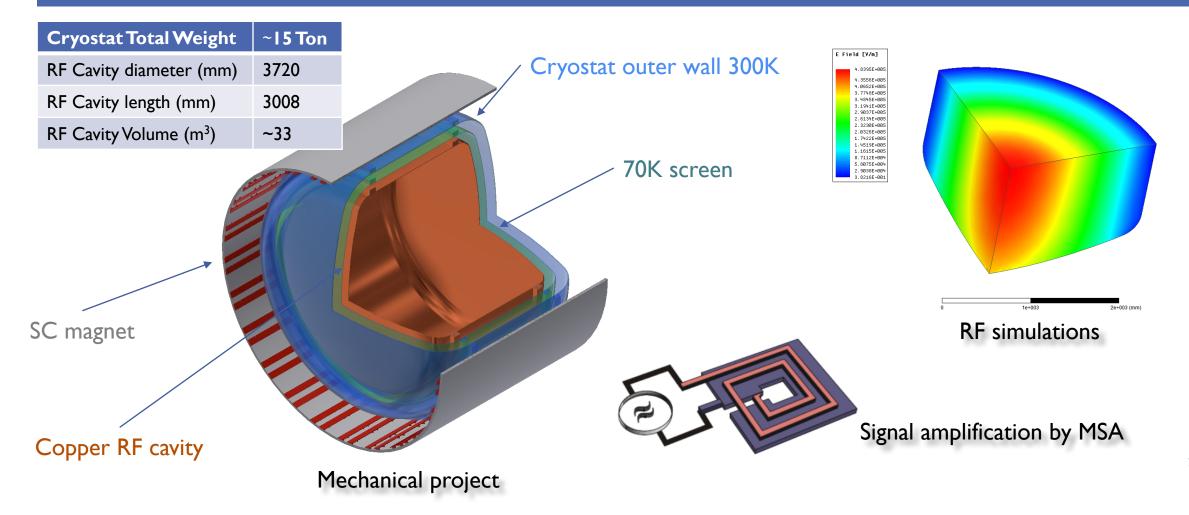

$$P_{\text{sig}} = \left(g_{\gamma}^{2} \frac{\alpha^{2}}{\pi^{2}} \frac{\hbar^{3} c^{3} \rho_{a}}{\Lambda^{4}}\right) \times \left(\frac{\beta}{1+\beta} \omega_{c} \frac{1}{\mu_{0}} B_{0}^{2} V C_{mnl} Q_{L}\right)$$
$$SNR = \frac{P_{\text{sig}}}{k_{B} T_{sys}} \sqrt{\frac{\tau}{\Delta \nu_{a}}}$$

Experiment	ω B ² V Q _L (rad T ² m ³ /s) (×10 ¹⁵)
The KLASH	I
ADMX	4
HAYSTAC	0.05

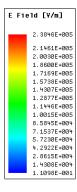
The KLOE Detector

The KLOE Magnet

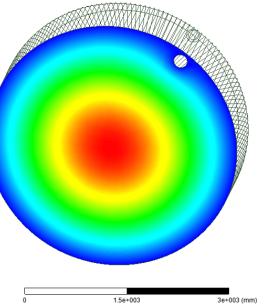
The DAFNE Cryogenic Plant

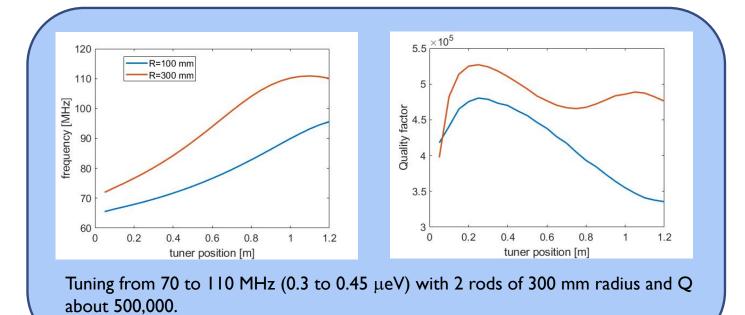

LINDETCF 50 liquid He liquefaction/refrigeration plant

Running at DAFNE since 1996. Perfectly working. Located outside the DAFNE main ring.

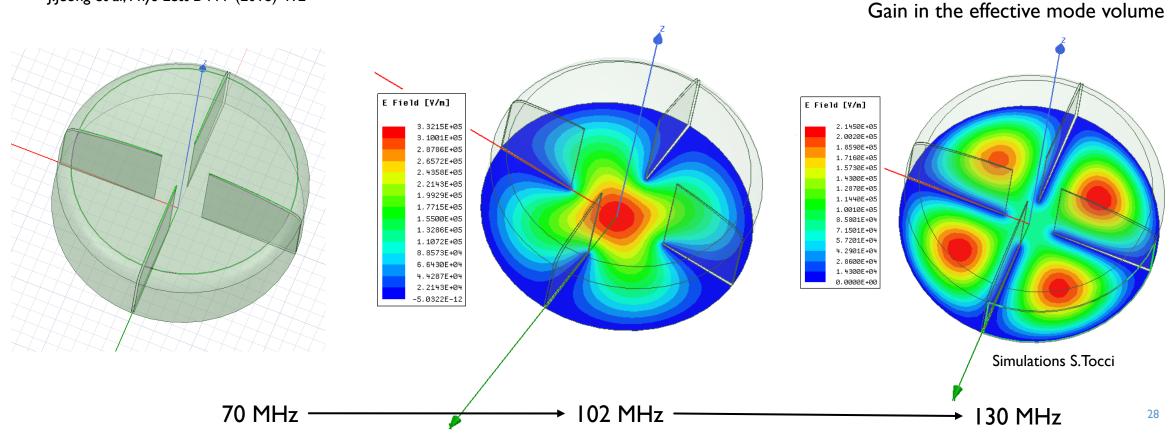

4.5K refrigeration capacity	99 W
4.5K liquefaction capacity	1.14 g/s
70K refrigeration capacity	800 W
KLOE 4.5K refrig. load	55 W
KLOE 4.5K liquef. load	0.6 g/s
KLOE 70K refrig. load	530 W
cavity 4.5K refrig. availability	44 W
cavity 70K refrig. availability	270 W

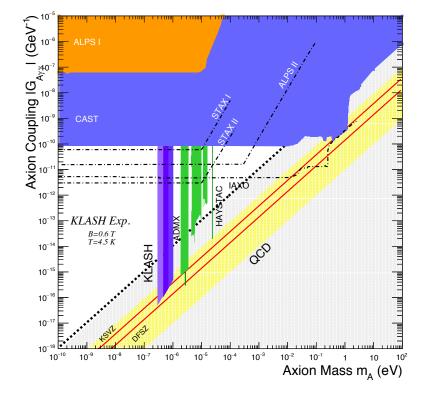
M. Modena LNF–97/046 (IR) 25


The KLASH Project



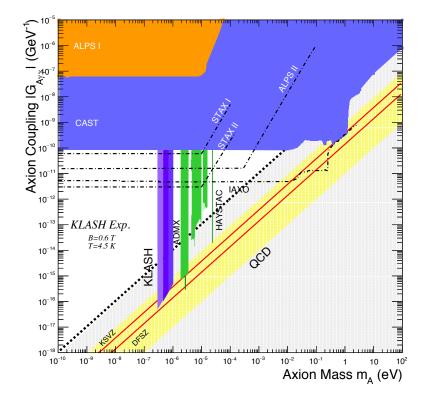
Frequency (Axion-Mass) Tuning


Simulation with tuning rods of different radii (100-300 mm).



Tuning: Multiple-cell "Pizza" cavity

J.Jeong et al, Phys Lett B 777 (2018) 412



Expected Sensitivity

	3 years data taking	
Radius [m]	$1.9 \rightarrow 1.2 \rightarrow 0.9$	
Frequencies [MHz]	70 → 250	
Q (70-170MHz)	550,000 → 375,000	
Power [W] (KSVZ)	$1.3 \times 10^{-22} \rightarrow 4.3 \times 10^{-23}$	
Rate [kHz] (KSVZ)	2.8 → 0.38	
Integration time (min)	$10 \rightarrow 15$	
T _{sys} [K]	4.8	
R=1.9m		

Expected Sensitivity

*Gray band PRL 118, 031801 (2017)

Laboratori Nazionali di Frascati

INFN

Estimated construction cost about I-2 M€

INFN-18-09-LNF September 18, 2018

The KLASH – Letter of Intent

D.Alesini¹, D.Babusci¹, F.Bossi¹, P.Ciambrone¹, G.Corcella¹, D.Di Gioacchino¹, P.Falferi², C.Gatti¹, INFN CSN2 funded with 30 ke one INFN CSN2 funded with 30 ke one A.Ghigo¹, G.Lamanna³, C.Ligi¹, G.Maccarrone¹, A.Mirizzi⁴, D.Montanino⁵, D.Moricciani¹, A.Mostacci⁶, E.Nardi¹, A.Paoloni¹, L.Pellegrino¹, A.Rettaroli¹, R.Ricci¹, L.Sabbatini¹, S.Tocci¹.

¹ Laboratori Nazionali di Frascati - INFN ² TIFPA e FBK ³ Università di Pisa e INFN Sezione Pisa ⁴ Università "Aldo Moro" e INFN Sezione Bari ⁵ Università del Salento e INFN Sezione Lecce ⁶ Università "La Sapienza" e INFN Sezione Roma1

30

In conclusion ... (running out of time)

Several "COLD LAB" publications ...

The KLASH Proposal

arXiv:1707.06010

Axion Calling

D. Alesini¹, D. Babusci¹, D. Di Gioacchino¹, C. Gatti¹, G. Lamanna², C. Ligi¹ ¹⁾ INFN, Laboratori Nazionali di Frascati ²⁾ Università di Pisa and INFN

Patras 2018 Proceedings The Klash Proposal: Status and Perspectives

C. Gatti¹, D. Alesini¹, D. Babusci¹, C. Braggio^{6,7}, G. Carugno^{6,7}, N. Crescini^{5,7}, D. Di Gioacchino¹, P. Falferi^{3,4}, G. Lamanna², C. Ligi¹, A. Ortolan⁵, L. Pellegrino¹, A. Rettaroli¹, G. Ruoso⁵, S.Tocci¹

Eur Phys J C (2018) 78:703

Operation of a ferromagnetic axion haloscope at $m_a = 58 \,\mu \text{eV}$

N. Crescini^{1,2,a}, D. Alesini³, C. Braggio^{1,4}, G. Carugno^{1,4}, D. Di Gioacchino³, C. S. Gallo², U. Gambardella⁵, C. Gatti³, G. Iannone⁵, G. Lamanna⁶, C. Ligi³, A. Lombardi², A. Ortolan², S. Pagano⁵, R. Pengo², G. Ruoso^{2,b}, C. C. Speake⁷, L. Taffarello⁴

arXiv:1802.05552 Patras 2017 Proceedings

Searching for galactic axions through magnetized media: QUAX status report

G. Ruoso¹, D. Alesini², C. Braggio^{3,4}, G. Carugno^{3,4}, N. Crescini^{1,4}, D. Di Gioacchino², P. Falferi^{5,6}, S. Gallo^{3,4}, U. Gambardella⁸, C. Gatti², G. Iannone⁸, G. Lamanna⁹, C. Ligi², A. Lombardi¹, R. Mezzena^{6,7}, A. Ortolan¹, R. Pengo¹, C. C. Speake¹⁰

IEEE Trans Appl Superc 28 (2018)

Single Photon Counter based on a Josephson Junction at 14 GHz for searching Galactic Axions

Leonid Kuzmin, Alexander S. Sobolev, Claudio Gatti, Daniele Di Gioacchino, Nicolò Crescini, Anna Gordeeva, Eugeni Il'ichev

J Supercond Nov Magn (2017) 30:359-363

A Novel Particle/Photon Detector Based on a Superconducting Proximity Array of Nanodots

 $\begin{array}{l} \text{Daniele Di Gioacchino}^1 \cdot \text{Nicola Poccia}^{2,3} \cdot \text{Martijn Lankhorst}^2 \cdot \text{Claudio Gatti}^1 \cdot \\ \text{Bruno Buonomo}^1 \cdot \text{Luca Foggetta}^1 \cdot \text{Augusto Marcelli}^{1,4} \cdot \text{Hans Hilgenkamp}^2 \end{array}$

Submitted to IEEE Trans Appl Superc

Microwave losses in a dc magnetic field in superconducting cavities for axion studies

D. Di Gioacchino, C. Gatti, D. Alesini, C. Ligi, S. Tocci, A. Rettaroli, G. Carugno, N. Crescini, G. Ruoso, C. Braggio, P. Falferi, C.S. Gallo, U. Gambardella, G. Iannone, G. Lamanna, A. Lombardi, R. Mezzena, A. Ortolan, R. Pengo, E. Silva, N. Pompeo 32

First QUAX-LNF Thesis ...

DIPARTIMENTO DI MATEMATICA E FISICA

Corso di Laurea Magistrale in Fisica

Master Degree Thesis

Characterization of superconducting resonant RF cavities for axion search with the QUAX experiment

October 23, 2018

Author: Alessio Rettaroli

Prof. Giuseppe Salamanna

Supervisor: Dott. Claudio Gatti

Supervisor:

33

New collaborations ...

In Italy

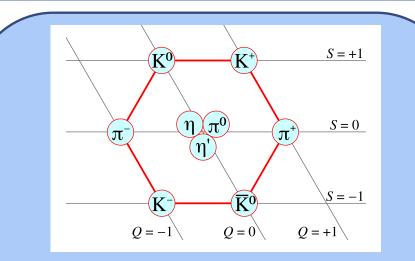
- CNR-IFN Roma
- CNR-NEST Pisa
- INRIM Torino
- FBK
- Department of Engineering Roma 3 University

Abroad

- Center for Axion and Precision Physics (CAPP) (South Korea)
- Chalmers University of Technology (Sweden)

Daejeon South Korea October 2018

Conclusion


Well motivated extensions of the Standard Model of particle physics predict the existence of light particles such as axions or axion-like particles. Their discovery requires skills and infrastructures typical of a laboratory such as LNF. With this in mind, we set up the COLD laboratory, a CryOgenic Laboratory for Detectors. The are obviously problems: our technician Iannarelli just retired; ⁴He world shortage and aging of our apparatus of liquefaction; etc. etc.. But, QUAX gave us the right boost, SIMP was approved and KLASH maybe in the future. Thank you.

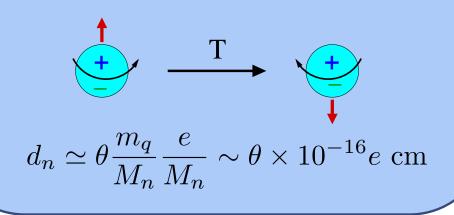
BACK UP SLIDES

WHY AXIONS? The η' problem and the CP violation in QCD

Mass spectrum of lighter mesons reflects the underlying flavour symmetry ($u \leftrightarrow d \leftrightarrow s$, with $m_u = m_d \ll m_s$), summarized in the Gell-Mann Okubo relation:

 $M_{\eta}^{2} = \left(4M_{K}^{2} - M_{\pi}^{2}\right)/3$

The similar relation for the η^\prime is badly broken and


 $M_{\eta'} = 958 \text{ MeV} \gg M_{\eta}$

S.Weinberg U(1) problem PRD 11 (1975)

This symmetry violation is accounted by the "anomaly" term in the interaction lagrangian ...

$$\mathcal{L}_{QCD}^{CP} = \theta_{QCD} \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a$$

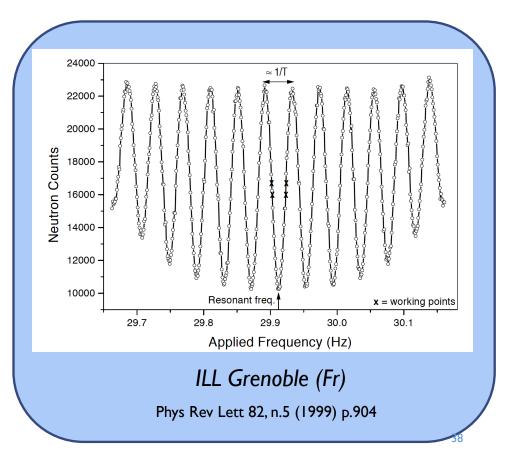
... this term is **CP violating!** Responsible for an *electric dipole moment* of neutron

Neutron EDM

μ

d

n


BE

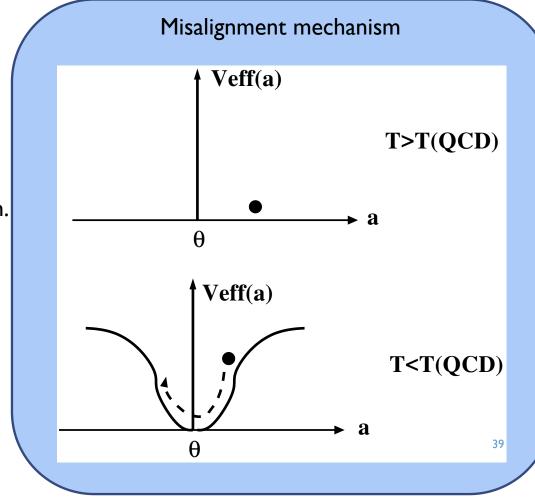
Measurement of the resonant depolarization frequency of neutrons:

$$h\nu = |2\mu_n \cdot B \pm 2d_n \cdot E|$$

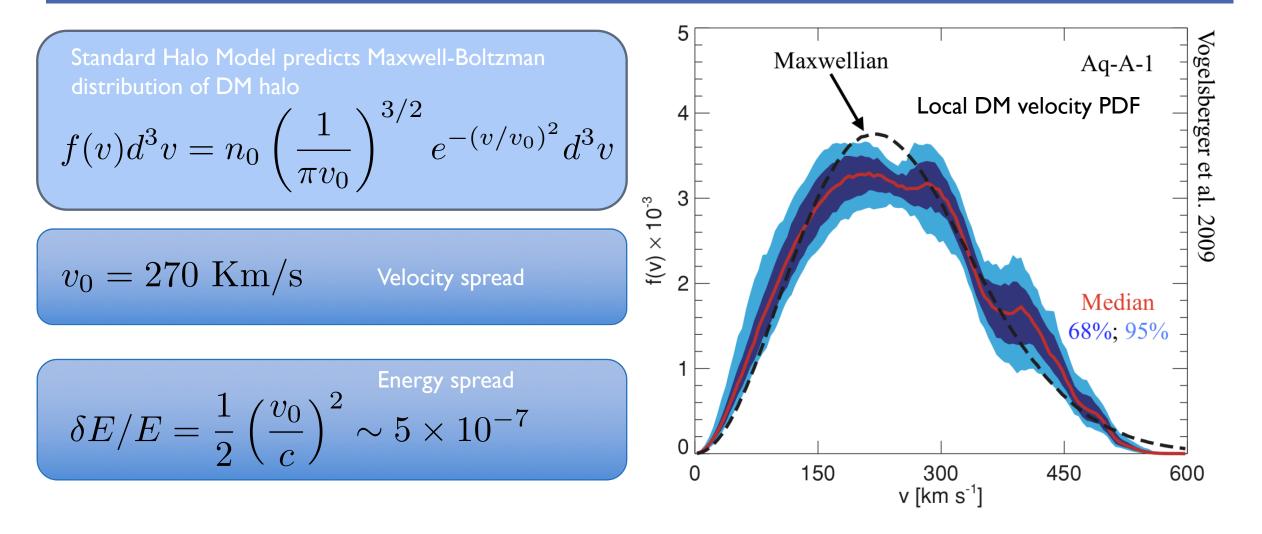
$$d_n < 2.9 \times 10^{-26} e \text{ cm}$$

$$\theta < 10^{-10}$$

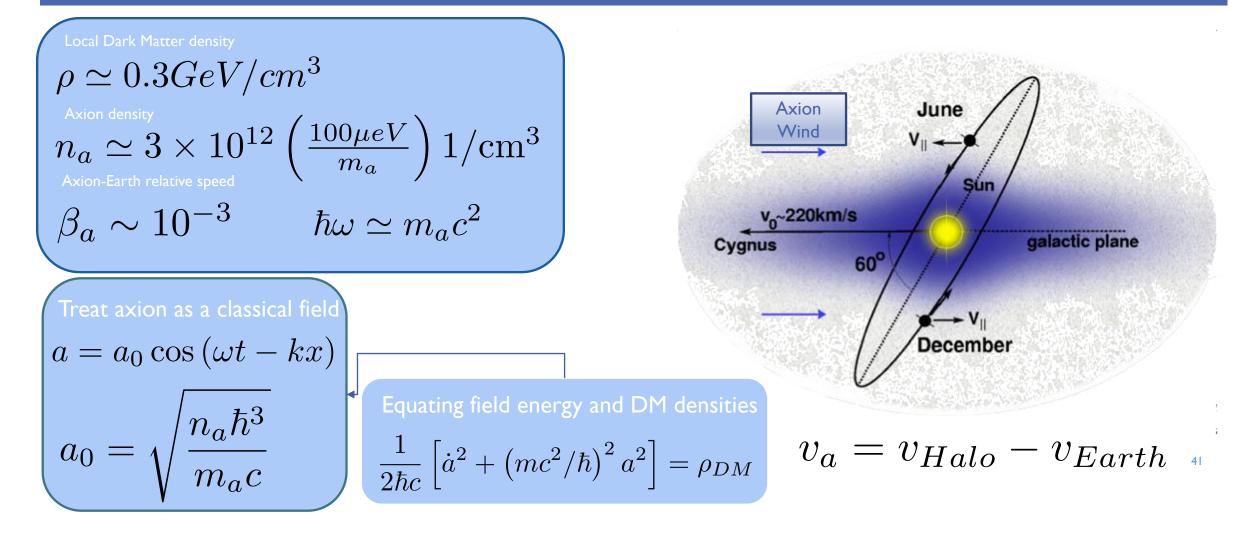
The Axion Solution to the Strong CP Problem


$$\theta = \theta_{QCD} + arg \ det \ M_q$$

Why so small? Myh so swalls


The Axion is a new scalar field that cancels dinamically the θ term.

$$\mathcal{L}_{QCD}^{CP} = \left(\theta - \frac{a}{f_a}\right) \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a$$


This *misalignment* mechanism naturally produces axion cold dark matter

AXION DARK MATTER

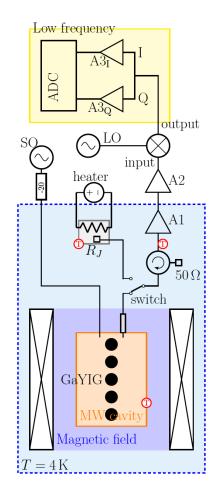
AXION DARK MATTER

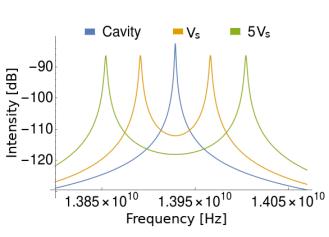

QUAX: Interaction of Axions with Electron Spin

$$\mathcal{L}_{int} = -ig_p a(x) \bar{\psi}(x) \gamma_5 \psi(x)$$
 Interaction lagrangian

$$\begin{bmatrix} i\hbar \frac{\delta\phi}{\delta t} = \left[-\frac{\hbar^2}{2m} \nabla^2 - \left[\frac{g_p \hbar}{2m} \sigma \cdot \nabla a \right] \phi & \text{Non relativistic limit} \\ \end{bmatrix}$$
Interaction between electron magnetic moment and effective magnetic field
$$B_a \equiv \frac{g_p}{2e} \nabla a$$

QUAX R&D

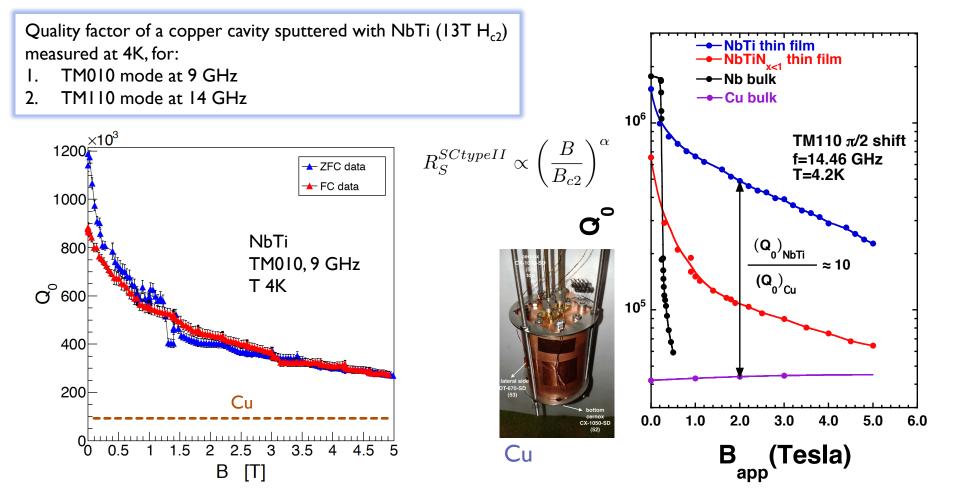



Measurement setup at LNL

First Operation of a Ferromagnetic Axion Haloscope at $m_a = 58 \mu eV$

Experimental Setup	
B [T]	0.5
N. of GaYIG Sphere (diameter =1 mm)	5
n _s [spin/m³]	2.1×10 ²⁸
τ _{min} [μs]	0.11
Frequency [GHz]	13.98
Cu-cavity Q (mode TM110)	50,000
T _{cavity} [K]	5.0

$$P_{\text{out}} = \frac{P_{\text{in}}}{2} = 1.4 \times 10^{-33} \left(\frac{m_a}{58.5 \,\mu\text{eV}}\right)^3 \times \left(\frac{n_s}{2 \cdot 10^{28}/\text{m}^3}\right) \left(\frac{V_s}{2.6 \,\text{mm}^3}\right) \left(\frac{\tau_{\text{min}}}{0.11 \,\mu\text{s}}\right) \text{W}$$



EPJC (2018) 78:703

Hybridization of Cavity and Kittle modes

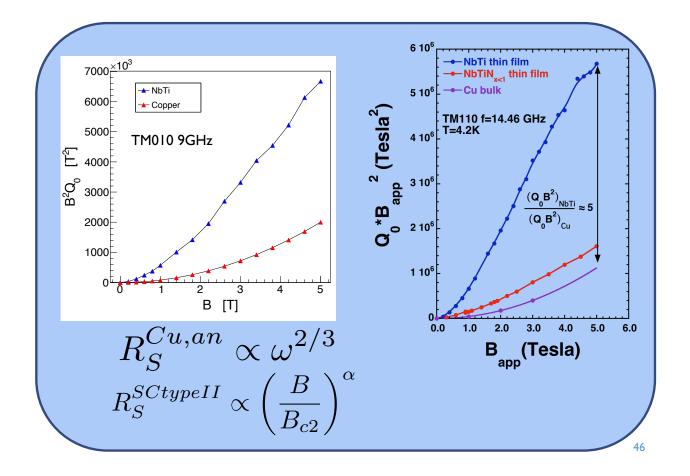
Expected power from DFSZ axion. No way to detect it at this stage!

QUAX R&D: Type II SC RF-Cavities

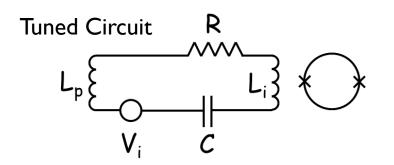
Nb

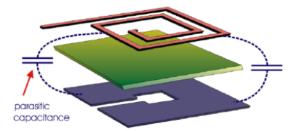
NbTi

QUAX R&D: Type II SC RF-Cavities

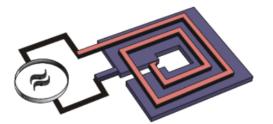

Quality factor of a copper cavity sputtered with NbTi (13T $\rm H_{c2})$ measured at 4K, for:

- I. TM010 mode at 9 GHz
- 2. TMII0 mode at I4 GHz


Gain of factor 4-5 in the expected signal power, for Primakoff conversion, at both frequencies when B=5 T.



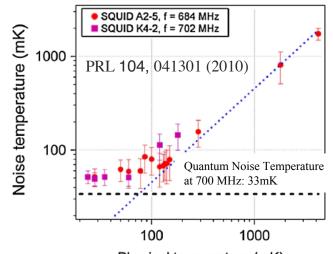
THE DC SQUID AS A RADIOFREQUENCY AMPLIFIER


At frequencies higher than a few MHz it is convenient to use a tuned circuit: e.g. Noise Temperature $T_N = 1.7K$ @93MHz and @4.2K C. Hilbert and J. Clarke, J. Low Temp. Phys. **61**, 263 (1985).

but

In a conventional square-washer SQUID the parasitic capacitance between the input coil and the square washer can lower the gain to useless levels at frequencies around 100 MHz

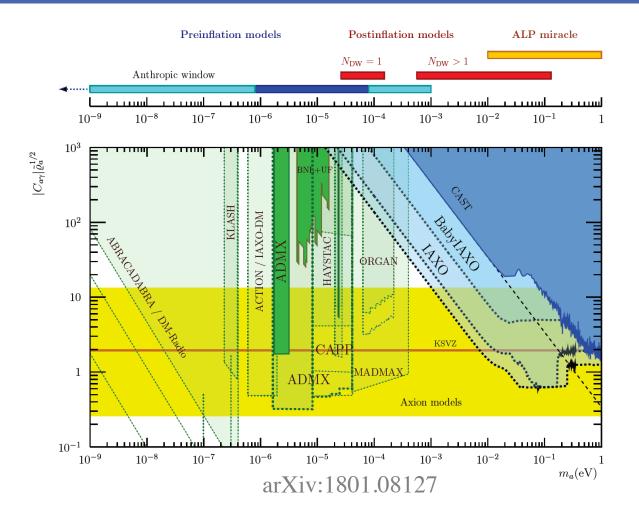
then



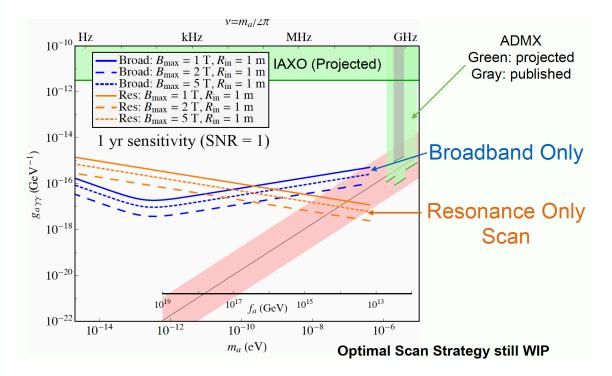
Possible solution: in contrast to the conventional input scheme the signal is applied between one end of the coil and the washer (the other end of the coil is left open).

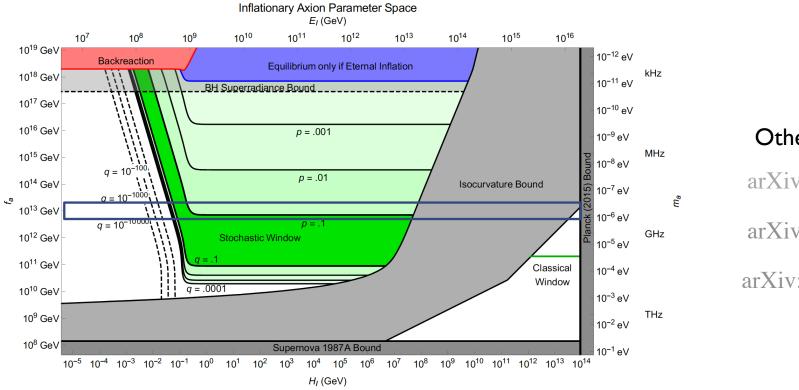
e.g. T_N =52mK @538MHz and @0.1K (Quantum Limited T_N =26mK) M. Muck et al. Appl. Phys. Lett **78**, 967, (2001)

300 mK COOLING FOR SQUID


- SQUID can be cooled at about 0.3 K using a ³He fridge
- The simplest solution foresees a coupled ⁴He/³He fridges
- Compact and quite easy to operate
- $T_{base} \approx 300 \text{ mK}$, cooling power \approx few tens of μW
- Single shot condensation allows a 80÷90% duty cycle operation
- Two ³He fridges and a thermal switch allow continuous operation, but requires development

Physical temperature (mK)


COMPETITORS


49

COMPETITORS

ABRACADABRA-10cm	
Dilution Refrigerator	\checkmark
SQUID Readout System	√
Magnet	\$80k
Shielding	
ABRACADABRA 1m	
Cooling System:	
Dilution refrigerator systems	O(≲\$1M)
Larger system to cool the toroid	
SQUID Readout Systems	
Custom system with larger bandwidth and resonator	O(≲\$1M)
Shielding	
To be determined	
Magnet	
Typical scaling number (cost driver)	\$250k/MJ
$R_{\min}=1m, R_{\max}=2m, h=3m, B_{\max}=1T$	\$1.2M
R_{\min} =2.2m, R_{\max} = 4.5m, h = 6.7m, B_{\max} = 1T	\$6M
$R_{\min}=1m, R_{\max}=2m, h=3m, B_{\max}=5T$	\$30M
Same Sensitivity *All numbers ar	e hallnark estim

COSMOLOGICAL LIMITS

Other models:

arXiv:1406.0660 arXiv:1304.7270

arXiv:1705.01134

REQUESTS FOR CDR

KLASH	YEAR		2018							2019															
	Month	1	2		8 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Task	WP 1 Progetto Meccanico																								
T1.1	Progettazione Meccanica																								
T1.2	Progetto Meccanico Definitivo																								
		1	2		8 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Task	WP 2 Criogenia																								
T2.1	Progettazione Criogenia																								
T2.2	R&D 300 mK																								
		1	2		3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Task	WP 3 Simulazioni RF																								
T3.1	Progettazione e Simulazione Cavità																								
T3.2	Progettazione e Simulazione Tuning																								
T3.4	Componentistica																								
		1	2		8 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Task	WP 4 Amplificazione e DAQ																								
T4.1	Progetto SQUID																								
T4.2	Schermaggio Campo Magnetico																								
T4.3	Amplificazione Secondaria																								
T4.4	DAQ																								
		1	2		8 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Task	WP 5 Infrastruttura e Automazione																								
T5.1	Definizione Servizi																								
T5.2	Schema Controllo e Automazione																								
		1	2		3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Task	WP 6 Risultati di Fisica																								
T6.1	Sensibilità ad Assioni																								
T6.2	Sensibilita a WISPs																								

CDR I anno	Costo (k€)	Mesi Persona (R,T, Tecnici Serv.)
Progettazione Meccanica (LNF) e progetto esecutivo (Ditta esterna)	25	6
Progetto criogenia. Prototipo refrigeratore 300 mK	5	3
Simulazioni RF	-	4
Amplificazione e DAQ	-	3.5
Infrastruttura e automazione	-	1
Risultati di Fisica	-	2

Estimated construction cost about I-2 M€